AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (48.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Anti-breast cancer effect of quercetin nanoparticles based on MOFs for chemo-phototherapy and heat shock proteins inhibition

Rongyue ZhuShilang LiaoMengru CaiDongge YinTingting FuJing LiuYuji DuJiahui KongRongrong ChangJian Ni ( )Xingbin Yin ( )
Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China
Show Author Information

Graphical Abstract

A synergistic chemo-phototherapy platform effectively combats breast cancer and suppresses heat shock proteins.

Abstract

Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is a promising method of tumor treatment, which has the advantages of strong specificity and small side effects. However, PDT will aggravate the hypoxic environment in tumor cells, and PTT will lead to heat-resistant reaction, both of which will make the organism quickly produce heat shock proteins (HSPs) to protect itself, thus seriously hindering the therapeutic efficiency of phototherapy. As a natural HSPs inhibitor, quercetin (QR) provides a feasible way to solve this problem. Herein, a kind of metal organic framework (MOF), Fe-TCPP (FT), was used as a delivery material and photosensitizer to build a chemo-phototherapy platform, and QR was used as a chemotherapy drug and HSPs inhibitor. On this basis, the nanoparticles (NPs) were modified with PEG-CPP30 (a cell-penetrating peptide that specifically recognizes human breast cancer MCF-7 cells), which showed excellent targeting capacity and biocompatibility. The combination of chemotherapy and phototherapy significantly improved the anti-cancer effect. At the same time, NPs also showed prominent anti-HSPs effect. The effective connection of the two played a complementary role in the process of tumor treatment, which provided a new strategy for the accurate and efficient treatment of tumors in the future.

Electronic Supplementary Material

Download File(s)
6991_ESM.pdf (1.7 MB)

References

[1]

Pillai, S. C.; Borah, A.; Jindal, A.; Jacob, E. M.; Yamamoto, Y.; Kumar, D. S. BioPerine encapsulated nanoformulation for overcoming drug-resistant breast cancers. Asian J. Pharm. Sci. 2020, 15, 701–712.

[2]

Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249.

[3]

Li, Y. T.; Jin, J.; Wang, D. W.; Lv, J. W.; Hou, K.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Coordination-responsive drug release inside gold nanorod@metal-organic framework core-shell nanostructures for near-infrared-induced synergistic chemo-photothermal therapy. Nano Res. 2018, 11, 3294–3305.

[4]

Gao, S.; Liu, M.; Liu, D. Z.; Kong, X. R.; Fang, Y. L.; Li, Y. Y.; Wu, H.; Ji, J. B.; Yang, X. Y.; Zhai, G. X. Biomimetic biomineralization nanoplatform-mediated differentiation therapy and phototherapy for cancer stem cell inhibition and antitumor immunity activation. Asian J. Pharm. Sci. 2023, 18, 100851.

[5]

Guo, W. N.; Chen, Z. Z.; Tan, L. F.; Gu, D. E.; Ren, X. L.; Fu, C. H.; Wu, Q.; Meng, X. W. Emerging biocompatible nanoplatforms for the potential application in diagnosis and therapy of deep tumors. VIEW 2022, 3, 20200174.

[6]

Chong, H.; Liu, X. W.; Fang, S. Y.; Yang, X. F.; Zhang, Y. F.; Wang, T. Y.; Liu, L.; Kan, Y. S.; Zhao, Y. Q.; Fan, H. Y. et al. Organo-Ptii complexes for potent photodynamic inactivation of multi-drug resistant bacteria and the influence of configuration. Adv. Sci. (Weinh.) 2024, 11, 2306936.

[7]

Sun, R.; Ma, W.; Ling, M. J.; Tang, C. H.; Zhong, M.; Dai, J. Y.; Zhu, M. Y.; Cai, X. Z.; Li, G.; Xu, Q. et al. pH-activated nanoplatform for visualized photodynamic and ferroptosis synergistic therapy of tumors. J. Control Release 2022, 350, 525–537

[8]

Hu, X. M.; Zhu, C. J.; Sun, F. W.; Yang, J.; Chen, Z. J.; Ao, H. Y.; Cui, C.; Yang, Z.; Huang, W. Insights into the organic semiconducting photosensitizers for hypoxia-tolerant type I photodynamic therapy. Nano TransMed 2022, 1, e9130010.

[9]

Zhu, J.; Ding, T.; Jin, K. F.; Xing, Y. X.; Huang, J. X.; Xia, D. Q.; Cai, K. Y.; Zhang, J. X. Integrated energy conversion units in nanoscale frameworks induce sustained generation and amplified lethality of singlet oxygen in oxidative therapy of tumor. VIEW 2022, 3, 20220051.

