PDF (13.8 MB)
Collect
Submit Manuscript
Show Outline
Figures (7)

Tables (2)
Table 1
Table 2
Review | Open Access

Nanobiomaterials Based Sonodynamic Therapy for Treament of Helicobacter pylori Infections: A Review

Mengfan Li1,2,§Yingli Gong1,2,§Tielou Chen4,§Lei Lu1Xiuwen Ding1Cuimin Chen1Yan Wu2()Tinglin Zhang1,3()Jie Gao1,2,3()
Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
College of Life Science, Mudanjiang Medical University, Mudanjiang157011, China
Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, China
Department of Stomatology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China

§These authors contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Helicobacter pylori (HP) is a helical-shaped bacterium that inhabits the human stomach and is associated with various pathologies, including gastritis, gastric ulcers, and gastric cancer. HP infection is the largest contributor to gastric cancer, and approximately 90% of non-cardia gastric cancers are related to HP infection. As HP gastritis is an infectious disease, eradicating HP is an effective measure to prevent gastric cancer. Traditional triple therapy has demonstrated limited efficacy due to the emergence of antibiotic resistance and disruption of the intestinal microbiota. Sonodynamic therapy is an innovative nonantibiotic approach that utilizes a sonosensitizer to generate reactive oxygen species in response to ultrasound, effectively targeting pathogenic microorganisms; recent advancements have highlighted its potential for the treatment of HP infection. This article reviews recent developments in ultrasound-assisted biomaterials designed to combat HP while simultaneously preserving intestinal microecology. Furthermore, it discusses the integrated mechanisms underlying both the anti-HP effects and the maintenance of intestinal microecology. These strategies provide novel insights into overcoming the limitations associated with traditional antibiotic therapies and establish a foundation for future clinical applications.

References

[1]

P. Malfertheiner, F. Megraud, T. Rokkas, et al. Management of Helicobacter pylori infection: The maastricht VI/Florence consensus report. Gut, 2022, 71: 1724−1762. https://doi.org/10.1136/gutjnl-2022-327745

[2]

B.J. Marshall, J.R. Warren. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet, 1984, 1(8390): 1311−1315. https://doi.org/10.1016/S0140-6736(84)91816-6

[3]

P. Farrell. Pathogenesis: Infections causing gastric cancer. Nature Microbiology, 2016, 1: 16038. https://doi.org/10.1038/nmicrobiol.2016.38

[4]
L.F. Zhang, L. Zhang, H. Deng, et al. In vivo activation of pH-responsive oxidase-like graphitic nanozymes for selective killing of Helicobacter pylori. Nature Communications, 2021, 12: 2002. https://doi.org/10.1038/s41467-021-22286-x
[5]

R. Sato, K. Murakami, T. Okimoto, et al. Development of corpus atrophic gastritis may be associated with Helicobacter pylori-related idiopathic thrombocytopenic purpura. Journal of Gastroenterology, 2011, 46(8): 991−997. https://doi.org/10.1007/s00535-011-0416-8

[6]

W.K. Silverstein, M.C. Cheung, Y. Lin. Vitamin B12 deficiency. CMAJ : Canadian Medical Association journal, 2022, 194(24): E843. https://doi.org/10.1503/cmaj.220306

[7]

K. Robinson, J.C. Atherton. The spectrum of Helicobacter-mediated diseases. Annual Review of Pathology, 2021, 16: 123−144. https://doi.org/10.1146/annurev-pathol-032520-024949

[8]

K. Sugano, J. Tack, E.J. Kuipers, et al. Kyoto global consensus report on Helicobacter pylori gastritis. Gut, 2015, 64(9): 1353−1367. https://doi.org/10.1136/gutjnl-2015-309252

[9]

P. Malfertheiner, F. Megraud, T. Rokkas, et al. Management of Helicobacter pylori infection: The maastricht VI/Florence consensus report. Gut, 2022, 66(1): 6−30. https://doi.org/10.1136/gutjnl-2016-312288

