PDF (9.9 MB)
Collect
Submit Manuscript
Review | Open Access | Online First

Synthesis and Application of Selenium Nanoparticles for the Modulation of Inflammatory Diseases

Xinwei Bai1Tianchang Zhou1Xiao Wu1Jin Chang1Xiaoli Wu1()
School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Inflammation is a fundamental response process to injury, which is coordinated by various inflammatory mediators, including reactive oxygen species, inflammatory immune cells and cytokines. Excessive inflammatory responses can drive the development of numerous diseases, making modulation of inflammatory responses a crucial strategy in the treatment of inflammatory diseases. Selenium (Se), an essential trace element for human health, plays a crucial role in alleviating severe inflammatory diseases by scavenging free radicals, achieving antioxidant effects and modulating the innate and adaptive immune systems in the inflammatory microenvironment. Among the different forms of Se element, Selenium nanoparticles (SeNPs) stand out for their low toxicity and high utilization rate, offering them unique advantages in the fields of medicine and materials science. In addition, functional modification of SeNPs enhances their biological activities in modulating the process of inflammatory diseases. In this review, the construction of various types of SeNPs are firstly discussed. Then, we review the diagnosing effects of modified SeNPs and highlight their biomedical applications in the treatment of inflammation. Finally, we summarize the limitations in the current research of SeNPs as well as the major challenges in clinical transformation, and anticipate the application prospects of new functionalized SeNPs in the treatment of inflammatory diseases.

References

[1]

P.M. Henson. Dampening inflammation. Nature Immunology, 2005, 6(12): 1179−1181. https://doi.org/10.1038/ni1205-1179

[2]

H. Yu, R. Gao, Y. Liu, et al. Stimulus-responsive hydrogels as drug delivery systems for inflammation targeted therapy. Adv Sci, 2024, 11(1): e2306152. https://doi.org/10.1002/advs.202306152

[3]

Z.X. Tu, Y.L. Zhong, H.Z. Hu, et al. Design of therapeutic biomaterials to control inflammation. Nature Reviews Materials, 2022, 7: 557−574. https://doi.org/10.1038/s41578-022-00426-z

[4]

M.E. Kotas, R. Medzhitov. Homeostasis, inflammation, and disease susceptibility. Cell, 2015, 160(5): 816−827. https://doi.org/10.1016/j.cell.2015.02.010

[5]

C. Nathan, A. Ding. Nonresolving inflammation. Cell, 2010, 140(6): 871−882. https://doi.org/10.1016/j.cell.2010.02.029

[6]

D. Panigrahy, M.M. Gilligan, C.N. Serhan, et al. Resolution of inflammation: An organizing principle in biology and medicine. Pharmacology & Therapeutics, 2021, 227: 107879. https://doi.org/10.1016/j.pharmthera.2021.107879

[7]
C.K. Sen, S. Roy. Redox signals in wound healing. Biochimica et Biophysica Acta (BBA) - General Subjects, 2008, 1780(11): 1348–1361. https://doi.org/10.1016/j.bbagen.2008.01.006
[8]

S.E. Gill, W.C. Parks. Metalloproteinases and their inhibitors: Regulators of wound healing. The International Journal of Biochemistry & Cell Biology, 2008, 40(6-7): 1334−1347. https://doi.org/10.1016/j.biocel.2007.10.024

[9]

H. Sies. Oxidative stress: A concept in redox biology and medicine. Redox Biology, 2015, 4: 180−183. https://doi.org/10.1016/j.redox.2015.01.002

[10]

B.S. Karam, A. Chavez-Moreno, W. Koh, et al. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovascular Diabetology, 2017, 16(1): 120. https://doi.org/10.1186/s12933-017-0604-9

[11]

T.J. Guzik, R.M. Touyz. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension, 2017, 70(4): 660−667. https://doi.org/10.1161/HYPERTENSIONAHA.117.0780

[12]

S. Prasad, A.K. Tyagi, B.B. Aggarwal. Detection of inflammatory biomarkers in saliva and urine: Potential in diagnosis, prevention, and treatment for chronic diseases. Experimental Biology and Medicine, 2016, 241(8): 783−799. https://doi.org/10.1177/1535370216638770

[13]

K. Roe. An inflammation classification system using cytokine parameters. Scandinavian Journal of Immunology, 2021, 93(2): e12970. https://doi.org/10.1111/sji.12970

[14]

N.L. Paul, N.H. Ruddle. Lymphotoxin. Annual Review of Immunology, 1988, 6: 407−438. https://doi.org/10.1146/annurev.iy.06.040188.002203

[15]

N.H. Ruddle. Lymphotoxin and TNF: How it all began—a tribute to the travelers. Cytokine & Growth Factor Reviews, 2014, 25(2): 83−89. https://doi.org/10.1016/j.cytogfr.2014.02.001

[16]

E.A. Elhefnawy, H.F. Zaki, N.N. El Maraghy, et al. Genistein and/or sulfasalazine ameliorate acetic acid-induced ulcerative colitis in rats via modulating INF-γ/JAK1/STAT1/IRF-1, TLR-4/NF-κB/IL-6, and JAK2/STAT3/COX-2 crosstalk. Biochemical Pharmacology, 2023, 214: 115673. https://doi.org/10.1016/j.bcp.2023.115673

[17]

K. Dzul-Rosado, L. Donis-Maturano, J. Arias-León, et al. Rickettsia vaccine candidate pVAX1-OmpB24 stimulates TCD4+INF-γ+ and TCD8+INF-γ+ lymphocytes in autologous co-culture of human cells. Vaccines, 2023, 11: 173. https://doi.org/10.3390/vaccines11010173

[18]

T.R. Malek. The biology of interleukin-2. Annual Review of Immunology, 2008, 26: 453−479. https://doi.org/10.1146/annurev.immunol.26.021607.090357

[19]

A.K. Abbas, E. Trotta, D. R Simeonov, et al. Revisiting IL-2: Biology and therapeutic prospects. Science Immunology, 2018, 3(25): eaat1482. https://doi.org/10.1146/10.1126/sciimmunol.aat1482

[20]

M. Baggiolini, I. Clark-Lewis. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Letters, 1992, 307(1): 97−101. https://doi.org/10.1016/0014-5793(92)80909-Z

