PDF (9.2 MB)
Collect
Submit Manuscript
Review | Open Access

Versatile Copper-Chalcogenide-Based Nanoparticles for the Treatment of Brain Diseases

Shuyang Xie§Hualong Liu§Ke Yang§Tingting WangHao Zhang()Zhen Li()
Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China

§These authors contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Copper chalcogenide nanoparticles, particularly Cu2–xE (E = S, Se, Te; 0 ≤ x ≤ 1), have gained significant interest in recent years due to their distinct physical and chemical properties, making them highly versatile for a wide range of applications. Among these, copper selenide nanoparticles (CS NPs) have attracted special attention due to their remarkable characteristics, which can be tailored through various modification strategies, providing significant potential for the diagnosis and treatment of neurological diseases. This review summarizes emerging trends and explores future perspectives on the use of CS NPs for diagnosing and treating central nervous system diseases, including glioblastoma and neurodegenerative disorders.

References

[1]

S. Goel, F. Chen, W. Cai. Synthesis and biomedical applications of copper sulfide nanoparticles: From sensors to theranostics. Small, 2014, 10(4): 631−645. https://doi.org/10.1002/smll.201301174

[2]

X. Lu, X. Chen, C. Lin, et al. Elesclomol loaded copper oxide nanoplatform triggers cuproptosis to enhance antitumor immunotherapy. Advanced Science, 2024, 11(18): e2309984. https://doi.org/10.1002/advs.202309984

[3]
J. Ma, N. Li, J. Wang, et al. In vivo synergistic tumor therapies based on copper sulfide photothermal therapeutic nanoplatforms. Exploration, 2023, 3(5): 20220161. https://doi.org/10.1002/EXP.20220161
[4]

G.Z. Zhou, M. Li. Biodegradable copper telluride nanosheets for redox-homeostasis breaking-assisted chemodynamic cancer therapy boosted by mild-photothermal effect. Chemical Engineering Journal, 2022, 450: 138348. https://doi.org/10.1016/j.cej.2022.138348

[5]

Y. Yang, Y. Liu, Q.X. Yang, et al. The application of selenium nanoparticles in immunotherapy. Nano Biomedicine and Engineering, 2024, 16(3): 345−356. https://doi.org/10.26599/nbe.2024.9290100

[6]

O.A. Balitskii, M. Sytnyk, J. Stangl, et al. Tuning the localized surface plasmon resonance in Cu2-xSe nanocrystals by postsynthetic ligand exchange. ACS Applied Materials & Interfaces, 2014, 6(20): 17770−17775. https://doi.org/10.1021/am504296y

[7]

L. Lin, L.V. Wang. The emerging role of photoacoustic imaging in clinical oncology. Nature Reviews Clinical Oncology, 2022, 19(6): 365−384. https://doi.org/10.1038/s41571-022-00615-3

[8]

X.S. Li, J.F. Lovell, J. Yoon, et al. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nature Reviews Clinical Oncology, 2020, 17(11): 657−674. https://doi.org/10.1038/s41571-020-0410-2

[9]

B.W. Sun, J.N. Bte Rahmat, Y. Zhang. Advanced techniques for performing photodynamic therapy in deep-seated tissues. Biomaterials, 2022, 291: 121875. https://doi.org/10.1016/j.biomaterials.2022.121875

[10]

C.M. Hessel, V.P. Pattani, M. Rasch, et al. Copper selenide nanocrystals for photothermal therapy. Nano Letters, 2011, 11(6): 2560−2566. https://doi.org/10.1021/nl201400z

[11]

C. Gorrini, I.S. Harris, T.W. Mak. Modulation of oxidative stress as an anticancer strategy. Nature Reviews Drug Discovery, 2013, 12(12): 931−947. https://doi.org/10.1038/nrd4002

[12]

H. Zhang, T. Wang, H. Liu, et al. Second near-infrared photodynamic therapy and chemotherapy of orthotopic malignant glioblastoma with ultra-small Cu2− x Se nanoparticles. Nanoscale, 2019, 11(16): 7600−7608. https://doi.org/10.1039/C9NR01789E

[13]

C. Jia, Y. Guo, F.G. Wu. Chemodynamic therapy via Fenton and Fenton-like nanomaterials: Strategies and recent advances. Small, 2022, 18(6): e2103868. https://doi.org/10.1002/smll.202103868

[14]