[10]
A.C. Ford, Y. Yuan, P. Moayyedi. Helicobacter pylori eradication therapy to prevent gastric cancer: Systematic review and meta-analysis. Annals of Internal Medicine, 2020, 69(12): 2113–2121. https://doi.org/10.1136/gutjnl-2020-320839
[11]

K.F. Pan, W.Q. Li, L. Zhang, et al. Gastric cancer prevention by community eradication of Helicobacter pylori: A cluster-randomized controlled trial. Nature Medicine, 2024, 30: 3250−3260. https://doi.org/10.1038/s41591-024-03153-w

[12]

Q. Cai, C. Zhu, Y. Yuan, et al. Development and validation of a prediction rule for estimating gastric cancer risk in the Chinese high-risk population: A nationwide multicentre study. Gut, 2019, 68(9): 1576−1587. https://doi.org/10.1136/gutjnl-2018-317556

[13]

J.R. Warren, B. Marshall. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet, 1983, 1(8336): 1273−1275.

[14]

D.Y. Graham, M.P. Dore, H. Lu. Understanding treatment guidelines with bismuth and non-bismuth quadruple Helicobacter pylori eradication therapies. Expert Review of Anti-Infective Therapy, 2018, 16(9): 679−687. https://doi.org/10.1080/14787210.2018.1511427

[15]

C.W. Howden, D.Y. Graham. Recent developments pertaining to H. pylori infection. American Journal of Gastroenterology, 2020, 116(1): 1−3. https://doi.org/10.14309/ajg.0000000000001031

[16]
E. Tshibangu-Kabamba, Y. Yamaoka. Helicobacter pylori infection and antibiotic resistance—From biology to clinical implications. Nature Reviews Gastroenterology & Hepatology, 2021, 18: 613–629. https://doi.org/10.1038/s41575-021-00449-x
[17]

W. Hu, L. Zhang, M.X. Li, et al. Vitamin D3 activates the autolysosomal degradation function against Helicobacter pylori through the PDIA3 receptor in gastric epithelial cells. Eye, 2019, 15(4): 707−725. https://doi.org/10.1080/15548627.2018.1557835

[18]

C.C. Chen, J.M. Liou, Y.C. Lee, et al. The interplay between Helicobacter pylori and gastrointestinal microbiota. Gut Microbes, 2021, 13(1): e1909459. https://doi.org/10.1080/19490976.2021.1909459

[19]

B. Marshall. Epidemiology of helicobacter in Chinese families: A foundation for cost-effective eradication strategies. Gut, 2024, 73(5): 870−871. https://doi.org/10.1136/gutjnl-2023-329786

[20]

X.Z. Zhou, N.H. Lyu, H.Y. Zhu, et al. Large-scale, national, family-based epidemiological study on Helicobacter pylori infection in China: The time to change practice for related disease prevention. Gut, 2023, 72(5): 855−869. https://doi.org/10.1136/gutjnl-2022-328965

[21]
J. Zhang, Y. Deng, C. Liu, et al. ‘family-based’ strategy for Helicobacter pylori infection screening: An efficient alternative to ‘test and treat’ strategy. Gut, 2024, 73(4): 709–712. https://doi.org/10.1136/gutjnl-2023-329696
[22]
Huh, A. J., Kwon, Y. J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 2011, 156(2): 128–145. https://doi.org/10.1016/j.jconrel.2011.07.002
[23]

Jiang, J. L., Cui, X. Y., Huang, Y. X., Yan, D. M., Wang, B. S., Yang, Z. Y., Chen, M. R., Wang, J. H., Zhang, Y. N., Liu, G. et al. Advances and prospects in integrated nano-oncology. Nano Biomedicine and Engineering, 2024, 16(2): 152−187. https://doi.org/10.26599/nbe.2024.9290060

