The global burden of cancer, a progressive disease with complex etiology, continues to rise. With an estimated 1.5 million new diagnoses each year, including nearly 350 000 cases of highly aggressive melanoma, the need for improved therapeutic strategies is paramount. The World Health Organization (WHO) and the International Labour Organization have established a clear link between occupational exposure to solar ultraviolet radiation (UVR) and increased risk of non-melanoma skin cancer (NMSC). While age, skin tone, and cumulative UVR exposure are recognized risk factors, current treatment modalities, including chemotherapy and surgery, often exhibit limited efficacy and significant side effects. This underscores the urgent need for novel therapeutic approaches that enable targeted drug delivery, enhanced tumor penetration, and reduced systemic toxicity. Transferosomes-based drug delivery systems have emerged as a promising avenue for achieving these goals, with vesicular systems offering a particularly attractive strategy for transdermal skin cancer therapy. This review focuses on transferosomes and transethosomes as such vesicular systems, highlighting recent advances in their application for targeted skin cancer treatment.
S. An, K. Kim, S. Moon, et al. Indoor tanning and the risk of overall and early-onset melanoma and non-melanoma skin cancer: Systematic review and meta-analysis. Cancers, 2021, 13(23): 5940. https://doi.org/10.3390/cancers13235940
T. Hanawa. IARC monographs on the evaluation of carcinogenic risks to humans. Journal of Clinical Pathology, 2019, 48: 691. https://doi.org/10.1136/jcp.48.7.691-a
H. Sung, J. Ferlay, R.L. Siegel, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209−249. https://doi.org/10.3322/caac.21660
J. Chandra, N. Hasan, N. Nasir, et al. Nanotechnology-empowered strategies in treatment of skin cancer. Environmental Research, 2023, 235: 116649. https://doi.org/10.1016/j.envres.2023.116649
S. Dasari, C.G. Yedjou, R.T. Brodell, et al. Therapeutic strategies and potential implications of silver nanoparticles in the management of skin cancer. Nanotechnology Reviews, 2020, 9(1): 1500−1521. https://doi.org/10.1515/ntrev-2020-0117
P. Aggarwal, P. Knabel, A.B. Fleischer. United States burden of melanoma and non-melanoma skin cancer from 1990 to 2019. Journal of the American Academy of Dermatology, 2021, 85(2): 388−395. https://doi.org/10.1016/j.jaad.2021.03.109
X. Bonilla, L. Parmentier, B. King, et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nature Genetics, 2016, 48(4): 398−406. https://doi.org/10.1038/ng.3525
V. Lai, W. Cranwell, R. Sinclair. Epidemiology of skin cancer in the mature patient. Clinics in Dermatology, 2018, 36(2): 167−176. https://doi.org/10.1016/j.clindermatol.2017.10.008
M. Ciążyńska, G. Kamińska-Winciorek, D. Lange, et al. The incidence and clinical analysis of non-melanoma skin cancer. Scientific Reports, 2021, 11(1): 4337. https://doi.org/10.1038/s41598-021-83502-8
C.R. Pickering, J.H. Zhou, J.J. Lee, et al. Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clinical Cancer Research, 2014, 20(24): 6582−6592. https://doi.org/10.1158/1078-0432.ccr-14-1768
L. Fania, D. Didona, F.R. Di Pietro, et al. Cutaneous squamous cell carcinoma: From pathophysiology to novel therapeutic approaches. Biomedicines, 2021, 9(2): 171. https://doi.org/10.3390/biomedicines9020171
J. D’Orazio, S. Jarrett, A. Amaro-Ortiz, et al. UV radiation and the skin. International Journal of Molecular Sciences, 2013, 14(6): 12222−12248. https://doi.org/10.3390/ijms140612222
A. Costello, M. Abbas, A. Allen, et al. Managing the health effects of climate change. The lancet, 2009, 373(9676): 1693−1733. https://doi.org/10.1016/s0140-6736(09)60935-1