[10]

Lv, J.; Qiu, Y. H.; Pan, L.; Zhang, X. Y.; Li, M. T.; Yin, X. Q. Photothermal/photodynamic antibacterial hydrogel embedded with copper carbon dots and Au nanoparticles. Nano TransMed 2024, 3, 100034.

[11]

Ma, W.; Sun, R.; Tang, L. G.; Li, Z. B.; Lin, L.; Mai, Z.; Chen, G.; Yu, Z. Q. Bioactivable STING nanoagonists to synergize NIR-II mild photothermal therapy primed robust and long-term anticancer immunity. Adv. Mater. 2023, 35, 2303149.

[12]

Yi, X. L.; Duan, Q. Y.; Wu, F. G. Low-temperature photothermal therapy: Strategies and applications. Research (Wash. D. C) 2021, 2021, 9816594.

[13]

Zhang, Z. C.; Ji, Y. T.; Liu, D. F.; Zhou, S. H.; Wang, Z. J.; Chen, R. R.; Li, T.; Zhao, B. X.; Yao, H. T.; Du, M. Q. Heat shock protein inhibitors show synergistic antibacterial effects with photodynamic therapy on caries-related streptococci in vitro and in vivo. mSphere 2023, 8, e00679–22.

[14]

Chang, M. Y.; Hou, Z. Y.; Wang, M.; Yang, C. Z.; Wang, R. F.; Li, F.; Liu, D. L.; Peng, T. L.; Li, C. X.; Lin, J. Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew Chem., Int. Ed. 2021, 60, 12971–12979.

[15]

Marzec, A.; Augusciak-Duma, A.; Kupny-Bujoczek, D.; Witek, L.; Olejek, A.; Gabriel, I. Expression of heat shock proteins HSPA1A, HSPA1B and TP53 in vulval lichen planus and vulval lichen sclerosus. Ginekol. Pol. 2023, 94, 527–531.

[16]

Mazurakova, A.; Solarova, Z.; Koklesova, L.; Caprnda, M.; Prosecky, R.; Khakymov, A.; Baranenko, D.; Kubatka, P.; Mirossay, L.; Kruzliak, P. et al. Heat shock proteins in cancer - Known but always being rediscovered: Their perspectives in cancer immunotherapy. Adv. Med. Sci. 2023, 68, 464–473.

[17]

Zhang, M.; Bi, X. W. Heat shock proteins and breast cancer. Int. J. Mol. Sci. 2024, 25, 876.

[18]

Wu, J. M.; Liu, T. E.; Rios, Z.; Mei, Q. B.; Lin, X. K.; Cao, S. S. Heat shock proteins and cancer. Trends Pharmacol. Sci. 2017, 38, 226–256.

[19]

Shi, X. L.; Zhu, Q. Determination of Apigenin, Quercetin and asterone in aster from different places by HPLC wavelength switching. Pharmaceut. Chem. 2022, 48, 184–186.

[20]

Zhou, A. HPLC method was used to determine the contents of xanthophyllin, citipine and quercetin in Gleditsia sinensis from different regions. J. China Prescript. Drug 2022, 20, 26–28.

[21]

Li, X.; Xu, X.; Xu, J.; Guo, G. B.; Li, X. X.; Lin, J.; Zhang, T. J.; Liu, M. Study on the quality markers of Panax Notoginseng powder based on its function of promoting blood circulation. Modernizat. Tradit. Chin. Med. Mater. Med. World Sci. Technol. 2022, 24, 35–46.

[22]

Cui, X. M.; Zhang, F.; Zhao, Y. Y.; Li, P.; Wang, T.; Xu, Z. L.; Zhang, J. J.; Zhang, W. F. A novel ligand-modified nanocomposite microparticles improved efficiency of quercetin and paclitaxel delivery in the non-small cell lung cancer. Drug Deliv. 2022, 29, 3123–3133.

[23]

Maugeri, A.; Calderaro, A.; Patanè, G. T.; Navarra, M.; Barreca, D.; Cirmi, S.; Felice, M. R. Targets involved in the anti-cancer activity of quercetin in breast, colorectal and liver neoplasms. Int. J. Mol. Sci. 2023, 24, 2952.

[24]

Sethi, G.; Rath, P.; Chauhan, A.; Ranjan, A.; Choudhary, R.; Ramniwas, S.; Sak, K.; Aggarwal, D.; Rani, I.; Tuli, H. S. Apoptotic mechanisms of quercetin in liver cancer: Recent trends and advancements. Pharmaceutics 2023, 15, 712.