[21]

H. Ghasemi, T. Ghazanfari, R. Yaraee, et al. Roles of IL-8 in ocular inflammations: A review. Ocular Immunology and Inflammation, 2011, 19(6): 401−412. https://doi.org/10.3109/09273948.2011.618902

[22]

M. Saraiva, A. O’Garra. The regulation of IL-10 production by immune cells. Nature Reviews Immunology, 2010, 10: 170−181. https://doi.org/10.1038/nri2711

[23]

A.G. York, M.H. Skadow, J. Oh, et al. IL-10 constrains sphingolipid metabolism to limit inflammation. Nature, 2024, 627: 628−635. https://doi.org/10.1038/s41586-024-07098-5

[24]

L.J. Huangfu, R.Y. Li, Y.M. Huang, et al. The IL-17 family in diseases: From bench to bedside. Signal Transduction and Targeted Therapy, 2023, 8: 402. https://doi.org/10.1038/s41392-023-01620-3

[25]

N. Amatya, A.V. Garg, S.L. Gaffen. IL-17 signaling: The Yin and the Yang. Trends in Immunology, 2017, 38(5): 310−322. https://doi.org/10.1016/j.it.2017.01.006

[26]

K. Wang, M. Zhou, H. Si, et al. Gut microbiota-mediated IL-22 alleviates metabolic inflammation. Life Sci, 2023, 334: 122229. https://doi.org/10.1016/j.lfs.2023.122229

[27]

J. Laska, M. Tota, J. Łacwik, et al. IL-22 in atopic dermatitis. Cells, 2024, 13(16): 1398. https://doi.org/10.3390/cells13161398

[28]

M.M. He, A.S. Smith, J.D. Oslob, et al. Small-molecule inhibition of TNF-alpha. Science, 2005, 310(5750): 1022−1025. https://doi.org/10.1126/science.1116304

[29]

S. Kang, M. Narazaki, H. Metwally, et al. Historical overview of the interleukin-6 family cytokine. J Exp Med, 2020, 217(5): e20190347. https://doi.org/10.1084/jem.20190347

[30]

B.B. Aggarwal, S.C. Gupta, J.H. Kim. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood, 2012, 119(3): 651−665. https://doi.org/10.1182/blood-2011-04-325225

[31]

C.A. Dinarello. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood, 2011, 117(14): 3720−3732. https://doi.org/10.1182/blood-2010-07-273417

[32]

M. Shi, J. Zhu, R. Wang, et al. Latent TGF-β structure and activation. Nature, 2011, 474(7351): 343−349. https://doi.org/10.1038/nature10152

[33]

M.A. Cinelli, H.T. Do, G.P. Miley, et al. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Medicinal Research Reviews, 2020, 40(1): 158−189. https://doi.org/10.1002/med.21599

[34]

Y. Xu, B. Jia, J. Li, et al. The interplay between ferroptosis and neuroinflammation in central neurological disorders. Antioxidants, 2024, 13(4): 395. https://doi.org/10.3390/antiox13040395

[35]

S.A. Coavoy-Sanchez, L.A. da Costa Marques, S.K.P. Costa, et al. Role of gasotransmitters in inflammatory edema. Antioxid Redox Signal, 2024, 40(4-6): 272−291. https://doi.org/10.1089/ars.2022.0089

[36]

A. Moustakas, K. Pardali, A. Gaal, et al. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunology Letters, 2002, 82(1-2): 85−91. https://doi.org/10.1016/S0165-2478(02)00023-8

[37]

P.M. Ridker. From C-reactive protein to interleukin-6 to interleukin-1: Moving upstream to identify novel targets for atheroprotection. Circulation Research, 2016, 118(1): 145−156. https://doi.org/10.1161/CIRCRESAHA.115.306656

[38]

G. Courtois, T.D. Gilmore. Mutations in the NF-kappaB signaling pathway: Implications for human disease. Oncogene, 2006, 25(51): 6831−6843. https://doi.org/10.1038/sj.onc.1209939

[39]
Z. Huang, A.H. Rose, P.R. Hoffmann, The role of selenium in inflammation and immunity: From molecular mechanisms to therapeutic opportunities. Antioxidants & Redox Signaling, 2012, 16(7): 705–743. https://doi.org/10.1089/ars.2011.4145
[40]

H. Vunta, F. Davis, U.D. Palempalli, et al. The anti-inflammatory effects of selenium are mediated through 15-deoxy-Δ12, 14-prostaglandin J2 in macrophages. Journal of Biological Chemistry, 2007, 282(25): 17964−17973. https://doi.org/10.1074/jbc.M703075200

[41]

L. Barnabei, E. Laplantine, W. Mbongo, et al. NF-κB: At the borders of autoimmunity and inflammation. Frontiers in Immunology, 2021, 12: 716469. https://doi.org/10.3389/fimmu.2021.716469

[42]

T. Lawrence. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harbor Perspectives in Biology, 2009, 1(6): a001651. https://doi.org/10.1101/cshperspect.a001651

[43]

Y.H. Fan, R.F. Mao, J.H. Yang. NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein & Cell, 2013, 4(3): 176−185. https://doi.org/10.1007/s13238-013-2084-3

[44]

S.C. Sun. The non-canonical NF-κB pathway in immunity and inflammation. Nature Reviews Immunology, 2017, 17: 545−558. https://doi.org/10.1038/nri.2017.52

[45]

M.P. Rayman. Food-chain selenium and human health: Emphasis on intake. British Journal of Nutrition, 2008, 100(2): 254−268. https://doi.org/10.1017/S0007114508939830

[46]

K. Schwarz, C.M. Foltz. Factor 3 activity of selenium compounds. Journal of Biological Chemistry, 1958, 233(1): 245−251. https://doi.org/10.1016/s0021-9258(19)68065-8

[47]

F. Zhang, X. Li, Y. Wei. Selenium and selenoproteins in health. Biomolecules, 2023, 13(5): 799. https://doi.org/10.3390/biom13050799

[48]

Z. Huang, A.H. Rose, P.R. Hoffmann. The role of selenium in inflammation and immunity: From molecular mechanisms to therapeutic opportunities. Antioxidants & Redox Signaling, 2012, 16(7): 705−743. https://doi.org/10.1089/ars.2011.4145