L. Zhang, C.X. Li, S.S. Wan, et al. Nanocatalyst-mediated chemodynamic tumor therapy. Advanced Healthcare Materials, 2022, 11(2): e2101971. https://doi.org/10.1002/adhm.202101971

[15]

S.H. Zhang, Q. Huang, L.J. Zhang, et al. Vacancy engineering of Cu2− x Se nanoparticles with tunable LSPR and magnetism for dual-modal imaging guided photothermal therapy of cancer. Nanoscale, 2018, 10(7): 3130−3143. https://doi.org/10.1039/C7NR06937E

[16]

S.Q. Lie, D.M. Wang, M.X. Gao, et al. Controllable copper deficiency in Cu2− x Se nanocrystals with tunable localized surface plasmon resonance and enhanced chemiluminescence. Nanoscale, 2014, 6(17): 10289−10296. https://doi.org/10.1039/C4NR02294G

[17]

L.E. Marbella, X.Y. Gan, D.C. Kaseman, et al. Correlating carrier density and emergent plasmonic features in Cu2− x Se nanoparticles. Nano Letters, 2017, 17(4): 2414−2419. https://doi.org/10.1021/acs.nanolett.6b05420

[18]

B. Yun, H. Zhu, J. Yuan, et al. Synthesis, modification and bioapplications of nanoscale copper chalcogenides. Journal of Materials Chemistry B, 2020, 8(22): 4778−4812. https://doi.org/10.1039/D0TB00182A

[19]

Bai X, Zhou T, Wu X, et al. Synthesis and Application of Selenium Nanoparticles for the Modulation of Inflammatory Diseases. Nano Biomedicine and Engineering, 2025, https://doi.org/10.26599/NBE.2025.9290111

[20]

M.D. Sweeney, A.P. Sagare, B.V. Zlokovic. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nature Reviews Neurology, 2018, 14(3): 133−150. https://doi.org/10.1038/nrneurol.2017.188

[21]

J.B. Xie, Z.Y. Shen, Y. Anraku, et al. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials, 2019, 224: 119491. https://doi.org/10.1016/j.biomaterials.2019.119491

[22]

Z. Zhao, A.R. Nelson, C. Betsholtz, et al. Establishment and dysfunction of the blood-brain barrier. Cell, 2015, 163(5): 1064−1078. https://doi.org/10.1016/j.cell.2015.10.067

[23]

S. Senapati, A.K. Mahanta, S. Kumar, et al. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy, 2018, 3: 7. https://doi.org/10.1038/s41392-017-0004-3

[24]

J. Yuan, H. Liu, H. Zhang, et al. Controlled activation of TRPV1 channels on microglia to boost their autophagy for clearance of alpha-synuclein and enhance therapy of Parkinson’s disease. Advanced Materials, 2022, 34(11): e2108435. https://doi.org/10.1002/adma.202108435

[25]

T.T. Wang, H. Zhang, H.H.Liu, et al. Boosting H2O2-guided chemodynamic therapy of cancer by enhancing reaction kinetics through versatile biomimetic Fenton nanocatalysts and the second near-infrared light irradiation. Advanced Functional Materials, 2020, 30(3): 1906128. https://doi.org/10.1002/adfm.201906128

[26]

M. Lim, Y.X. Xia, C. Bettegowda, et al. Current state of immunotherapy for glioblastoma. Nature Reviews Clinical Oncology, 2018, 15(7): 422−442. https://doi.org/10.1038/s41571-018-0003-5

[27]

S. Yang, Y.B. Han, B.L. Bao, et al. Boosting the anti-tumor performance of disulfiram against glioblastoma by using ultrasmall nanoparticles and HIF-1α inhibitor. Composites Part B: Engineering, 2022, 243: 110117. https://doi.org/10.1016/j.compositesb.2022.110117

[28]

G. Kroemer, C. Galassi, L. Zitvogel, et al. Immunogenic cell stress and death. Nature Immunology, 2022, 23(4): 487−500. https://doi.org/10.1038/s41590-022-01132-2

[29]

T.T. Wang, H. Zhang, W.B. Qiu, et al. Biomimetic nanoparticles directly remodel immunosuppressive microenvironment for boosting glioblastoma immunotherapy. Bioactive Materials, 2022, 16: 418−432. https://doi.org/10.1016/j.bioactmat.2021.12.029

[30]