[24]
Yan, H. Z., Shen, H., SiTu, J. R., Yang, Y. Y., Zhang, L. L., Yang, K. Preparation of bmi-1-siRNA lipid nanoparticles and effects in gastric cancer. Nano Biomedicine and Engineering, 2024, 16(3): 416–428. https://doi.org/10.26599/nbe.2024.9290086
[25]
D. Luo, J. Guo, F. Wang, et al. Preparation and evaluation of anti-Helicobacter pylori efficacy of chitosan nanoparticles in vitro and in vivo. Journal of Biomaterials Science Polymer Edition, 2009, 20(11): 1587–1596. https://doi.org/10.1163/092050609x12464345137685
[26]
Y.H. Lin, S.C. Tsai, C.H. Lai, et al. Genipin-cross-linked fucose-chitosan/heparin nanoparticles for the eradication of Helicobacter pylori. Biomaterials, 2013, 34(18): 4466–4479. https://doi.org/10.1016/j.biomaterials.2013.02.028
[27]

Z. Geng, Z. Cao, J. Liu. Recent advances in targeted antibacterial therapy basing on nanomaterials. Exploration, 2023, 3(1): 20210117. https://doi.org/10.1002/exp.20210117

[28]

W. Zhang, Y. Zhou, Y. Fan, et al. Metal-organic-framework-based hydrogen-release platform for multieffective helicobacter pylori targeting therapy and intestinal flora protective capabilities. Advanced Materials, 2022, 34(2): e2105738. https://doi.org/10.1002/adma.202105738

[29]
X. Xia, Z. Yin, Y. Yang, et al. In situ upregulating heat shock protein 70 via gastric nano-heaters for the interference of Helicobacter pylori infection. ACS Nano, 2022, 16(9): 14043–14054. https://doi.org/10.1021/acsnano.2c03911
[30]

X.R. Song, Q. Zhang, M.Q. Chang, et al. Nanomedicine-enabled sonomechanical, sonopiezoelectric, sonodynamic, and sonothermal therapy. Advanced Materials, 2023, 35(31): 2212259. https://doi.org/10.1002/adma.202212259

[31]

L. Fan, A. Idris Muhammad, B. Bilyaminu Ismail, et al. Sonodynamic antimicrobial chemotherapy: An emerging alternative strategy for microbial inactivation. Ultrasonics Sonochemistry, 2021, 75: 105591. https://doi.org/10.1016/j.ultsonch.2021.105591

[32]

T. Liu, S. Chai, M.Y. Li, et al. A nanoparticle-based sonodynamic therapy reduces Helicobacter pylori infection in mouse without disrupting gut microbiota. Nature Communications, 2024, 15: 844. https://doi.org/10.1038/s41467-024-45156-8

[33]

Y.K. Lai, T.L. Zhang, X.J. Yin, et al. An antibiotic-free platform for eliminating persistent Helicobacter pylori infection without disrupting gut microbiota. Acta Pharmaceutica Sinica B, 2024, 14(7): 3184−3204. https://doi.org/10.1016/j.apsb.2024.03.014

[34]

Y. Lai, W. Wei, Y. Du, et al. Biomaterials for Helicobacter pylori therapy: Therapeutic potential and future perspectives. Gut Microbes, 2022, 14(1): 2120747. https://doi.org/10.1080/19490976.2022.2120747

[35]

X. Yin, Y. Lai, Y. Du, et al. Metal-based nanoparticles: A prospective strategy for Helicobacter pylori treatment. International Journal of Nanomedicine, 2023, 18: 2413−2429. https://doi.org/10.2147/ijn.S405052

[36]

W. Fischbach, P. Malfertheiner. Helicobacter pylori infection. Deutsches Ärzteblatt International, 2018, 115(25): 429−436. https://doi.org/10.3238/arztebl.2018.0429

[37]

A. O’Connor, D. Lamarque, J.P. Gisbert, et al. Treatment of Helicobacter pylori infection 2017. Helicobacter, 2017, 22(S1): e12410. https://doi.org/10.1111/hel.12410

[38]