[49]

A. Razaghi, M. Poorebrahim, D. Sarhan, et al. Selenium stimulates the antitumour immunity: Insights to future research. European Journal of Cancer, 2021, 155: 256−267. https://doi.org/10.1016/j.ejca.2021.07.013

[50]

K.H. Lee, D. Jeong. Bimodal actions of selenium essential for antioxidant and toxic pro-oxidant activities: The selenium paradox (Review). Molecular Medicine Reports, 2012, 5(2): 299−304. https://doi.org/10.3892/mmr.2011.651

[51]

V.N. Gladyshev, E.S. Arnér, M.J. Berry, et al. Selenoprotein gene nomenclature. J Biol Chem, 2016, 291(46): 24036−24040. https://doi.org/10.1074/jbc.M116.756155

[52]

C. Ferro, H.F. Florindo, H.A. Santos. Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics. Advanced Healthcare Materials, 2021, 10(16): e2100598. https://doi.org/10.1002/adhm.202100598

[53]

S.M. Zahedi, M.S. Hosseini, N. Daneshvar Hakimi Meybodi, et al. Foliar application of selenium and nano-selenium affects pomegranate ( Punica granatum cv. Malase Saveh) fruit yield and quality. South African Journal of Botany, 2019, 124: 350−358. https://doi.org/10.1016/j.sajb.2019.05.019

[54]
Y.H. Cui, L.L. Li, N.Q. Zhou, et al. In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210. Enzyme and Microbial Technology, 2016, 95: 185–191. https://doi.org/10.1016/j.enzmictec.2016.08.017
[55]

A. Raza, H. Johnson, A. Singh, et al. Impact of selenium nanoparticles in the regulation of inflammation. Archives of Biochemistry and Biophysics, 2022, 732: 109466. https://doi.org/10.1016/j.abb.2022.109466

[56]

M. Quintana, E. Haro-Poniatowski, J. Morales, et al. Synthesis of selenium nanoparticles by pulsed laser ablation. Applied Surface Science, 2002, 195(1-4): 175−186. https://doi.org/10.1016/S0169-4332(02)00549-4

[57]

O. Van Overschelde, G. Guisbiers, R. Snyders. Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water. APL Materials, 2013, 1(4): 042114. https://doi.org/10.1063/1.4824148

[58]

G. Guisbiers, Q. Wang, E. Khachatryan, et al. Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water. International Journal of Nanomedicine, 2016, 11: 3731−3736. https://doi.org/10.2147/ijn.s106289

[59]

A. Nastulyavichus, S. Kudryashov, N. Smirnov, et al. Antibacterial coatings of Se and Si nanoparticles. Applied Surface Science, 2019, 469: 220−225. https://doi.org/10.1016/j.apsusc.2018.11.011

[60]

S. Sampath, V. Sunderam, M. Manjusha, et al. Selenium nanoparticles: A comprehensive examination of synthesis techniques and their diverse applications in medical research and toxicology studies. Molecules, 2024, 29(4): 801. https://doi.org/10.3390/molecules29040801

[61]

T. Wang, H. Zhao, Y. Bi, et al. Preparation and antioxidant activity of selenium nanoparticles decorated by polysaccharides from Sargassum fusiforme. Journal of Food Science, 2021, 86(3): 977−986. https://doi.org/10.1111/1750-3841.15605

[62]

M. Panahi-Kalamuei, M. Mousavi-Kamazani, M. Salavati-Niasari, et al. A simple sonochemical approach for synthesis of selenium nanostructures and investigation of its light harvesting application. Ultrasonics Sonochemistry, 2015, 23: 246−256. https://doi.org/10.1016/j.ultsonch.2014.09.006

[63]

B. Xie, D. Zeng, M. Yang, et al. Translational selenium nanoparticles to attenuate allergic dermatitis through Nrf2-Keap1-driven activation of selenoproteins. ACS Nano, 2023, 17(14): 14053−14068. https://doi.org/10.1021/acsnano.3c04344

[64]

R. Qiao, Z. Yuan, M. Yang, et al. Selenium-doped nanoheterojunctions for highly efficient cancer radiosensitization. Advanced Science, 2024, 11(29): e2402039. https://doi.org/10.1002/advs.202402039

[65]
Y.Y. You, Y.Z. Chang, S.Y. Pan, et al. Cleavage of homonuclear chalcogen-chalcogen bonds in a hybrid platform in response to X-ray radiation potentiates tumor radiochemotherapy. Angewandte Chemie, 2024: e202412922. https://doi.org/10.1002/anie.202412922
[66]

S. Chung, R. Zhou, T.J. Webster. Green synthesized BSA-coated selenium nanoparticles inhibit bacterial growth while promoting mammalian cell growth. International Journal of Nanomedicine, 2020, 15: 115−124. https://doi.org/10.2147/IJN.S193886

[67]

K.X. Liu, S.J. Chen, X. Geng, et al. Multifunctional selenium-based metal polyphenol nanoparticles impede the pathological cross-talk between reactive oxygen species and inflammation in sepsis. ACS Materials Letters, 2024, 6(6): 2434−2445. https://doi.org/10.1021/acsmaterialslett.4c00084

[68]

X. Geng, K.X. Liu, P.Y. Li, et al. A multipronged strategy for encephalitis: Oxidative stress reduction and inflammatory microenvironment modulation by a neuroprotective selenium-based nanomedicine. Chemical Engineering Journal, 2024, 492: 152176. https://doi.org/10.1016/j.cej.2024.152176

[69]

R.M. Hassan. One-step novel synthesis of alginate-based SeNPs of cluster beans by reduction of Se(IV) by vitamin C in aqueous media. International Journal of Biological Macromolecules, 2024, 261: 128941. https://doi.org/10.1016/j.ijbiomac.2023.128941

[70]

S.Q. Zeng, Y. Ke, Y.X. Liu, et al. Synthesis and antidiabetic properties of chitosan-stabilized selenium nanoparticles. Colloids and Surfaces B: Biointerfaces, 2018, 170: 115−121. https://doi.org/10.1016/j.colsurfb.2018.06.003

[71]