A.F. Bais, R.L. McKenzie, G. Bernhard, et al. Ozone depletion and climate change: Impacts on UV radiation. Photochemical & Photobiological Sciences, 2015, 14(1): 19−52. https://doi.org/10.1039/c4pp90032d
E.R. Parker. The influence of climate change on skin cancer incidence - A review of the evidence. International Journal of Women’s Dermatology, 2021, 7(1): 17−27. https://doi.org/10.1016/j.ijwd.2020.07.003
I.M. Abdulbaqi, Y. Darwis, N.A. Khan, et al. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. International Journal of Nanomedicine, 2016, 11: 2279−2304. https://doi.org/10.2147/IJN.S105016
S.R. Kodi, M.S. Reddy. Transferosomes: A novel topical approach. Journal of Drug Delivery and Therapeutics, 2023, 13(2): 126−131. https://doi.org/10.22270/jddt.v13i2.5952
M.M. El-Sonbaty, M.A. Akl, M. Khalid, et al. Does the technical methodology influence the quality attributes and the potential of skin permeation of Luliconazole loaded transethosomes. Journal of Drug Delivery Science and Technology, 2022, 68: 103096. https://doi.org/10.1016/j.jddst.2022.103096
P. Chowdary, A. Padmakumar, A.K. Rengan. Exploring the potential of transethosomes in therapeutic delivery: A comprehensive review. MedComm–Biomaterials and Applications, 2023, 2(4): e59. https://doi.org/10.1002/mba2.59
M. Adnan, M.F. Haider, N. Naseem, et al. Transethosomes: a promising challenge for topical delivery short title: transethosomes for topical delivery. Drug Research, 2023, 73(04): 200−212. https://doi.org/10.1055/a-1974-9078
S. Shah, V. Dhawan, R. Holm, et al. Liposomes: Advancements and innovation in the manufacturing process. Advanced Drug Delivery Reviews, 2020, 154: 102−122. https://doi.org/10.1016/j.addr.2020.07.002
V. Garg, H. Singh, A. Bhatia, et al. Systematic development of transethosomal gel system of piroxicam: formulation optimization, in vitro evaluation, and ex vivo assessment. AAPS pharmscitech, 2017, 18: 58−71. https://doi.org/10.1208/s12249-016-0489-z
V. Gupta, N. K. Joshi. Formulation, development and evaluation of ketoprofen loaded transethosomes gel. Journal of Drug Delivery and Therapeutics, 2022, 12(1): 86−90. https://doi.org/10.22270/jddt.v12i1.5177
C.K. Song, P. Balakrishnan, C.K. Shim, et al. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloids and Surfaces B: Biointerfaces, 2012, 92: 299−304. https://doi.org/10.1016/j.colsurfb.2011.12.004
S.S. Hallan, M. Sguizzato, P. Mariani, et al. Design and characterization of ethosomes for transdermal delivery of caffeic acid. Pharmaceutics, 2020, 12(8): E740. https://doi.org/10.3390/pharmaceutics12080740
M. Costanzo, E. Esposito, M. Sguizzato, et al. Formulative study and intracellular fate evaluation of ethosomes and transethosomes for vitamin D3 delivery. International Journal of Molecular Sciences, 2021, 22(10): 5341. https://doi.org/10.3390/ijms22105341
A. Youssef, N. Dudhipala, S. Majumdar. Ciprofloxacin loaded nanostructured lipid carriers incorporated into in-situ gels to improve management of bacterial endophthalmitis. Pharmaceutics, 2020, 12(6): 572. https://doi.org/10.3390/pharmaceutics12060572
A.H. Aodah, S. Hashmi, N. Akhtar, et al. Formulation development, optimization by box–behnken design, and in vitro and ex vivo characterization of hexatriacontane-loaded transethosomal gel for antimicrobial treatment for skin infections. Gels, 2023, 9(4): 322. https://doi.org/10.3390/gels9040322
K.K. Mishra, C.D. Kaur, A. Gupta. Development of itraconazole loaded ultra-deformable transethosomes containing oleic-acid for effective treatment of dermatophytosis: Box-Behnken design, ex-vivo and in-vivo studies. Journal of Drug Delivery Science and Technology, 2022, 67: 102998. https://doi.org/10.1016/j.jddst.2021.102998