[25]

Ruidas, B.; Sur, T. K.; Das Mukhopadhyay, C.; Sinha, K.; Som Chaudhury, S.; Sharma, P.; Bhowmick, S.; Majumder, R.; Saha, A. Quercetin: A silent retarder of fatty acid oxidation in breast cancer metastasis through steering of mitochondrial CPT1. Breast Cancer 2022, 29, 748–760.

[26]

Sundaram, M. K.; Raina, R.; Afroze, N.; Bajbouj, K.; Hamad, M.; Haque, S.; Hussain, A. Quercetin modulates signaling pathways and induces apoptosis in cervical cancer cells. Biosci. Rep. 2019, 39, BSR20190720.

[27]

Zhao, X.; Wang, Q. T.; Yang, S. J.; Chen, C.; Li, X. Y.; Liu, J. Y.; Zou, Z. M.; Cai, D. Y. Quercetin inhibits angiogenesis by targeting calcineurin in the Xenograft model of human breast cancer. Eur. J. Pharmacol. 2016, 781, 60–68.

[28]

Feng, L.; Yang, J. M.; Yang, R.; Sun, L.; Dong, L. L.; Zhang, Q. W. Study on reversal effect of quercetin on human cervical squamous carcinoma cisplatin-resistant cell line SiHa/DDP. China Pharmacy 2021, 32, 2875–2879.

[29]

Gao, P.; Wang, H.; Cheng, Y. Y. Strategies for efficient photothermal therapy at mild temperatures: Progresses and challenges. Chin. Chem. Lett. 2022, 33, 575–586.

[30]

Tian, H. L.; Zhang, J.; Zhang, H. Y.; Jiang, Y.; Song, A. X.; Luan, Y. X. Low side-effect and heat-shock protein-inhibited chemo-phototherapy nanoplatform via co-assembling strategy of Biotin-tailored IR780 and quercetin. Chem. Eng. J. 2020, 382, 123043.

[31]

Bangar, S. P.; Chaudhary, V.; Sharma, N.; Bansal, V.; Ozogul, F.; Lorenzo, J. M. Kaempferol: A flavonoid with wider biological activities and its applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 9580–9604.

[32]

Kandemir, K.; Tomas, M.; McClements, D. J.; Capanoglu, E. Recent advances on the improvement of quercetin bioavailability. Trends Food Sci. Technol. 2022, 119, 192–200.

[33]

Xiong, Q.; Wang, Y. W.; Wan, J. Y.; Yuan, P.; Chen, H. L.; Zhang, L. K. Facile preparation of hyaluronic acid-based quercetin nanoformulation for targeted tumor therapy. Int. J. Biol. Macromol. 2020, 147, 937–945.

[34]

Huang, C. Y.; Chen, T. K.; Zhu, D. M.; Huang, Q. Q. Enhanced tumor targeting and radiotherapy by quercetin loaded biomimetic nanoparticles. Front. Chem. 2020, 8, 225.

[35]

Wang, B. H.; Ma, Y. N.; Xu, W. F.; Tang, K. W. Cr-Based MOF for efficient adsorption of Au at low concentrations. Langmuir 2022, 38, 8954–8963.

[36]

Li, Y. W.; Yang, R. T. Gas adsorption and storage in metal-organic framework MOF-177. Langmuir 2007, 23, 12937–12944.

[37]

Xu, X. F.; Deng, Q. M.; Chen, H. C.; Humayun, M.; Duan, D. L.; Zhang, X.; Sun, H. C.; Ao, X.; Xue, X. Y.; Nikiforov, A. et al. Metal-organic frameworks offering tunable binary active sites toward highly efficient urea oxidation electrolysis. Research 2022, 2022, 9837109.

[38]

Giménez-Marqués, M.; Hidalgo, T.; Serre, C.; Horcajada, P. Nanostructured metal-organic frameworks and their Bio-related applications. Coord. Chem. Rev. 2016, 307, 342–360.

[39]

Yang, J.; Dai, D. H.; Zhang, X.; Teng, L. S.; Ma, L. J.; Yang, Y. W. Multifunctional metal-organic framework (MOF)-based nanoplatforms for cancer therapy: From single to combination therapy. Theranostics 2023, 13, 295–323.

[40]

Coluccia, M.; Parisse, V.; Guglielmi, P.; Giannini, G.; Secci, D. Metal-organic frameworks (MOFs) as biomolecules drug delivery systems for anticancer purposes. Eur. J. Med. Chem. 2022, 244, 114801.

[41]

Yao, H.; Wang, F. F.; Chong, H.; Wang, J. J.; Bai, Y.; Du, M.; Yuan, X. H.; Yang, X. F.; Wu, M.; Li, Y. P. et al. A curcumin-modified coordination polymers with ROS scavenging and macrophage phenotype regulating properties for efficient ulcerative colitis treatment. Adv. Sci. (Weinh.) 2023, 10, 2300601.