D. Cui, J. Ma, T. Liang, et al. Selenium nanoparticles fabricated in laminarin polysaccharides solutions exert their cytotoxicities in HepG2 cells by inhibiting autophagy and promoting apoptosis. International Journal of Biological Macromolecules, 2019, 137: 829−835. https://doi.org/10.1016/j.ijbiomac.2019.07.031

[72]

Y. Xia, G. Tang, C. Wang, et al. Functionalized selenium nanoparticles for targeted siRNA delivery silence Derlin1 and promote antitumor efficacy against cervical cancer. Drug Delivery, 2020, 27(1): 15−25. https://doi.org/10.1080/10717544.2019.1667452

[73]

J. Sun, C.F. Wei, Y.N. Liu, et al. Progressive release of mesoporous nano-selenium delivery system for the multi-channel synergistic treatment of Alzheimer’s disease. Biomaterials, 2019, 197: 417−431. https://doi.org/10.1016/j.biomaterials.2018.12.027

[74]

F. Liu, H. Liu, R. Liu, et al. Delivery of sesamol using polyethylene-glycol-functionalized selenium nanoparticles in human liver cells in culture. Journal of Agricultural and Food Chemistry, 2019, 67(10): 2991−2998. https://doi.org/10.1021/acs.jafc.8b06924

[75]

J.J. Zou, S. Su, Z.H. Chen, et al. Hyaluronic acid-modified selenium nanoparticles for enhancing the therapeutic efficacy of paclitaxel in lung cancer therapy. Artificial Cells, Nanomedicine, and Biotechnology, 2019, 47(1): 3456−3464. https://doi.org/10.1080/21691401.2019.1626863

[76]

W. Liu, X. Li, Y.S. Wong, et al. Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS Nano, 2012, 6(8): 6578−6591. https://doi.org/10.1021/nn202452c

[77]

A.P. Bidkar, P. Sanpui, S.S. Ghosh. Efficient induction of apoptosis in cancer cells by paclitaxel-loaded selenium nanoparticles. Nanomedicine, 2017, 12(21): 2641−2651. https://doi.org/10.2217/nnm-2017-0189

[78]

H.L. Huang, H.Q.Chen, D.W. Shou, et al. Engineering siRNA-loaded and RGDfC-targeted selenium nanoparticles for highly efficient silencing of DCBLD2 gene for colorectal cancer treatment. Discover Nano, 2023, 18(1): 94. https://doi.org/10.1186/s11671-023-03870-0

[79]

J.T. Tendenedzai, E.M.N. Chirwa, H.G. Brink. Enterococcus spp. cell-free extract: An abiotic route for synthesis of selenium nanoparticles (SeNPs), their characterisation and inhibition of escherichia coli. Nanomaterials, 2022, 12(4): 658. https://doi.org/10.3390/nano12040658

[80]
K. Spyridopoulou, E. Tryfonopoulou, G. Aindelis, et al. Biogenic selenium nanoparticles produced by Lactobacillus casei ATCC 393 inhibit colon cancer cell growth in vitro and in vivo. Nanoscale Advances, 2021, 3(9): 2516–2528. https://doi.org/10.1039/D0NA00984A
[81]

C.L. Xu, L. Qiao, Y. Guo, et al. Preparation, characteristics and antioxidant activity of polysaccharides and proteins-capped selenium nanoparticles synthesized by Lactobacillus casei ATCC 393. Carbohydrate Polymers, 2018, 195: 576−585. https://doi.org/10.1016/j.carbpol.2018.04.110

[82]

X.L. Lei, Y.X. Peng, Y. Li, et al. Effects of selenium nanoparticles produced by Lactobacillus acidophilus HN23 on lipid deposition in WRL68 cells. Bioorganic Chemistry, 2024, 145: 107165. https://doi.org/10.1016/j.bioorg.2024.107165

[83]

E.A.M. Helmy, P.P. San, Y.Z. Zhang, et al. Entomotoxic efficacy of fungus-synthesized nanoparticles against immature stages of stored bean pests. Scientific Reports, 2023, 13(1): 8508. https://doi.org/10.1038/s41598-023-35697-1

[84]

Q.X. Wu, X.H. Wang, S.W. Hao, et al. Synergetic effects and inhibition mechanisms of the polysaccharide-selenium nanoparticle complex in human hepatocarcinoma cell proliferation. Journal of the Science of Food and Agriculture, 2024, 104(9): 5124−5138. https://doi.org/10.1002/jsfa.13335

[85]

S. Pandey, N. Awasthee, A. Shekher, et al. Biogenic synthesis and characterization of selenium nanoparticles and their applications with special reference to antibacterial, antioxidant, anticancer and photocatalytic activity. Bioprocess and Biosystems Engineering, 2021, 44(12): 2679−2696. https://doi.org/10.1007/s00449-021-02637-0

[86]
H. Wang, Z.Z. Li, X.Y. Liang, et al. A novel zein-selenium complex nanoparticle with controllable size: Quantitative design, physical properties and cytotoxicity in vitro. Food Chemistry, 2023, 402: 134470. https://doi.org/10.1016/j.foodchem.2022.134470
[87]

H. Shang, C. Ma, C. Li, et al. Aloe vera extract gel-biosynthesized selenium nanoparticles enhance disease resistance in lettuce by modulating the metabolite profile and bacterial endophytes composition. ACS Nano, 2023, 17(14): 13672−13684. https://doi.org/10.1021/acsnano.3c02790

[88]

B.L. Cao, Q. Zhang, J. Guo, et al. Synthesis and evaluation of Grateloupia Livida polysaccharides-functionalized selenium nanoparticles. International Journal of Biological Macromolecules, 2021, 191: 832−839. https://doi.org/10.1016/j.ijbiomac.2021.09.087

[89]

L. Tang, X.M. Luo, M.Y. Wang, et al. Synthesis, characterization, in vitro antioxidant and hypoglycemic activities of selenium nanoparticles decorated with polysaccharides of Gracilaria lemaneiformis. International Journal of Biological Macromolecules, 2021, 193: 923−932. https://doi.org/10.1016/j.ijbiomac.2021.10.189

[90]

W. Chen, H. Cheng, W. Xia. Construction of Polygonatum sibiricum polysaccharide functionalized selenium nanoparticles for the enhancement of stability and antioxidant activity. Antioxidants, 2022, 11(2): 240. https://doi.org/10.3390/antiox11020240

[91]