H.F. Salem, M.M. Nafady, R.M. Kharshoum, et al. Mitigation of rheumatic arthritis in a rat model via transdermal delivery of dapoxetine HCl amalgamated as a nanoplatform: in vitro and in vivo assessment. International Journal of Nanomedicine, 2020, 15: 1517−1535. https://doi.org/10.2147/ijn.s238709
M. Singh, K.E. Lee, R. Vinayagam, et al. Synthesis and assessment of lipid nanovesicles for efficient transdermal delivery of hydrophilic molecules. Nano, 2022, 17(04): 2250031. https://doi.org/10.1142/s179329202250031x
P. Chaurasiya, E. Ganju, N. Upmanyu, et al. Transfersomes: a novel technique for transdermal drug delivery. Journal of Drug Delivery and Therapeutics, 2019, 9(1): 279−285. https://doi.org/10.22270/jddt.v9i1.2198
S. Rai, V. Pandey, G. Rai. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art. Nano Reviews & Experiments, 2017, 8(1): 1325708. https://doi.org/10.1080/20022727.2017.1325708
M. Bragagni, N. Mennini, F. Maestrelli, et al. Comparative study of liposomes, transfersomes and ethosomes as carriers for improving topical delivery of celecoxib. Drug Delivery, 2012, 19(7): 354−361. https://doi.org/10.3109/10717544.2012.724472
A. Kumar, K. Pathak, V. Bali. Ultra-adaptable nanovesicular systems: A carrier for systemic delivery of therapeutic agents. Drug Discovery Today, 2012, 17(21-22): 1233−1241. https://doi.org/10.1016/j.drudis.2012.06.013
E. Anwar, D. Ramadon, G.D. Ardi. Novel transethosome containing green tea (Camellia sinensis L. Kuntze) leaf extract for enhanced skin delivery of epigallocatechin gallate: Formulation and in vitro penetration test. International Journal of Applied Pharmaceutics, 2018, 10(1): 299. https://doi.org/10.22159/ijap.2018.v10s1.66
S.R. Zahid, N. Upmanyu, S. Dangi, et al. Ethosome: a novel vesicular carrier for transdermal drug delivery. Journal of Drug Delivery and Therapeutics, 2018, 8(6): 318−326. https://doi.org/10.22270/jddt.v8i6.2028
B. Bhasin, V.Y. Londhe. An overview of transfersomal drug delivery. International Journal of Pharmaceutical Sciences and Research, 2018, 9(6): 2175−2184. https://doi.org/10.13040/ijpsr.0975-8232.9(6).2175-84
S.A.T. Opatha, V. Titapiwatanakun, R. Chutoprapat. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics, 2020, 12(9): 855. https://doi.org/10.3390/pharmaceutics12090855
N. Matharoo, H. Mohd, B. Michniak-Kohn. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments. WIREs Nanomedicine and Nanobiotechnology, 2024, 16(1): e1918. https://doi.org/10.1002/wnan.1918
A. Pandey. Role of surfactants as penetration enhancer in transdermal drug delivery system. Journal of Molecular Pharmaceutics & Organic Process Research, 2014, 2: 2. https://doi.org/10.4172/2329-9053.1000113
G. Cevc, A. Schätzlein, H. Richardsen. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2002, 1564(1): 21−30. https://doi.org/10.1016/s0005-2736(02)00401-7
J. Shaji, R. Bajaj. Transethosomes: A new prospect for enhanced transdermal delivery. International Journal of Pharmaceutical Sciences and Research, 2018, 9(7): 2681−2685. https://doi.org/10.13040/ijpsr.0975-8232.9(7).2681-85
P. Verma, K. Pathak. Therapeutic and cosmeceutical potential of ethosomes: An overview. Journal of Advanced Pharmaceutical Technology & Research, 2010, 1(3): 274−282. https://doi.org/10.4103/0110-5558.72415
B. Dixena, R. Madhariya, A. Panday, et al. Overcoming skin barrier with transfersomes: Opportunities, challenges, and applications. Current Drug Delivery, 2025, 22(2): 160−180. https://doi.org/10.2174/0115672018272012231213100535