H. Zhang, L. Yang, T.T. Wang, et al. NK cell-based tumor immunotherapy. Bioactive Materials, 2024, 31: 63−86. https://doi.org/10.1016/j.bioactmat.2023.08.001

[31]

H.R. Morris, M.G. Spillantini, C.M. Sue, et al. The pathogenesis of Parkinson’s disease. The Lancet, 2024, 403(10423): 293−304. https://doi.org/10.1016/S0140-6736(23)01478-2

[32]

H. Ye, L.A. Robak, M. Yu, et al. Genetics and pathogenesis of Parkinson’s syndrome. Annual Review of Pathology, 2023, 18: 95−121. https://doi.org/10.1146/annurev-pathmechdis-031521-034145

[33]

H.H. Liu, Y.B. Han, T.T. Wang, et al. Targeting microglia for therapy of Parkinson’s disease by using biomimetic ultrasmall nanoparticles. Journal of the American Chemical Society, 2020, 142(52): 21730−21742. https://doi.org/10.1021/jacs.0c09390

[34]

H.H. Liu, Q. Zheng, J.X. Yuan, et al. Modulating SQSTM1/p62-dependent selective autophagy of neurons by activating Nrf2 with multifunctional nanoparticles to eliminate α-synuclein aggregates and boost therapy of Parkinson’s disease. Nano Today, 2023, 49: 101770. https://doi.org/10.1016/j.nantod.2023.101770

[35]

Q. Zheng, H. Liu, H. Zhang, et al. Ameliorating mitochondrial dysfunction of neurons by biomimetic targeting nanoparticles mediated mitochondrial biogenesis to boost the therapy of Parkinson’s disease. Advanced Science, 2023, 10(22): e2300758. https://doi.org/10.1002/advs.202300758

[36]

Y.F. Gao, H.H. Liu, Q. Zheng, et al. Modulating efficient differentiation of neural stem cells into neurons by using plasmonic nanoparticles and the NIR II irradiation to boost therapy of Parkinson’s disease. Nano Today, 2024, 57: 102392. https://doi.org/10.1016/j.nantod.2024.102392

[37]

S. Zhang, C. Sun, J. Zeng, et al. Ambient aqueous synthesis of ultrasmall PEGylated Cu2− x Se nanoparticles as a multifunctional theranostic agent for multimodal imaging guided photothermal therapy of cancer. Advanced Materials, 2016, 28(40): 8927−8936. https://doi.org/10.1002/adma.201602193

[38]

Q. Huang, S. Zhang H., Zhang, et al. Boosting the radiosensitizing and photothermal performance of Cu2− x Se nanocrystals for synergetic radiophotothermal therapy of orthotopic breast cancer. ACS Nano, 2019, 13(2): 1342−1353. https://doi.org/10.1021/acsnano.8b06795

[39]

H. Zhang, X. Zeng, Z. Li. Copper-chalcogenide-based multimodal nanotheranostics. ACS Applied Bio Materials, 2020, 3(10): 6529−6537. https://doi.org/10.1021/acsabm.0c00937

[40]

C.Y. Wu, S.-H. Yu, M. Antonietti. Complex concaved cuboctahedrons of copper sulfide crystals with highly geometrical symmetry created by a solution process. Chemistry of Materials, 2006, 18(16): 3599−3601. https://doi.org/10.1021/cm060956u

[41]

J. Xu, W.X. Zhang, Z.H. Yang, et al. Large-scale synthesis of long crystalline Cu2− x Se nanowire bundles by water-evaporation-induced self-assembly and their application in gas sensing. Advanced Functional Materials, 2009, 19(11): 1759−1766. https://doi.org/10.1002/adfm.200801430

[42]

S. Goel, C.A. Ferreira, F. Chen, et al. Activatable hybrid nanotheranostics for tetramodal imaging and synergistic photothermal/photodynamic therapy. Advanced Materials, 2018, 30(6): 1704367. https://doi.org/10.1002/adma.201704367

[43]

R.I. Walton. Subcritical solvothermal synthesis of condensed inorganic materials. Chemical Society Reviews, 2002, 31(4): 230−238. https://doi.org/10.1039/B105762F

[44]

M.R. Gao, Y.F. Xu, J. Jiang, et al. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices. Chemical Society Reviews, 2013, 42(7): 2986−3017. https://doi.org/10.1039/C2CS35310E