E. Zahran, S. Elbahnaswy, F. Ahmed, et al. Dietary microalgal-fabricated selenium nanoparticles improve Nile tilapia biochemical indices, immune-related gene expression, and intestinal immunity. BMC Veterinary Research, 2024, 20(1): 107. https://doi.org/10.1186/s12917-024-03966-4

[92]

S. Menon, S. Jayakodi, K.K. Yadav, et al. Preparation of paclitaxel-encapsulated bio-functionalized selenium nanoparticles and evaluation of their efficacy against cervical cancer. Molecules, 2022, 27(21): 7290. https://doi.org/10.3390/molecules27217290

[93]

D. Cui, T. Liang, L. Sun, et al. Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis. Pharm Biol, 2018, 56(1): 528−534. https://doi.org/10.1080/13880209.2018.1510974

[94]
B. Thirupathi, Y.L. Pongen, G.R. Kaveriyappan, et al. Padina boergesenii mediated synthesis of Se-ZnO bimetallic nanoparticles for effective anticancer activity. Frontiers in Microbiology, 2024, 15: 1358467. https://doi.org/10.3389/fmicb.2024.1358467
[95]

A. Chinnathambi, S. Ali Alharbi, S.H. Hussein-Al-Ali, et al. Biofabrication of bimetallic selenium@zinc nanoparticles using Champia parvula aqueous extract: Investigation of anticancer activity and its apoptosis induction. Biochemical and Biophysical Research Communications, 2024, 733: 150417. https://doi.org/10.1016/j.bbrc.2024.150417

[96]

L. Ren, Z. Wu, Y. Ma, et al. Preparation and growth-promoting effect of selenium nanoparticles capped by polysaccharide-protein complexes on tilapia. Journal of the Science Food and Agriculture, 2021, 101(2): 476−485. https://doi.org/10.1002/jsfa.10656

[97]

J. Ni, L.R. Ren, Y. Ma, et al. Selenium nanoparticles coated with polysaccharide-protein complexes from abalone viscera improve growth and enhance resistance to diseases and hypoxic stress in juvenile Nile tilapia ( Oreochromis niloticus). Fish & Shellfish Immunology, 2023, 134: 108624. https://doi.org/10.1016/j.fsi.2023.108624

[98]

Y.T. Wang, X. Shu, J.Y. Hou, et al. Selenium nanoparticle synthesized by Proteus mirabilis YC801: an efficacious pathway for selenite biotransformation and detoxification. International Journal of Molecular Sciences, 2018, 19(12): 3809. https://doi.org/10.3390/ijms19123809

[99]

J.P. Wang, M.K. Chen, Z.Y. Zhang, et al. Selenium: From fluorescent probes to biomedical application. Coordination Chemistry Reviews, 2023, 493: 215278. https://doi.org/10.1016/j.ccr.2023.215278

[100]

K. Li, Q.L. Xu, S.S. Gao, et al. Highly stable selenium nanoparticles: Assembly and stabilization via flagellin FliC and porin OmpF in Rahnella aquatilis HX2. Journal of Hazardous Materials, 2021, 414: 125545. https://doi.org/10.1016/j.jhazmat.2021.125545

[101]

S. Liu, W. Wei, J. Wang, et al. Theranostic applications of selenium nanomedicines against lung cancer. J Nanobiotechnology, 2023, 21(1): 96. https://doi.org/10.1186/s12951-023-01825-2

[102]

A. Lin, Y. Liu, X. Zhu, et al. Bacteria-responsive biomimetic selenium nanosystem for multidrug-resistant bacterial infection detection and inhibition. ACS Nano, 2019, 13(12): 13965−13984. https://doi.org/10.1021/acsnano.9b05766

[103]

C. Wu, Y. Zhang, M. Han, et al. Selenium-based nanozyme as a fluorescence-enhanced probe and imaging for chlortetracycline in living cells and foods. Food Chemistry, 2024, 432: 137147. https://doi.org/10.1016/j.foodchem.2023.137147

[104]

D.D. Sun, Y.N. Liu, Q.Q. Yu, et al. Inhibition of tumor growth and vasculature and fluorescence imaging using functionalized ruthenium-thiol protected selenium nanoparticles. Biomaterials, 2014, 35(5): 1572−1583. https://doi.org/10.1016/j.biomaterials.2013.11.007

[105]

J.C. Yang, S.J. Pan, S.Q. Gao, et al. Anti-recurrence/metastasis and chemosensitization therapy with thioredoxin reductase-interfering drug delivery system. Biomaterials, 2020, 249: 120054. https://doi.org/10.1016/j.biomaterials.2020.120054

[106]

J.L. Pan, X.F. Zhu, X. Chen, et al. Gd3+-Doped MoSe2 nanosheets used as a theranostic agent for bimodal imaging and highly efficient photothermal cancer therapy. Biomaterials Science, 2018, 6(2): 372−387. https://doi.org/10.1039/c7bm00894e

[107]

T. Fu, Y. Chen, J. Hao, et al. Facile preparation of uniform FeSe2 nanoparticles for PA/MR dual-modal imaging and photothermal cancer therapy. Nanoscale, 2015, 7(48): 20757−20768. https://doi.org/10.1039/C5NR06840A

[108]

J.M. Xiao, G.L. Zhang, R. Xu, et al. A pH-responsive platform combining chemodynamic therapy with limotherapy for simultaneous bioimaging and synergistic cancer therapy. Biomaterials, 2019, 216: 119254. https://doi.org/10.1016/j.biomaterials.2019.119254

[109]

X. Jiang, Y. Han, H. Zhang, et al. Cu-Fe-Se ternary nanosheet-based drug delivery carrier for multimodal imaging and combined chemo/photothermal therapy of cancer. ACS Appl Mater Interfaces, 2018, 10(50): 43396−43404. https://doi.org/10.1021/acsami.8b15064

[110]

S. Zhao, R.R. Tian, B.Q. Shao, et al. UCNP-Bi2 Se3 upconverting nanohybrid for upconversion luminescence and CT imaging and photothermal therapy. Chemistry, 2020, 26(5): 1127−1135. https://doi.org/10.1002/chem.201904586