F. Mégraud. H pylori antibiotic resistance: Prevalence, importance, and advances in testing. Frontiers in Microbiology, 2004, 53(9): 1374−1384. https://doi.org/10.1136/gut.2003.022111

[39]

W.Z. Liu, Y. Xie, H. Lu, et al. Fifth Chinese National Consensus Report on the management of Helicobacter pylori infection. Helicobacter, 2018, 23(2): e12475. https://doi.org/10.1111/hel.12475

[40]

L.J. Yan, Y. Chen, F. Chen, et al. Effect of Helicobacter pylori eradication on gastric cancer prevention: Updated report from a randomized controlled trial with 26.5 years of follow-up. Gastroenterology, 2022, 163(1): 154−162.e3. https://doi.org/10.1053/j.gastro.2022.03.039

[41]

S. Suzuki, T. Gotoda, C. Kusano, et al. Seven-day vonoprazan and low-dose amoxicillin dual therapy as first-line Helicobacter pylori treatment: A multicentre randomised trial in Japan. Gut, 2020, 69(6): 1019−1026. https://doi.org/10.1136/gutjnl-2019-319954

[42]
F. Megraud, R. Bruyndonckx, S. Coenen, et al. Helicobacter pylori resistance to antibiotics in Europe in 2018 and its relationship to antibiotic consumption in the community. Gut, 2021, 70(10): 1815–1822. https://doi.org/10.1136/gutjnl-2021-324032
[43]
J. Versalovic, D. Shortridge, K. Kibler, et al. Mutations in 23S rRNA are associated with clarithromycin resistance in Helicobacter pylori. International Journal of Molecular Sciences, 1996, 40(2): 477–480. https://doi.org/10.1128/aac.40.2.477
[44]

T.T. Binh, S. Shiota, R. Suzuki, et al. Discovery of novel mutations for clarithromycin resistance in Helicobacter pylori by using next-generation sequencing. The Journal of Antimicrobial Chemotherapy, 2014, 69(7): 1796−1803. https://doi.org/10.1093/jac/dku050

[45]

M. Miftahussurur, P.K. Shrestha, P. Subsomwong, et al. Emerging Helicobacter pylori levofloxacin resistance and novel genetic mutation in Nepal. BMC Microbiol, 2016, 16(1): 256. https://doi.org/10.1186/s12866-016-0873-6

[46]
D.H. Kwon, F.A. El-Zaatari, M. Kato, et al. Analysis of rdxA and involvement of additional genes encoding NAD(P)H flavin oxidoreductase (FrxA) and ferredoxin-like protein (FdxB) in metronidazole resistance of Helicobacter pylori. Journal of Orthopaedic Case Reports, 2000, 44(8): 2133–2142. https://doi.org/10.1128/aac.44.8.2133-2142
[47]

S. Zhang, X. Wang, M.J. Wise, et al. Mutations of Helicobacter pylori RdxA are mainly related to the phylogenetic origin of the strain and not to metronidazole resistance. The Journal of Antimicrobial Chemotherapy, 2020, 75(11): 3152−3155. https://doi.org/10.1093/jac/dkaa302

[48]

H. Yonezawa, T. Osaki, F. Hojo, et al. Effect of Helicobacter pylori biofilm formation on susceptibility to amoxicillin, metronidazole and clarithromycin. Microbial Pathogenesis, 2019, 132: 100−108. https://doi.org/10.1016/j.micpath.2019.04.030

[49]

A. Penesyan, I.T. Paulsen, M.R. Gillings, et al. Secondary effects of antibiotics on microbial biofilms. Frontiers in Microbiology, 2020, 11: 2109. https://doi.org/10.3389/fmicb.2020.02109

[50]

E.Z. Gomaa. Human gut microbiota/microbiome in health and diseases: A review. Antonie Van Leeuwenhoek, 2020, 113(12): 2019−2040. https://doi.org/10.1007/s10482-020-01474-7

[51]