[45]

N.J. Halas, S. Lal, W.S. Chang, et al. Plasmons in strongly coupled metallic nanostructures. Chemical Reviews, 2011, 111(6): 3913−3961. https://doi.org/10.1021/cr200061k

[46]

Y. Han, T. Wang, H. Liu, et al. The release and detection of copper ions from ultrasmall theranostic Cu2− x Se nanoparticles. Nanoscale, 2019, 11(24): 11819−11829. https://doi.org/10.1039/C9NR02884F

[47]

T. Wang, H. Zhang, Y. Han, et al. Light-enhanced O2-evolving nanoparticles boost photodynamic therapy to elicit antitumor immunity. ACS Applied Materials & Interfaces, 2019, 11(18): 16367−16379. https://doi.org/10.1021/acsami.9b03541

[48]

W. Li, X. Meng, K. Peng, et al. Boosting microglial lipid metabolism via TREM2 signaling by biomimetic nanoparticles to attenuate the sevoflurane-induced developmental neurotoxicity. Advanced Science, 2024, 11(10): e2305989. https://doi.org/10.1002/advs.202305989

[49]

L. Xu, Z. Xing, J. Yuan, et al. Ultrasmall nanoparticles regulate immune microenvironment by activating IL-33/ST2 to alleviate renal ischemia-reperfusion injury. Advanced Healthcare Materials, 2024, 13(13): e2303276. https://doi.org/10.1002/adhm.202303276

[50]

X. Zhou, H. Liu, Y. Zheng, et al. Overcoming radioresistance in tumor therapy by alleviating hypoxia and using the HIF-1 inhibitor. ACS Applied Materials & Interfaces, 2020, 12(4): 4231−4240. https://doi.org/10.1021/acsami.9b18633

[51]

G.C. Terstappen, A.H. Meyer, R.D. Bell, et al. Strategies for delivering therapeutics across the blood–brain barrier. Nature Reviews Drug Discovery, 2021, 20(5): 362−383. https://doi.org/10.1038/s41573-021-00139-y

[52]

C. Betsholtz. Double function at the blood–brain barrier. Nature, 2014, 509(7501): 432−433. https://doi.org/10.1038/nature13339

[53]

J.B. Foster, P.J. Madsen, M. Hegde, et al. Immunotherapy for pediatric brain tumors: Past and present. Neuro-Oncology, 2019, 21(10): 1226−1238. https://doi.org/10.1093/neuonc/noz077

[54]

N.D. Doolittle, R. Fu, P. Ambady, et al. Primary central nervous system lymphoma and the blood-brain barrier. Blood, 2016, 128(22): 928. https://doi.org/10.1182/blood.V128.22.928.928

[55]

A.R. Kline-Schoder, S. Chintamen, M.J. Willner, et al. Characterization of the responses of brain macrophages to focused ultrasound-mediated blood–brain barrier opening. Nature Biomedical Engineering, 2023, 8(5): 650−663. https://doi.org/10.1038/s41551-023-01107-0

[56]

K. Piper, J.I. Kumar, J. Domino, et al. Consensus review on strategies to improve delivery across the blood-brain barrier including focused ultrasound. Neuro-Oncology, 2024, 26(9): 1545−1556. https://doi.org/10.1093/neuonc/noae087

[57]

A.R. Rezai, P.F. D’Haese, V. Finomore, et al. Ultrasound blood–brain barrier opening and aducanumab in Alzheimer’s disease. The New England Journal of Medicine, 2024, 390(1): 55−62. https://doi.org/10.1056/NEJMoa2308719

[58]

Y. Meng, K. Hynynen, N. Lipsman. Applications of focused ultrasound in the brain: From thermoablation to drug delivery. Nature Reviews Neurology, 2020, 17(1): 7−22. https://doi.org/10.1038/s41582-020-00418-z

[59]

H. Zhang, T. Wang, W. Qiu, et al. Monitoring the opening and recovery of the blood-brain barrier with noninvasive molecular imaging by biodegradable ultrasmall Cu2− x Se nanoparticles. Nano Letters, 2018, 18(8): 4985−4992. https://doi.org/10.1021/acs.nanolett.8b01818

[60]

T. Wang, H. Zhang, Y. Han, et al. Reversing T cell dysfunction to boost glioblastoma immunotherapy by paroxetine-mediated GRK2 inhibition and blockade of multiple checkpoints through biomimetic nanoparticles. Advanced Science, 2023, 10(9): e2204961. https://doi.org/10.1002/advs.202204961