[111]
L. Yang, Y. Gao, J. Wei, et al. Selenium-integrated conjugated oligomer nanoparticles with high photothermal conversion efficiency for NIR-II imaging-guided cancer phototheranostics in vivo. Journal of Nanobiotechnology, 2023, 21(1): 314. https://doi.org/10.1186/s12951-023-02080-1
[112]

Z.L. Li, Y. Hu, K.A. Howard, et al. Multifunctional bismuth selenide nanocomposites for antitumor thermo-chemotherapy and imaging. ACS Nano, 2016, 10(1): 984−997. https://doi.org/10.1021/acsnano.5b06259

[113]

X. Wang, F. Li, X. Yan, et al. Ambient aqueous synthesis of ultrasmall Ni0.85Se nanoparticles for noninvasive photoacoustic imaging and combined photothermal-chemotherapy of cancer. ACS Applied Materials & Interfaces, 2017, 9(48): 41782−41793. https://doi.org/10.1021/acsami.7b15780

[114]

Y. Sun, P. Zhang, Y.Q. Li, et al. Light-activated gold-selenium core-shell nanocomposites with NIR-II photoacoustic imaging performances for heart-targeted repair. ACS Nano, 2022, 16(11): 18667−18681. https://doi.org/10.1021/acsnano.2c07311

[115]

M. Mittal, M.R. Siddiqui, K. Tran, et al. Reactive oxygen species in inflammation and tissue injury. Antioxidants & Redox Signaling, 2014, 20(7): 1126−1167. https://doi.org/10.1089/ars.2012.5149

[116]

X. Chen, X.F. Zhu, Y.C. Gong, et al. Porous selenium nanozymes targeted scavenging ROS synchronize therapy local inflammation and sepsis injury. Applied Materials Today, 2021, 22: 100929. https://doi.org/10.1016/j.apmt.2020.100929

[117]

A.A. Mohamed, R.A. Zaghloul, A.M. Abdelghany, et al. Selenium nanoparticles and quercetin suppress thioacetamide-induced hepatocellular carcinoma in rats: Attenuation of inflammation involvement. Journal of Biochemical and Molecular Toxicology, 2022, 36(4): e22989. https://doi.org/10.1002/jbt.22989

[118]

C.P. Zheng, A.P. Wu, X.Y. Zhai, et al. The cellular immunotherapy of integrated photothermal anti-oxidation Pd–Se nanoparticles in inhibition of the macrophage inflammatory response in rheumatoid arthritis. Acta Pharmaceutica Sinica B, 2021, 11(7): 1993−2003. https://doi.org/10.1016/j.apsb.2021.02.021

[119]

Y. Wang, W. Luo, F. Lin, et al. Epigallocatechin-3-gallate selenium nanoparticles for neuroprotection by scavenging reactive oxygen species and reducing inflammation. Frontiers in Bioengineering and Biotechnology, 2022, 10: 989602. https://doi.org/10.3389/fbioe.2022.989602

[120]

S.X. Ren, B. Zhan, Y. Lin, et al. Selenium nanoparticles dispersed in phytochemical exert anti-inflammatory activity by modulating catalase, GPx1, and COX-2 gene expression in a rheumatoid arthritis rat model. Medical Science Monitor, 2019, 25: 991−1000. https://doi.org/10.12659/MSM.912545

[121]
S. Malhotra, M.N. Welling, S.B. Mantri, et al. In vitro and in vivo antioxidant, cytotoxic, and anti-chronic inflammatory arthritic effect of selenium nanoparticles. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2016, 104(5): 993–1003. https://doi.org/10.1002/jbm.b.33448
[122]

W.E. Zahran, S.M. Elsonbaty, F.S.M. Moawed. Selenium nanoparticles with low-level ionizing radiation exposure ameliorate nicotine-induced inflammatory impairment in rat kidney. Environmental Science and Pollution Research, 2017, 24(24): 19980−19989. https://doi.org/10.1007/s11356-017-9558-4

[123]

X.N. Yuan, Z.S. Fu, P.F. Ji, et al. Selenium nanoparticles pre-treatment reverse behavioral, oxidative damage, neuronal loss and neurochemical alterations in pentylenetetrazole-induced epileptic seizures in mice. International Journal of Nanomedicine, 2020, 15: 6339−6353. https://doi.org/10.2147/IJN.S259134

[124]

W.H. Hu, X. Yao, Y.H. Li, et al. Injectable hydrogel with selenium nanoparticles delivery for sustained glutathione peroxidase activation and enhanced osteoarthritis therapeutics. Materials Today Bio, 2023, 23: 100864. https://doi.org/10.1016/j.mtbio.2023.100864

[125]

Y.H. Chen, C.W. Luo, S. Li, et al. Selenium nanoparticles promotes intestinal development in broilers by inhibiting intestinal inflammation and NLRP3 signaling pathway compared with other selenium sources. Poultry Science, 2024, 103(9): 103958. https://doi.org/10.1016/j.psj.2024.103958

[126]

W.Q. Luo, Y.Y. Li, J.H. Zhao, et al. CD44-targeting hyaluronic acid-selenium nanoparticles boost functional recovery following spinal cord injury. Journal of Nanobiotechnology, 2024, 22(1): 37. https://doi.org/10.1186/s12951-024-02302-0

[127]

Y. Xu, X.C. Wang, W. Jiang, et al. Porphyra haitanensis polysaccharide-functionalized selenium nanoparticles for effective alleviation of ulcerative colitis. International Journal of Biological Macromolecules, 2023, 253: 127570. https://doi.org/10.1016/j.ijbiomac.2023.127570

[128]

S. Li, X. Dong, L. Xu, et al. Nephroprotective effects of selenium nanoparticles against sodium arsenite-induced damages. International Journal of Nanomedicine, 2023, 18: 3157−3176. https://doi.org/10.2147/IJN.S413362

[129]

A. Albrakati, K.F. Alsharif, N.E. Al Omairi, et al. Neuroprotective efficiency of prodigiosins conjugated with selenium nanoparticles in rats exposed to chronic unpredictable mild stress is mediated through antioxidative, anti-inflammatory, anti-apoptotic, and neuromodulatory activities. International Journal of Nanomedicine, 2021, 16: 8447−8464. https://doi.org/10.2147/IJN.S323436

[130]