M. Derrien, A.S. Alvarez, W.M. de Vos. The gut microbiota in the first decade of life. Trends in Microbiology, 2019, 27(12): 997−1010. https://doi.org/10.1016/j.tim.2019.08.001

[52]

J. Ramirez, F. Guarner, L. Bustos Fernandez, et al. Antibiotics as major disruptors of gut microbiota. Frontiers in Cellular and Infection Microbiology, 2020, 10: 572912. https://doi.org/10.3389/fcimb.2020.572912

[53]

L. Dethlefsen, S. Huse, M.L. Sogin, et al. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biology, 2008, 6(11): e280. https://doi.org/10.1371/journal.pbio.0060280

[54]

A. Palleja, K.H. Mikkelsen, S.K. Forslund, et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nature Microbiology, 2018, 3: 1255−1265. https://doi.org/10.1038/s41564-018-0257-9

[55]

W.E. Anthony, B. Wang, K.V. Sukhum, et al. Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in healthy adults. Cell Reports, 2022, 39(2): 110649. https://doi.org/10.1016/j.celrep.2022.110649

[56]

V. Dubinsky, L. Reshef, N. Bar, et al. Predominantly antibiotic-resistant intestinal microbiome persists in patients with pouchitis who respond to antibiotic therapy. Gastroenterology, 2020, 158(3): 610−624.e13. https://doi.org/10.1053/j.gastro.2019.10.001

[57]

H.E. Jakobsson, C. Jernberg, A.F. Andersson, et al. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One, 2010, 5(3): e9836. https://doi.org/10.1371/journal.pone.0009836

[58]

J.M. Liou, X.T. Jiang, C.C. Chen, et al. Second-line levofloxacin-based quadruple therapy versus bismuth-based quadruple therapy for Helicobacter pylori eradication and long-term changes to the gut microbiota and antibiotic resistome: A multicentre, open-label, randomised controlled trial. The Lancet Gastroenterology & Hepatology, 2023, 8(3): 228−241. https://doi.org/10.1016/S2468-1253(22)00384-3

[59]

J.M. Liou, C.C. Chen, C.M. Chang, et al. Long-term changes of gut microbiota, antibiotic resistance, and metabolic parameters after Helicobacter pylori eradication: A multicentre, open-label, randomised trial. The Lancet Infectious Diseases, 2019, 19(10): 1109−1120. https://doi.org/10.1016/S1473-3099(19)30272-5

[60]

Y. Zhou, Z. Ye, J. Lu, et al. Long-term changes in the gut microbiota after 14-day bismuth quadruple therapy in penicillin-allergic children. Helicobacter, 2020, 25(5): e12721. https://doi.org/10.1111/hel.12721

[61]

K. Kotilea, J. Mekhael, A. Salame, et al. Eradication rate of Helicobacter Pylori infection is directly influenced by adherence to therapy in children. Helicobacter, 2017, 22(4): e12383. https://doi.org/10.1111/hel.12383

[62]
S. Shakya Shrestha, M. Bhandari, S.R. Thapa, et al. Medication adherence pattern and factors affecting adherence in helicobacter pylori eradication therapy. Kathmandu University Medical Journal (KUMJ), 2016, 14(53): 58–64.
[63]

M. Lefebvre, H.J. Chang, A. Morse, et al. Adherence and barriers to H. pylori treatment in Arctic Canada. International Journal of Circumpolar Health, 2013, 72: 22791. https://doi.org/10.3402/ijch.v72i0.22791

[64]

S. Shahbazi, Z. Vahdat Shariatpanahi. Comparison between daily single-dose triple therapy andconventional triple therapy on patient compliance and Helicobacter pylori eradication: A randomized controlled trial. Indian Journal of Gastroenterology, 2018, 37(6): 550−554. https://doi.org/10.1007/s12664-018-0916-z