[61]

N. Sanai, M.S. Berger. Surgical oncology for gliomas: The state of the art. Nature Reviews Clinical Oncology, 2017, 15(2): 112−125. https://doi.org/10.1038/nrclinonc.2017.171

[62]

M. Weller, P.Y. Wen, S.M. Chang, et al. Glioma. Nature Reviews Disease Primers, 2024, 10: 33. https://doi.org/10.1038/s41572-024-00516-y

[63]

J.L. Jiang, X.Y. Cui, Y.X. Huang, et al. Advances and prospects in integrated nano-oncology. Nano Biomedicine and Engineering, 2024, 16(2): 152−187. https://doi.org/10.26599/nbe.2024.9290060

[64]

R. Medikonda, G. Dunn, M. Rahman, et al. A review of glioblastoma immunotherapy. Journal of Neuro-Oncology, 2021, 151(1): 41−53. https://doi.org/10.1007/s11060-020-03448-1

[65]

G.P. Dunn, A.T. Bruce, H. Ikeda, et al. Cancer immunoediting: From immunosurveillance to tumor escape. Nature Immunology, 2002, 3(11): 991−998. https://doi.org/10.1038/ni1102-991

[66]

A.R. Dix, W.H. Brooks, T.L. Roszman, et al. Immune defects observed in patients with primary malignant brain tumors. Journal of Neuroimmunology, 1999, 100(1-2): 216−232. https://doi.org/10.1016/S0165-5728(99)00203-9

[67]

J.F. Zhao, A.X. Chen, R.D. Gartrell, et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nature Medicine, 2019, 25(3): 462−469. https://doi.org/10.1038/s41591-019-0349-y

[68]

H. Zhang, T.T. Wang, H.H. Liu, et al. Boost therapy of hepatocellular carcinoma by amplifying vicious cycle between mitochondrial oxidative stress and endoplasmic reticulum stress via biodegradable ultrasmall nanoparticles and old drug. Nano Today, 2022, 46: 101601. https://doi.org/10.1016/j.nantod.2022.101601

[69]

S. Lakshmanachetty, S.S. Mitra. Mapping the tumor-infiltrating immune cells during glioblastoma progression. Nature Immunology, 2022, 23(6): 826−828. https://doi.org/10.1038/s41590-022-01223-0

[70]

N. Nagarsheth, M.S. Wicha, W.P. Zou. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nature Reviews Immunology, 2017, 17(9): 559−572. https://doi.org/10.1038/nri.2017.49

[71]

P. Zhang, Y. Zhai, Y. Cai, et al. Nanomedicine-based immunotherapy for the treatment of cancer metastasis. Advanced Materials, 2019, 31(49): e1904156. https://doi.org/10.1002/adma.201904156

[72]

Y.H. Zheng, Y.B. Han, T.T. Wang, et al. Reprogramming tumor-associated macrophages via ROS-mediated novel mechanism of ultra-small Cu2– x Se nanoparticles to enhance anti-tumor immunity. Advanced Functional Materials, 2022, 32(12): 2108971. https://doi.org/10.1002/adfm.202108971

[73]

D.M. Pardoll. The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer, 2012, 12(4): 252−264. https://doi.org/10.1038/nrc3239

[74]

K.I. Woroniecka, K.E. Rhodin, P. Chongsathidkiet, et al. T-cell dysfunction in glioblastoma: Applying a new framework. Clinical Cancer Research, 2018, 24(16): 3792−3802. https://doi.org/10.1158/1078-0432.CCR-18-0047

[75]

H. Zhang, L. Yang, M. Han, et al. Boost infiltration and activity of T cells via inhibiting ecto-5'-nucleotidase (CD73) immune checkpoint to enhance glioblastoma immunotherapy. ACS Nano, 2024, 18(34): 23001−23013. https://doi.org/10.1021/acsnano.4c04553

[76]

T. Wang, M. Han, Y. Han, et al. Antigen self-presented personalized nanovaccines boost the immunotherapy of highly invasive and metastatic tumors. ACS Nano, 2024, 18(8): 6333−6347. https://doi.org/10.1021/acsnano.3c11189

[77]