Z.Q. Zhang, J.H. Shan, B.D. Shi, et al. SeNPs alleviates BDE-209-induced intestinal damage by affecting necroptosis, inflammation, intestinal barrier and intestinal flora in layer chickens. Ecotoxicology and Environmental Safety, 2023, 262: 115336. https://doi.org/10.1016/j.ecoenv.2023.115336

[131]

C. Zhou, S. Guo, P. Gong, et al. Nano-selenium alleviates Cd-induced chronic colitis through intestinal flora. Nutrients, 2024, 16(9): 1330. https://doi.org/10.3390/nu16091330

[132]

J.Y. Su, J. Lai, J.L. Li, et al. Selenium nanoparticles control H1N1 virus by inhibiting inflammatory response and cell apoptosis. Molecules, 2023, 28(15): 5920. https://doi.org/10.3390/molecules28155920

[133]

X. Liu, J. Sun, J. Du, et al. Encapsulation of selenium nanoparticles and metformin in macrophage-derived cell membranes for the treatment of spinal cord injury. ACS Biomaterials Science & Engineering, 2023, 9(10): 5709−5723. https://doi.org/10.1021/acsbiomaterials.3c01009

[134]

E.T. Mehanna, S.S. Khalaf, N.M. Mesbah, et al. Anti-oxidant, anti-apoptotic, and mitochondrial regulatory effects of selenium nanoparticles against vancomycin induced nephrotoxicity in experimental rats. Life Sciences, 2022, 288: 120098. https://doi.org/10.1016/j.lfs.2021.120098

[135]

A. Al-Brakati, K.F. Alsharif, K.J. Alzahrani, et al. Using green biosynthesized lycopene-coated selenium nanoparticles to rescue renal damage in glycerol-induced acute kidney injury in rats. International Journal of Nanomedicine, 2021, 16: 4335−4349. https://doi.org/10.2147/IJN.S306186

[136]

H.F.H. Ali, N.M. El-Sayed, D.M. Khodeer, et al. Nano selenium ameliorates oxidative stress and inflammatory response associated with cypermethrin-induced neurotoxicity in rats. Ecotoxicology and Environmental Safety, 2020, 195: 110479. https://doi.org/10.1016/j.ecoenv.2020.110479

[137]
T. Niu, X. Shi, X. Liu, et al. Porous Se@SiO2 nanospheres alleviate diabetic retinopathy by inhibiting excess lipid peroxidation and inflammation. Molecular Medicine (Cambridge, Mass), 2024, 30(1): 24. https://doi.org/10.1186/s10020-024-00785-z
[138]

J. Ouyang, B. Deng, B. Zou, et al. Oral hydrogel microbeads-mediated in situ synthesis of selenoproteins for regulating intestinal immunity and microbiota. J Am Chem Soc, 2023, 145(22): 12193−12205. https://doi.org/10.1021/jacs.3c02179

[139]

Q. Sun, H.Q. Ma, J.X. Zhang, et al. A self-sustaining antioxidant strategy for effective treatment of myocardial infarction. Advanced Science, 2023, 10(5): 2204999. https://doi.org/10.1002/advs.202204999

[140]

Z.H. Zheng, G.Y. Deng, C.Y. Qi, et al. Porous Se@SiO2 nanospheres attenuate ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) and inflammation by antioxidative stress. International Journal of Nanomedicine, 2018, 14: 215−229. https://doi.org/10.2147/ijn.s184804

[141]

J. Xiao, N. Li, S. Xiao, et al. Comparison of selenium nanoparticles and sodium selenite on the alleviation of early atherosclerosis by inhibiting endothelial dysfunction and inflammation in apolipoprotein E-deficient mice. International Journal of Molecular Sciences, 2021, 22(21): 11612. https://doi.org/10.3390/ijms222111612

[142]

C.H. Zhu, S.M. Zhang, C.W. Song, et al. Selenium nanoparticles decorated with Ulva lactuca polysaccharide potentially attenuate colitis by inhibiting NF-κB mediated hyper inflammation. Journal of Nanobiotechnology, 2017, 15(1): 20. https://doi.org/10.1186/s12951-017-0252-y

[143]

F. Gao, H. Liu, H. Han, et al. Ameliorative effect of Berberidis radix polysaccharide selenium nanoparticles against carbon tetrachloride induced oxidative stress and inflammation. Frontiers in Pharmacology, 2022, 13: 1058480. https://doi.org/10.3389/fphar.2022.1058480

[144]

M. Almukainzi, T.A. El-Masry, H. Selim, et al. New insight on the cytoprotective/antioxidant pathway Keap1/Nrf2/HO-1 modulation by Ulva intestinalis extract and its selenium nanoparticles in rats with carrageenan-induced paw edema. Marine Drugs, 2023, 21(9): 459. https://doi.org/10.3390/md21090459

[145]

V. Gangadevi, S. Thatikonda, V. Pooladanda, et al. Selenium nanoparticles produce a beneficial effect in psoriasis by reducing epidermal hyperproliferation and inflammation. Journal of Nanobiotechnology, 2021, 19(1): 101. https://doi.org/10.1186/s12951-021-00842-3

[146]

Y.H. Li, T. Liu, R.L. Zheng, et al. Translational selenium nanoparticles boost GPx1 activation to reverse HAdV-14 virus-induced oxidative damage. Bioactive Materials, 2024, 38: 276−291. https://doi.org/10.1016/j.bioactmat.2024.04.034

[147]

D.S. Wei, Y.J. Yu, X.C. Zhang, et al. Breaking the intracellular redox balance with diselenium nanoparticles for maximizing chemotherapy efficacy on patient-derived xenograft models. ACS Nano, 2020, 14(12): 16984−16996. https://doi.org/10.1021/acsnano.0c06190

[148]

S. Yadav, K. Ramesh, O.S. Reddy, et al. Redox-responsive comparison of diselenide and disulfide core-cross-linked micelles for drug delivery application. Pharmaceutics, 2023, 15(4): 1159. https://doi.org/10.3390/pharmaceutics15041159

[149]

S.A.P. Siboro, S.A. Salma, H.R. Kim, et al. Diselenide core cross-linked micelles of poly(ethylene oxide)-b-poly(glycidyl methacrylate) prepared through alkyne-azide click chemistry as a near-infrared controlled drug delivery system. Materials, 2020, 13(12): 2846. https://doi.org/10.3390/ma13122846