[65]
E. Gebeyehu, D. Nigatu, E. Engidawork. Helicobacter pylori eradication rate of standard triple therapy and factors affecting eradication rate at bahir Dar City administration, northwest Ethiopia: A prospective follow up study. PLoS One, 2019, 14(6): e0217645. https://doi.org/10.1371/journal.pone.0217645
[66]

M. Castro Fernández, T. Romero García, A. Keco Huerga, et al. Compliance, adverse effects and effectiveness of first line bismuth-containing quadruple treatment (Pylera®) to eradicate Helicobacter pylori infection in 200 patients. Revista Espanola de Enfermedades Digestivas, 2019, 111(6): 467−470. https://doi.org/10.17235/reed.2019.5950/2018

[67]

Y. Chen, H. Yuan, H. Ye, et al. Application of a semi-automatic, intensive follow-up for improving efficacy and adherence of Helicobacter pylori eradication therapy: A randomized controlled trial. MicrobiologyOpen, 2021, 10(1): e1172. https://doi.org/10.1002/mbo3.1172

[68]

H. Abrahamse, M.R. Hamblin. New photosensitizers for photodynamic therapy. Biochemical Journal, 2016, 473(4): 347−364. https://doi.org/10.1042/BJ20150942 %J Biochemical Journal https://doi.org/10.1042/BJ20150942%JBiochemicalJournal

[69]

K. Ninomiya, K. Noda, C. Ogino, et al. Enhanced OH radical generation by dual-frequency ultrasound with TiO2 nanoparticles: Its application to targeted sonodynamic therapy. Ultrasonics Sonochemistry, 2014, 21(1): 289−294. https://doi.org/10.1016/j.ultsonch.2013.05.005

[70]

H.Y. Xu, X. Zhang, R.B. Han, et al. Nanoparticles in sonodynamic therapy: State of the art review. RSC Advances, 2016, 6(56): 50697−50705. https://doi.org/10.1039/C6RA06862F

[71]

M. Pourhajibagher, A.R. Rokn, H.R. Barikani, et al. Photo-sonodynamic antimicrobial chemotherapy via chitosan nanoparticles-indocyanine green against polymicrobial periopathogenic biofilms: Ex vivo study on dental implants. Photodiagnosis and Photodynamic Therapy, 2020, 31: 101834. https://doi.org/10.1016/j.pdpdt.2020.101834

[72]

R.H. Wang, C.F. Song, A. Gao, et al. Antibody-conjugated liposomes loaded with indocyanine green for oral targeted photoacoustic imaging-guided sonodynamic therapy of Helicobacter pylori infection. Acta Biomaterialia, 2022, 143: 418−427. https://doi.org/10.1016/j.actbio.2022.02.031

[73]
Y. Zhang, H. Zhang, D. Zhuang, et al. Hematoporphyrin monomethyl ether mediated sonodynamic antimicrobial chemotherapy on porphyromonas gingivalis in vitro. Microbial Pathogenesis, 2020, 144: 104192. https://doi.org/10.1016/j.micpath.2020.104192
[74]

J. Yu, Z. Guo, J. Yan, et al. Gastric acid-responsive ROS nanogenerators for effective treatment of Helicobacter pylori infection without disrupting homeostasis of intestinal flora. Advanced Science, 2023, 10(20): e2206957. https://doi.org/10.1002/advs.202206957

[75]

Z.F. Wang, C.C. Liu, Y.M. Zhao, et al. Photomagnetic nanoparticles in dual-modality imaging and photo-sonodynamic activity against bacteria. Chemical Engineering Journal, 2019, 356: 811−818. https://doi.org/10.1016/j.cej.2018.09.077

[76]

S.N. Cheng, L. Chen, F. Gong, et al. PtCu nanosonosensitizers with inflammatory microenvironment regulation for enhanced sonodynamic bacterial elimination and tissue repair. Advanced Functional Materials, 2023, 33(22): 2212489. https://doi.org/10.1002/adfm.202212489

[77]