J.V. Schmitt, H.A. Miot. Actinic keratosis: A clinical and epidemiological revision. Anais Brasileiros de Dermatologia, 2012, 87(3): 425−434. https://doi.org/10.1590/s0365-05962012000300012
I.A. Alvi, J. Madan, D. Kaushik, et al. Comparative study of transfersomes, liposomes, and niosomes for topical delivery of 5-fluorouracil to skin cancer cells: preparation, characterization, in-vitro release, and cytotoxicity analysis. Anti-Cancer Drugs, 2011, 22(8): 774−782. https://doi.org/10.1097/cad.0b013e328346c7d6
M.A. Khan, J. Pandit, Y. Sultana, et al. Novel carbopol-based transfersomal gel of 5-fluorouracil for skin cancer treatment: in vitro characterization and in vivo study. Drug delivery, 2015, 22(6): 795−802. https://doi.org/10.3109/10717544.2014.902146
R. Marks, M. Staples, G.G. Giles. Trends in non‐melanocytic skin cancer treated in Australia: the second national survey. International Journal of Cancer, 1993, 53(4): 585−590. https://doi.org/10.1002/ijc.2910530410
R. Corona, E. Dogliotti, M. D’Errico, et al. Risk factors for basal cell carcinoma in a Mediterranean population: role of recreational sun exposure early in life. Archives of Dermatology, 2001, 137(9): 1162−1168. https://doi.org/10.1001/archderm.137.9.1162
M.M. Hartevelt, J.N. Bavinck, A.M. Kootte, et al. Incidence of skin cancer after renal transplantation in The Netherlands. Transplantation, 1990, 49(3): 506−509. https://doi.org/10.1097/00007890-199003000-00006
M. Fadel, N. Samy, M. Nasr, et al. Topical colloidal indocyanine green-mediated photodynamic therapy for treatment of basal cell carcinoma. Pharmaceutical Development and Technology, 2017, 22(4): 545−550. https://doi.org/10.3109/10837450.2016.1146294
A. Friedman-Kien, B. Saltzman, Y.Z. Cao, et al. Kaposi’s sarcoma in HIV-negative homosexual men. The Lancet, 1990, 335(8682): 168−169. https://doi.org/10.1016/0140-6736(90)90041-3
I. Penn. Kaposi’s sarcoma in organ transplant recipients: Report of 20 cases. Transplantation, 1979, 27(1): 8−11. https://doi.org/10.1097/00007890-197901000-00003
K. Pathak, V. Sharma, M. Sharma. Optimization, in vitro cytotoxicity and penetration capability of deformable nanovesicles of paclitaxel for dermal chemotherapy in Kaposi sarcoma. Artificial Cells, Nanomedicine, and Biotechnology, 2016, 44(7): 1671−1683. https://doi.org/10.3109/21691401.2015.1080169
M.P. Marinkovich. Laminin 332 in squamous-cell carcinoma. Nature Reviews Cancer, 2007, 7: 370−380. https://doi.org/10.1038/nrc2089
B. Akgül, J.C. Cooke, A. Storey. HPV‐associated skin disease. The Journal of the Pathology, 2005, 208(2): 165−175. https://doi.org/10.1002/path.1893
V. Gupta, C. Karthikeyan, P. Trivedi. Localized delivery of cisplatin for the effective management of squamous cell carcinoma from protransfersome formulation. Archives of Pharmacal Research, 2012, 35: 851−859. https://doi.org/10.1007/s12272-012-0510-3
M.L. González-Rodríguez, C.M. Arroyo, M.J. Cózar-Bernal, et al. Deformability properties of timolol-loaded transfersomes based on the extrusion mechanism. Statistical optimization of the process. Drug Development and Industrial Pharmacy, 2016, 42(10): 1683−1694. https://doi.org/10.3109/03639045.2016.1165691
S. Potisuwan, N. Apichatwatana, S. Rujivipat. Improved skin permeation of transferosomes containing Eulophia macrobulbon extract. Colloids and Surfaces B: Biointerfaces, 2023, 229: 113474. https://doi.org/10.1016/j.colsurfb.2023.113474
K. Geetha, K.G. Nandini, A. Harshika, et al. Formulation and evaluation for enhancing tolnaftate permeation with transferosomal gel. Latin American Journal of Pharmacy: A Life Science Journal, 2023, 42(6): 167−177.