[150]
D. Shao, F. Zhang, F. Chen, et al. Biomimetic diselenide-bridged mesoporous organosilica nanoparticles as an X-ray-responsive biodegradable carrier for chemo-immunotherapy. Advanced Materials (Deerfield Beach, Fla), 2020, 32(50): e2004385. https://doi.org/10.1002/adma.202004385
[151]

R.H. Tan, J. Ge, C.C. Wang, et al. Diselenide-triggered hydroxyethyl starch conjugate nanoparticles with cascade drug release properties for potentiating chemo-photodynamic therapy. Carbohydrate Polymers, 2023, 311: 120748. https://doi.org/10.1016/j.carbpol.2023.120748

[152]

M. Chen, M. Zhang, X. Lu, et al. Diselenium-linked dimeric prodrug nanomedicine breaking the intracellular redox balance for triple-negative breast cancer targeted therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2023, 193: 16−27. https://doi.org/10.1016/j.ejpb.2023.10.014

[153]

D. Sang, X. Li, Z. Xu, et al. Disrupted intracellular redox balance with enhanced ROS generation and sensitive drug release for cancer therapy. Biomaterials Science, 2020, 8(21): 6045−6055. https://doi.org/10.1039/D0BM00765J

[154]

J.Q. Xu, T.J. Chu, T.T. Yu, et al. Design of diselenide-bridged hyaluronic acid nano-antioxidant for efficient ROS scavenging to relieve colitis. ACS Nano, 2022, 16(8): 13037−13048. https://doi.org/10.1021/acsnano.2c05558

[155]

J. Kong, R. Zou, R. Chu, et al. An ultrasmall Cu/Cu2O nanoparticle-based diselenide-bridged nanoplatform mediating reactive oxygen species scavenging and neuronal membrane enhancement for targeted therapy of ischemic stroke. ACS Nano, 2024, 18(5): 4140−4158. https://doi.org/10.1021/acsnano.3c08734

[156]

X. Xiao, H. Deng, X. Lin, et al. Selenium nanoparticles: Properties, preparation methods, and therapeutic applications. Chemico-Biological Interactions, 2023, 378: 110483. https://doi.org/10.1016/j.cbi.2023.110483

[157]

C. Ramamurthy, K.S. Sampath, P. Arunkumar, et al. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess and Biosystems Engineering, 2013, 36(8): 1131−1139. https://doi.org/10.1007/s00449-012-0867-1

[158]

S. Stranges, J.R. Marshall, R. Natarajan, et al. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: A randomized trial. Annals of Internal Medicine, 2007, 147(4): 217−223. https://doi.org/10.7326/0003-4819-147-4-200708210-00175

[159]

A.R. Kristal, A.K. Darke, J.S. Morris, et al. Baseline selenium status and effects of selenium and vitamin e supplementation on prostate cancer risk. Journal of the National Cancer Institute, 2014, 106(3): djt456. https://doi.org/10.1093/jnci/djt456

[160]

G. Chen, F. Yang, S. Fan, et al. Immunomodulatory roles of selenium nanoparticles: Novel arts for potential immunotherapy strategy development. Frontiers in Immunology, 2022, 13: 956181. https://doi.org/10.3389/fimmu.2022.956181

[161]

A. Khurana, S. Tekula, M.A. Saifi, et al. Therapeutic applications of selenium nanoparticles. Biomedicine & Pharmacotherapy, 2019, 111: 802−812. https://doi.org/10.1016/j.biopha.2018.12.146

[162]

X. Cai, X. Liu, J. Jiang, et al. Molecular mechanisms, characterization methods, and utilities of nanoparticle biotransformation in nanosafety assessments. Small, 2020, 16(36): e1907663. https://doi.org/10.1002/smll.201907663

[163]

K. Pyrzynska, A. Sentkowska. Biosynthesis of selenium nanoparticles using plant extracts. Journal of Nanostructure in Chemistry, 2022, 12(4): 467−480. https://doi.org/10.1007/s40097-021-00435-4

[164]

L. Xu, H.W. Liang, Y. Yang, et al. Stability and reactivity: Positive and negative aspects for nanoparticle processing. Chem Rev, 2018, 118(7): 3209−3250. https://doi.org/10.1021/acs.chemrev.7b00208

[165]

P. Buacheen, A. Chaipuang, J. Karinchai, et al. Stabilization of antioxidant and anti-inflammatory activities of nano-selenium using Anoectochilus burmannicus extract as a potential novel functional ingredient. Nutrients, 2023, 15(4): 1018. https://doi.org/10.3390/nu15041018

[166]

H. Fritz, D. Kennedy, D. Fergusson, et al. Selenium and lung cancer: A systematic review and meta analysis. PLoS One, 2011, 6(11): e26259. https://doi.org/10.1371/journal.pone.0026259

[167]

H.M. Liu, H.B. Xu, K.X. Huang. Selenium in the prevention of atherosclerosis and its underlying mechanisms. Metallomics, 2017, 9(1): 21−37. https://doi.org/10.1039/c6mt00195e

[168]

D. Peer, J.M. Karp, S. Hong, et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007, 2(12): 751−760. https://doi.org/10.1038/nnano.2007.387

[169]

X. Ma, Y. Tian, R. Yang, et al. Nanotechnology in healthcare, and its safety and environmental risks. Journal of Nanobiotechnology, 2024, 22(1): 715. https://doi.org/10.1186/s12951-024-02901-x

[170]

E.A. Kumah, R.D. Fopa, S. Harati, et al. Human and environmental impacts of nanoparticles: A scoping review of the current literature. BMC Public Health, 2023, 23(1): 1059. https://doi.org/10.1186/s12889-023-15958-4

[171]

F. Ali, K. Neha, S. Parveen. Current regulatory landscape of nanomaterials and nanomedicines: A global perspective. Journal of Drug Delivery Science and Technology, 2023, 80: 104118. https://doi.org/10.1016/j.jddst.2022.104118

Nano Biomedicine and Engineering
Cite this article:
Bai X, Zhou T, Wu X, et al. Synthesis and Application of Selenium Nanoparticles for the Modulation of Inflammatory Diseases. Nano Biomedicine and Engineering, 2025, https://doi.org/10.26599/NBE.2025.9290111
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return