J. Fan, Y. Dong, Y. Sun, et al. Mucus and biofilm penetrating nanoplatform as an ultrasound-induced free radical initiator for targeted treatment of Helicobacter pylori infection. Advanced Healthcare Materials, 2024, 13(20): e2400363. https://doi.org/10.1002/adhm.202400363

[78]

D. Sun, X. Pang, Y. Cheng, et al. Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection. ACS Nano, 2020, 14(2): 2063−2076. https://doi.org/10.1021/acsnano.9b08667

[79]

H.D. Cui, D.H. Hu, J.N. Zhang, et al. Gold nanoclusters–indocyanine green nanoprobes for synchronous cancer imaging, treatment, and real-time monitoring based on fluorescence resonance energy transfer. ACS Applied Materials & Interfaces, 2017, 9(30): 25114−25127. https://doi.org/10.1021/acsami.7b06192

[80]

C.W. Teng, V. Huang, G.R. Arguelles, et al. Applications of indocyanine green in brain tumor surgery: Review of clinical evidence and emerging technologies. Neurosurg Focus, 2021, 50(1): E4. https://doi.org/10.3171/2020.10.Focus20782

[81]

N. Nomikou, C. Sterrett, C. Arthur, et al. The effects of ultrasound and light on indocyanine-green-treated tumour cells and tissues. ChemMedChem, 2012, 7(8): 1465−1471. https://doi.org/10.1002/cmdc.201200233

[82]

L. Chen, J.L. Zhang, X.J. Zhou, et al. Merging metal organic framework with hollow organosilica nanoparticles as a versatile nanoplatform for cancer theranostics. Acta Biomaterialia, 2019, 86: 406−415. https://doi.org/10.1016/j.actbio.2019.01.005

[83]
X. Yin, Y. Lai, X. Zhang, et al. Targeted sonodynamic therapy platform for holistic integrative Helicobacter pylori therapy. Advanced Science, 2024: e2408583. https://doi.org/10.1002/advs.202408583
[84]

M. Lan, S. Zhao, W. Liu, et al. Photosensitizers for photodynamic therapy. Advanced Healthcare Materials, 2019, 8(13): e1900132. https://doi.org/10.1002/adhm.201900132

[85]
K. Bilmin, T. Kujawska, W. Secomski, et al. 5-Aminolevulinic acid-mediated sonosensitization of rat RG2 glioma cells in vitro. Folia Neuropathol, 2016, 54(3): 234–240. https://doi.org/10.5114/fn.2016.62233
[86]

M.J. Chen, A.R. Xu, W.Y. He, et al. Ultrasound triggered drug delivery for mitochondria targeted sonodynamic therapy. Journal of Drug Delivery Science and Technology, 2017, 39: 501−507. https://doi.org/10.1016/j.jddst.2017.05.009

[87]
Y. Zhang, H.B. Zhang, D.S. Zhuang, et al. Hematoporphyrin monomethyl ether mediated sonodynamic antimicrobial chemotherapy on porphyromonas gingivalis in vitro. Microbial Pathogenesis, 2020, 144: 104192. https://doi.org/10.1016/j.micpath.2020.104192
[88]

L. Sun, Y.R. Xu, X.M. Zhang, et al. Mesenchymal stem cells functionalized sonodynamic treatment for improving therapeutic efficacy and compliance of orthotopic oral cancer. Advanced Materials, 2020, 32(48): e2005295. https://doi.org/10.1002/adma.202005295

[89]

X.W. Wang, X.Y. Zhong, L.X. Bai, et al. Ultrafine titanium monoxide (TiO1+ x ) nanorods for enhanced sonodynamic therapy. Journal of the American Chemical Society, 2020, 142(14): 6527−6537. https://doi.org/10.1021/jacs.9b10228

[90]

Y.Q. Zhu, W.Q. Huang, G. Chen, et al. Sticking-bacteria gel enhancing anti-multidrug-resistant microbial therapy under ultrasound. Nano Research, 2022, 15(10): 9105−9113. https://doi.org/10.1007/s12274-022-4547-4