N.R. Rarokar, S.D. Saoji, N.V. Deole, et al. Preparation and formula optimization of cephalexin loaded transferosomal gel by QbD to enhance the transdermal delivery: in vitro, ex vivo and in vivo study. Journal of Drug Delivery Science and Technology, 2023, 89: 104968. https://doi.org/10.1016/j.jddst.2023.104968
S. Bhattacharyya, L. Kalai Tamilselvi, A. Muthukumar. Formulation, and evaluation of transferosomal gel of famciclovir for transdermal use. Turkish Journal of Pharmaceutical Sciences, 2024, 21(4): 303−312. https://doi.org/10.4274/tjps.galenos.2023.46735
M.S. Jangdey, C.D. Kaur, S. Saraf. Efficacy of Concanavalin-a conjugated nanotransfersomal gel of apigenin for enhanced targeted delivery of UV induced skin malignant melanoma. Artificial Cells, Nanomedicine, and Biotechnology, 2019, 47(1): 904−916. https://doi.org/10.1080/21691401.2019.1578784
P.S. Wu, Y.S. Li, Y.C. Kuo, et al. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol. Molecules, 2019, 24(3): 600. https://doi.org/10.3390/molecules24030600
G. Cevc. Transdermal drug delivery of insulin with ultradeformable carriers. Clinical Pharmacokinetics, 2003, 42: 461−474. https://doi.org/10.2165/00003088-200342050-00004
G. Cevc, D. Gebauer, J. Stieber, et al. Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1998, 1368(2): 201−215. https://doi.org/10.1016/s0005-2736(97)00177-6
R. Bnyan, I. Khan, T. Ehtezazi, et al. Roberts. Formulation and optimisation of novel transfersomes for sustained release of local anaesthetic. Journal of Pharmacy and Pharmacology, 2019, 71(10): 1508−1519. https://doi.org/10.1111/jphp.13149
M.M. Omar, O.A. Hasan, A.M. El Sisi. Preparation and optimization of lidocaine transferosomal gel containing permeation enhancers: a promising approach for enhancement of skin permeation. International Journal of Nanomedicine, 2019, 14: 1551−1562. https://doi.org/10.2147/ijn.s201356
G. Hussain, K. Kohli, A. Umar, et al. Nanovesicular delivery of repaglinide through skin. Science of Advanced Materials, 2013, 5(7): 810−821. https://doi.org/10.1166/sam.2013.1522
K. Sailaja, R. Supraja. Formulation of mefenamic acid loaded transfersomal gel by thin film hydration technique and hand shaking method. Nanomedicine Journal, 2017, 4(2): 126−134. https://doi.org/10.22038/nmj.2017.8414
S.M. Badr-Eldin, O.A. Ahmed. Optimized nano-transfersomal films for enhanced sildenafil citrate transdermal delivery: ex vivo and in vivo evaluation. Drug Design, Development and Therapy, 2016, 10: 1323−1333. https://doi.org/10.2147/dddt.s103122
R. Agrawal, S.K. Sandhu, I. Sharma, et al. Development and evaluation of curcumin-loaded elastic vesicles as an effective topical anti-inflammatory formulation. AAPS PharmSciTech, 2015, 16: 364−374. https://doi.org/10.1208/s12249-014-0232-6
Y. Wang, R. Wang, X. Qi, et al. Novel transethosomes for the delivery of brucine and strychnine: Formulation optimization, characterization and in vitro evaluation in hepatoma cells. Journal of Drug Delivery Science and Technology, 2021, 64: 102425. https://doi.org/10.1016/j.jddst.2021.102425
M.F. Kabil, M. Nasr, I.T. Ibrahim, et al. New repurposed rolapitant in nanovesicular systems for lung cancer treatment: Development, in-vitro assessment and in-vivo biodistribution study. European Journal of Pharmaceutical Sciences, 2022, 171: 106119. https://doi.org/10.1016/j.ejps.2022.106119
A. Samad, Y. Sultana, M. Aqil. Liposomal drug delivery systems: an update review. Current Drug Delivery, 2007, 4(4): 297−305. https://doi.org/10.2174/156720107782151269
P.R. Kaur, V.A. Garg, P.A. Bawa, et al. Formulation, systematic optimization, in vitro, ex vivo and stability assessment of transethosome based gel of curcumin. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11(2): 41−47. https://doi.org/10.22159/ajpcr.2018.v11s2.28563
A. Radomska-Soukharev. Stability of lipid excipients in solid lipid nanoparticles. Advanced Drug Delivery Reviews, 2007, 59(6): 411−418. https://doi.org/10.1016/j.addr.2007.04.004
R. Albash, A.A. Abdelbary, H. Refai, et al. Use of transethosomes for enhancing the transdermal delivery of olmesartan medoxomil: in vitro, ex vivo, and in vivo evaluation. International Journal of Nanomedicine, 2019, 14: 1953−1968. https://doi.org/10.2147/ijn.s196771