L.M.L. de Lau, M.M.B. Breteler. Epidemiology of Parkinson’s disease. The Lancet Neurology, 2006, 5(6): 525−535. https://doi.org/10.1016/S1474-4422(06)70471-9

[78]

C.L. Ma, L. Su, J.J. Xie, et al. The prevalence and incidence of Parkinson’s disease in China: A systematic review and meta-analysis. Journal of Neural Transmission, 2014, 121(2): 123−134. https://doi.org/10.1007/s00702-013-1092-z

[79]

B. Brakedal, L. Toker, K. Haugarvoll, et al. A nationwide study of the incidence, prevalence and mortality of Parkinson’s disease in the Norwegian population. NPJ Parkinson’s Disease, 2022, 8: 19. https://doi.org/10.1038/s41531-022-00280-4

[80]

E.R. Dorsey, T. Sherer, M.S. Okun, et al. The emerging evidence of the parkinson pandemic. Journal of Parkinson’s Disease, 2018, 8(s1): S3−S8. https://doi.org/10.3233/JPD-181474

[81]

T. Simuni, M.S. Okun. Adjunctive therapies in parkinson disease-have we made meaningful progress. JAMA Neurology, 2022, 79(2): 119−120. https://doi.org/10.1001/jamaneurol.2021.4140

[82]

R. Gray, S. Patel, N. Ives, et al. Long-term effectiveness of adjuvant treatment with catechol-O-methyltransferase or monoamine oxidase B inhibitors compared with dopamine agonists among patients with parkinson disease uncontrolled by levodopa therapy: The PD MED randomized clinical trial. JAMA Neurology, 2022, 79(2): 131−140. https://doi.org/10.1001/jamaneurol.2021.4736

[83]

PD MED Collaborative Group. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): A large, open-label, pragmatic randomised trial. The Lancet, 2014, 384(9949): 1196−1205. https://doi.org/10.1016/S0140-6736(14)60683-8

[84]

A.J. Lees, J. Ferreira, O. Rascol, et al. Opicapone as adjunct to levodopa therapy in patients with parkinson disease and motor fluctuations: A randomized clinical trial. JAMA Neurology, 2017, 74(2): 197−206. https://doi.org/10.1001/jamaneurol.2016.4703

[85]

O. Rascol, M. Fabbri, W. Poewe. Amantadine in the treatment of Parkinson’s disease and other movement disorders. The Lancet Neurology, 2021, 20(12): 1048−1056. https://doi.org/10.1016/S1474-4422(21)00249-0

[86]

J. Jankovic. Are adenosine antagonists, such as istradefylline, caffeine, and chocolate, useful in the treatment of Parkinson’s disease. Annals of Neurology, 2008, 63(3): 267−269. https://doi.org/10.1002/ana.21348

[87]

K. McFarthing, S. Buff, G. Rafaloff, et al. Parkinson’s disease drug therapies in the clinical trial pipeline: 2024 update. Journal of Parkinson’s Disease, 2024, 14(5): 899−912. https://doi.org/10.3233/JPD-240272

[88]

D. Furtado, M. Björnmalm, S. Ayton, et al. Overcoming the blood-brain barrier: The role of nanomaterials in treating neurological diseases. Advanced Materials, 2018, 30(46): e1801362. https://doi.org/10.1002/adma.201801362

[89]

W.J. Gordián-Vélez, D. Chouhan, R.A. España, et al. Restoring lost nigrostriatal fibers in Parkinson’s disease based on clinically-inspired design criteria. Brain Research Bulletin, 2021, 175: 168−185. https://doi.org/10.1016/j.brainresbull.2021.07.016

[90]

D.M. Wilson, M.R. Cookson, L. Van Den Bosch, et al. Hallmarks of neurodegenerative diseases. Cell, 2023, 186(4): 693−714. https://doi.org/10.1016/j.cell.2022.12.032

[91]

R.Y. Zhang, X.T. Chen, Y.Y. Cheng, et al. Recent advances of nanomaterials for intervention in Parkinson’s disease in the context of anti-inflammation. Coordination Chemistry Reviews, 2024, 502: 215616. https://doi.org/10.1016/j.ccr.2023.215616

[92]
C. Olanow, W. Tatton. Etiology and pathogenesis of Parkinson’s disease. In: Annual Review of Neuroscience, 1999, 22: 123–144. https://doi.org/10.1146/annurev.neuro.22.1.123
[93]