[91]

T.J. Silhavy, D. Kahne, S. Walker. The Bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2010, 2(5): a000414−a14. https://doi.org/10.1101/cshperspect.a000414

[92]

Q.Y. Wang, Y. Zhang, Q. Li, et al. Therapeutic applications of antimicrobial silver-based biomaterials in dentistry. International Journal of Nanomedicine, 2022, 17: 443−462. https://doi.org/10.2147/ijn.s349238

[93]

I. Rosenthal, J.Z. Sostaric, P. Riesz. Sonodynamic therapy–– a review of the synergistic effects of drugs and ultrasound. Ultrasonics Sonochemistry, 2004, 11(6): 349−363. https://doi.org/10.1016/j.ultsonch.2004.03.004

[94]

N. Bhargava, R.S. Mor, K. Kumar, et al. Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry, 2021, 70: 105293. https://doi.org/10.1016/j.ultsonch.2020.105293

[95]

M. Pourhajibagher, B. Rahimi esboei, M. Hodjat, et al. Sonodynamic excitation of nanomicelle curcumin for eradication of streptococcus mutans under sonodynamic antimicrobial chemotherapy: Enhanced anti-caries activity of nanomicelle curcumin. Photodiagnosis and Photodynamic Therapy, 2020, 30: 101780. https://doi.org/10.1016/j.pdpdt.2020.101780

[96]

M. Trendowski. The promise of sonodynamic therapy. Cancer and Metastasis Reviews, 2014, 33(1): 143−160. https://doi.org/10.1007/s10555-013-9461-5

[97]

S. Son, J.H. Kim, X.W. Wang, et al. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chemical Society Reviews, 2020, 49(11): 3244−3261. https://doi.org/10.1039/C9CS00648F

[98]

J. Li, Z. Yue, M. Tang, W. Wang, et al. Strategies to reverse hypoxic tumor microenvironment for enhanced sonodynamic therapy. Advanced Healthcare Materials, 2024, 13(1): e2302028. https://doi.org/10.1002/adhm.202302028

[99]

D. Lebeaux, J.M. Ghigo, C. Beloin. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiology and Molecular Biology Reviews, 2014, 78(3): 510−543. https://doi.org/10.1128/mmbr.00013-14

[100]

M. Ahmad Rather, K. Gupta, M. Mandal. Microbial biofilm: Formation, architecture, antibiotic resistance, and control strategies. Brazilian Journal of Microbiology, 2021, 52(4): 1701−1718. https://doi.org/10.1007/s42770-021-00624-x

[101]

L. Chen, Y.M. Wen. The role of bacterial biofilm in persistent infections and control strategies. International Journal of Oral Science, 2011, 3(2): 66−73. https://doi.org/10.4248/ijos11022

[102]

W.M. de Vos, H. Tilg, M. Van Hul, et al. Gut microbiome and health: Mechanistic insights. Gut, 2022, 71(5): 1020−1032. https://doi.org/10.1136/gutjnl-2021-326789

[103]

G. Guo, H. Zhang, H. Shen, et al. Space-selective chemodynamic therapy of CuFe5O8 nanocubes for implant-related infections. ACS Nano, 2020, 14(10): 13391−13405. https://doi.org/10.1021/acsnano.0c05255

[104]

X. Wu, F. Chen, Q. Zhang, et al. What is the magical cavitation bubble: A holistic perspective to trigger advanced bubbles, nano-sonocatalysts, and cellular sonosensitizers. BME Frontiers, 2024, 5: 0067. https://doi.org/10.34133/bmef.0067

Nano Biomedicine and Engineering
Pages 525-541
Cite this article:
Li M, Gong Y, Chen T, et al. Nanobiomaterials Based Sonodynamic Therapy for Treament of Helicobacter pylori Infections: A Review. Nano Biomedicine and Engineering, 2024, 16(4): 525-541. https://doi.org/10.26599/NBE.2024.9290109
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return