N. Chauhan, K. Kumar, N.C. Pant. An updated review on transfersomes: A novel vesicular system for transdermal drug delivery. Universal Journal of Pharmaceutical Research, 2017, 2(4): 42−52. https://doi.org/10.22270/ujpr.v2i4.rw2
G. Cevc, D. Gebauer. Hydration-driven transport of deformable lipid vesicles through fine pores and the skin barrier. Biophysical Journal, 2003, 84(2): 1010−-024. https://doi.org/10.1016/s0006-3495(03)74917-0
J. Aho, V.H. Rolón-Garrido, S. Syrjälä, et al. Measurement technique and data analysis of extensional viscosity for polymer melts by Sentmanat extensional rheometer (SER). Rheologica Acta, 2010, 49(4): 359−70. https://doi.org/10.1007/s00397-010-0439-8
A. Öhrlund. Evaluation of rheometry amplitude sweep cross-over point as an index of flexibility for HA fillers. Journal of Cosmetics, Dermatological Sciences and Applications, 2018, 8(2): 47−54. https://doi.org/10.4236/jcdsa.2018.82008
M. Schenker, J. Schoelkopf, P. Gane, et al. Quantification of flow curve hysteresis data–a novel tool for characterising microfibrillated cellulose (MFC) suspensions. Applied Rheology, 2018, 28(2): 201822945. https://doi.org/10.3933/applrheol-28-22945
C.S. Maurya, C. Sarkar. Characterization of highly stable water-based magnetorheological gel using OPTIGEL-WX as an additive: The study of magneto-induced rheological and viscoelastic properties. Journal of Industrial and Engineering Chemistry, 2022, 110: 137−149. https://doi.org/10.1016/j.jiec.2022.02.043
K.B. Ita, J. Du Preez, J. du Plessis, et al. Dermal delivery of selected hydrophilic drugs from elastic liposomes: effect of phospholipid formulation and surfactants. Journal of Pharmacy and Pharmacology, 2007, 59(9): 1215−1222. https://doi.org/10.1211/jpp.59.9.0005
V. Garg, H. Singh, S. Bimbrawh, et al. Ethosomes and transfersomes: Principles, perspectives and practices. Current Drug Delivery, 2017, 14(5): 613−633. https://doi.org/10.2174/1567201813666160520114436
J. Wang, J.H. Hu, F.Q. Li, et al. Strong cellular and humoral immune responses induced by transcutaneous immunization with HBsAg DNA–cationic deformable liposome complex. Experimental Dermatology, 2007, 16(9): 724−729. https://doi.org/10.1111/j.1600-0625.2007.00584.x
A. Chopra, G. Cevc. Non-invasive, epicutaneous immunisation with toxoid in deformable vesicles protects mice against tetanus, chiefly owing to a Th2 response. European Journal of Pharmaceutical Sciences, 2014, 56: 55−64. https://doi.org/10.1016/j.ejps.2014.01.006
R. Damoiseaux, S. George, M. Li, et al. No time to lose—high throughput screening to assess nanomaterial safety. Nanoscale, 2011, 3(4): 1345−1360. https://doi.org/10.1039/c0nr00618a
X. Liu, Y. Jia, Z. Han, et al. Integrating a concentration gradient generator and a single‐cell trapper array for high‐throughput screening the bioeffects of nanomaterials. Angewandte Chemie International Edition, 2021, 60(22): 12319−12322. https://doi.org/10.1002/anie.202101293
D. Reker, Y. Rybakova, A.R. Kirtane, et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nature Nanotechnology, 2021, 16(6): 725−733. https://doi.org/10.1038/s41565-021-00870-y
R.S. Tade, S.N. Jain, J.T. Satyavijay, et al. Artificial intelligence in the paradigm shift of pharmaceutical sciences: A review. Nano Biomedicine and Engineering, 2024, 16(1): 64−77. https://doi.org/10.26599/NBE.2023.9290043
G. Cevc, U. Vierl. Nanotechnology and the transdermal route: A state of the art review and critical appraisal. Journal of Controlled Release, 2010, 141(3): 277−299. https://doi.org/10.1016/j.jconrel.2009.10.016
R. Kumar, A. Philip. Modified transdermal technologies: Breaking the barriers of drug permeation via the skin. Tropical Journal of Pharmaceutical Research, 2007, 6(1): 633−644. https://doi.org/10.4314/tjpr.v6i1.14641
N.P. Mane, B.R. Rane, A.S. Jain. Advances in nanosuspension technology: Current trends and future horizons. Nano Biomedicine and Engineering, 2024, 16(4): 574−587. https://doi.org/10.26599/NBE.2024.9290092