M. Abdelmonem, N. Saad, H.F. Teh, et al. Curcumin-loaded PEG-coated magnetite nanoparticles synthesized from Theobroma cocoa: Neuronal biocompatibility and anti-inflammatory properties in SH-SY5Y and RAW 264.7 cells. Nano Biomedicine and Engineering, 2024, 16(3): 386−401. https://doi.org/10.26599/nbe.2024.9290099

[94]

S.P. Yun, T.I. Kam, N. Panicker, et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nature Medicine, 2018, 24(7): 931−938. https://doi.org/10.1038/s41591-018-0051-5

[95]

T. Bartels, S. De Schepper, S. Hong. Microglia modulate neurodegeneration in Alzheimer’s and Parkinson’s diseases. Science, 2020, 370(6512): 66−69. https://doi.org/10.1126/science.abb8587

[96]

H.Y. Yu, Q. Chang, T. Sun, et al. Metabolic reprogramming and polarization of microglia in Parkinson’s disease: Role of inflammasome and iron. Ageing Research Reviews, 2023, 90: 102032. https://doi.org/10.1016/j.arr.2023.102032

[97]

M. Guo, J. Wang, Y. Zhao, et al. Microglial exosomes facilitate α-synuclein transmission in Parkinson’s disease. Brain, 2020, 143(5): 1476−1497. https://doi.org/10.1093/brain/awaa090

[98]

C. Roodveldt, L. Bernardino, O. Oztop-Cakmak, et al. The immune system in Parkinson’s disease: What we know so far. Brain, 2024, 147(10): 3306−3324. https://doi.org/10.1093/brain/awae177

[99]

V. Joers, M.G. Tansey, G. Mulas, et al. Microglial phenotypes in Parkinson’s disease and animal models of the disease. Progress in Neurobiology, 2017, 155: 57−75. https://doi.org/10.1016/j.pneurobio.2016.04.006

[100]

X.M. Hu, R.K. Leak, Y.J. Shi, et al. Microglial and macrophage polarization—New prospects for brain repair. Nature Reviews Neurology, 2014, 11(1): 56−64. https://doi.org/10.1038/nrneurol.2014.207

[101]

M. Vidović, M.G. Rikalovic. Alpha-synuclein aggregation pathway in Parkinson’s disease: Current status and novel therapeutic approaches. Cells, 2022, 11(11): 1732. https://doi.org/10.3390/cells11111732

[102]

J.N. Wang, L.J. Dai, S.C. Chen, et al. Protein–protein interactions regulating α-synuclein pathology. Trends in Neurosciences, 2024, 47(3): 209−226. https://doi.org/10.1016/j.tins.2024.01.002

[103]

B.N. Li, X. Xiao, M.X. Bi, et al. Modulating α-synuclein propagation and decomposition: Implications in Parkinson’s disease therapy. Ageing Research Reviews, 2024, 98: 102319. https://doi.org/10.1016/j.arr.2024.102319

[104]

N. Mizushima, M. Komatsu. Autophagy: Renovation of cells and tissues. Cell, 2011, 147(4): 728−741. https://doi.org/10.1016/j.cell.2011.10.026

[105]

K.H. Kim, M.S. Lee. Autophagy—a key player in cellular and body metabolism. Nature Reviews Endocrinology, 2014, 10(6): 322−337. https://doi.org/10.1038/nrendo.2014.35

[106]

B.N. Lizama, C.T. Chu. Neuronal autophagy and mitophagy in Parkinson’s disease. Molecular Aspects of Medicine, 2021, 82: 100972. https://doi.org/10.1016/j.mam.2021.100972

[107]

S. Engelender. Ubiquitination of α-synuclein and autophagy in Parkinson’s disease. Autophagy, 2008, 4(3): 372−374. https://doi.org/10.4161/auto.5604

[108]

M. Xilouri, T. Vogiatzi, K. Vekrellis, et al. Alpha-synuclein degradation by autophagic pathways: A potential key to Parkinson’s disease pathogenesis. Autophagy, 2008, 4(7): 917−919. https://doi.org/10.4161/auto.6685

[109]

I. Choi, Y.X. Zhang, S.P. Seegobin, et al. Microglia clear neuron-released α-synuclein via selective autophagy and prevent neurodegeneration. Nature Communications, 2020, 11: 1386. https://doi.org/10.1038/s41467-020-15119-w

[110]

M.A. Lynch-Day, K. Mao, K. Wang, et al. The role of autophagy in Parkinson’s disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2(4): a009357. https://doi.org/10.1101/cshperspect.a009357

[111]

M.J. Caterina, M.A. Schumacher, M. Tominaga, et al. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature, 1997, 389(6653): 816−824. https://doi.org/10.1038/39807

[112]

B.H. Li, Y.W. Yin, Y. Liu, et al. TRPV1 activation impedes foam cell formation by inducing autophagy in oxLDL-treated vascular smooth muscle cells. Cell Death & Disease, 2014, 5(4): e1182. https://doi.org/10.1038/cddis.2014.146

[113]

F.A. Iannotti, V. Di Marzo, S. Petrosino. Endocannabinoids and endocannabinoid-related mediators: Targets, metabolism and role in neurological disorders. Progress in Lipid Research, 2016, 62: 107−128. https://doi.org/10.1016/j.plipres.2016.02.002

[114]

A.M. Bode, Z.G. Dong. The two faces of capsaicin. Cancer Research, 2011, 71(8): 2809−2814. https://doi.org/10.1158/0008-5472.can-10-3756

[115]

S.R. Subramaniam, M.F. Chesselet. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Progress in Neurobiology, 2013, 106: 17−32. https://doi.org/10.1016/j.pneurobio.2013.04.004

[116]
S. Mullin, A. Schapira. α-synuclein and mitochondrial dysfunction in Parkinson’s disease. Molecular Neurobiology, 2013, 47(2): 587–597. https://doi.org/10.1007/s12035-013-8394-x
[117]

K.C. Ryan, J.T. Laboy, K.R. Norman. Deregulation of mitochondrial calcium handling due to presenilin loss disrupts redox homeostasis and promotes neuronal dysfunction. Antioxidants, 2022, 11(9): 1642. https://doi.org/10.3390/antiox11091642

[118]

Q. Zheng, H.H. Liu, Y.F. Gao, et al. Ameliorating mitochondrial dysfunction for the therapy of Parkinson’s disease. Small, 2024, 20(29): 2311571. https://doi.org/10.1002/smll.202311571

[119]

J.X. Yuan, L.Y. Xu, Y.B. Han, et al. Boosting neurite outgrowth and anti-oxidative stress for treatment of Parkinson’s disease by biomimetic ultrasmall nanoparticles. Sustainable Materials and Technologies, 2024, 39: e00807. https://doi.org/10.1016/j.susmat.2023.e00807

[120]

Y. Xu, Y.W. Gao, Y. Yang. SC79 protects dopaminergic neurons from oxidative stress. Oncotarget, 2018, 9(16): 12639−12648. https://doi.org/10.18632/oncotarget.23538

[121]

S. Jiang, H. Wang, C. Yang, et al. Phase 1 study of safety and preliminary efficacy of intranasal transplantation of human neural stem cells (ANGE-S003) in Parkinson’s disease. Journal of Neurology Neurosurgery and Psychiatry, 2024, 95(12): 1102−1111. https://doi.org/10.1136/jnnp-2023-332921

[122]

Y. Sun, J. Kong, X. Ge, et al. An antisense oligonucleotide-loaded blood-brain barrier penetrable nanoparticle mediating recruitment of endogenous neural stem cells for the treatment of Parkinson’s disease. ACS Nano, 2023, 17(5): 4414−4432. https://doi.org/10.1021/acsnano.2c09752

[123]

L.S. Mendonça, C. Nóbrega, H. Hirai, et al. Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice. Brain, 2015, 138(2): 320−335. https://doi.org/10.1093/brain/awu352

[124]

D. Ziavra, G. Makri, P. Giompres, et al. Neural stem cells transplanted in a mouse model of Parkinson’s disease differentiate to neuronal phenotypes and reduce rotational deficit. CNS & Neurological Disorders Drug Targets, 2012, 11(7): 829−835. https://doi.org/10.2174/1871527311201070829

Nano Biomedicine and Engineering
Pages 91-110
Cite this article:
Xie S, Liu H, Yang K, et al. Versatile Copper-Chalcogenide-Based Nanoparticles for the Treatment of Brain Diseases. Nano Biomedicine and Engineering, 2025, 17(1): 91-110. https://doi.org/10.26599/NBE.2025.9290117
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return