[42]

Wan, X. Y.; Zhong, H.; Pan, W.; Li, Y. H.; Chen, Y. Y.; Li, N.; Tang, B. Programmed release of dihydroartemisinin for synergistic cancer therapy using a CaCO3 mineralized metal-organic framework. Angew. Chem., Int. Ed. 2019, 58, 14134–14139.

[43]

Kondo, E.; Saito, K.; Tashiro, Y.; Kamide, K.; Uno, S.; Furuya, T.; Mashita, M.; Nakajima, K.; Tsumuraya, T.; Kobayashi, N. et al. Tumour lineage-homing cell-penetrating peptides as anticancer molecular delivery systems. Nat. Commun. 2012, 3, 951.

[44]

Gao, Y. Y.; Yang, R. Q.; Lou, K. L.; Dang, Y. Y.; Dong, Y. Y.; He, Y. Y.; Huang, W. H.; Chen, M.; Zhang, G. J. In vivo visualization of fluorescence reflecting CDK4 activity in a breast cancer mouse model. MedComm 2022, 3, e136.

[45]

Kıyga, E.; Şengelen, A.; Adıgüzel, Z.; Uçar, E. Ö. Investigation of the role of quercetin as a heat shock protein inhibitor on apoptosis in human breast cancer cells. Mol. Biol. Rep. 2020, 47, 4957–4967.

[46]

Yin, D.; Cao, J. Y.; Yang, Y.; Li, Z. T.; Liu, H.; Tang, T. T.; Ni, W. J.; Zhang, Y. L.; Jiang, W.; Wen, Y. et al. Quercetin alleviates tubulointerstitial inflammation by inhibiting exosomes-mediated crosstalk between tubular epithelial cells and macrophages. Inflamm. Res. 2023, 72, 1051–1067.

[47]

Sang, D. P.; Li, R. J.; Lan, Q. Quercetin sensitizes human glioblastoma cells to temozolomide in vitro via inhibition of Hsp27. Acta Pharmacol. Sin. 2014, 35, 832–838.

[48]

Pan, W. L.; Tan, Y.; Meng, W.; Huang, N. H.; Zhao, Y. B.; Yu, Z. Q.; Huang, Z.; Zhang, W. H.; Sun, B.; Chen, J. X. Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework. Biomaterials 2022, 283, 121449.

[49]

Yu, D. L.; Zha, Y.; Zhong, Z.; Ruan, Y. M.; Li, Z. W.; Sun, L. L.; Hou, S. Improved detection of reactive oxygen species by DCFH-DA: New insight into self-amplification of fluorescence signal by light irradiation. Sensors Actuat. B Chem. 2021, 339, 129878.

[50]

Małota, K.; Student, S.; Świątek, P. Low mitochondrial activity within developing earthworm male germ-line cysts revealed by JC-1. Mitochondrion. 2019, 44, 111–121.

[51]

Kong, Q. C.; Sun, W. Y.; Lin, J. Y.; Wang, L.; Dong, B. Research progress of photodynamic therapy based on porphyrin-metal organic framework materials. Chin. J. Lumin. 2023, 44, 1505–1519.

[52]

Xu, D. X.; Duan, Q.; Yu, H.; Dong, W. Y. Photodynamic therapy based on porphyrin-based metal-organic frameworks. J. Mater. Chem. B 2023, 11, 5976–5989.

[53]

Peng, X. J.; Xu, L.; Zeng, M.; Dang, H. Application and development prospect of nanoscale iron based metal-organic frameworks in biomedicine. Int. J. Nanomed. 2023, 18, 4907–4931.

[54]

Hu, H. L.; Dai, Z. C.; Zhang, F. F.; Xin, C. L.; An, Q.; Meng, X. Y.; Hu, Z. F.; Wang, W. J.; Tian, L.; Zheng, X. W. Metal organic frameworks based intelligent nanoadjuvants for boosting tumor immunotherapy through enhanced ICD and lactic acid regulation. Chem. Eng. J. 2024, 479, 147464.

[55]

Zhang, Q. F.; Kuang, G. Z.; Wang, H. B.; Zhao, Y. J.; Wei, J.; Shang, L. R. Multi-bioinspired MOF delivery systems from microfluidics for tumor multimodal therapy. Adv. Sci. (Weinh.) 2023, 10, 2303818.

[56]

Goji, N.; Ramezani, M.; Saljooghi, A. S.; Alibolandi, M. Porphyrin-based metal-organic frameworks: Focus on diagnostic and therapeutic applications. J. Nanostructure Chem. 2024, 14, 167–208.

[57]

Sun, J. M.; Jiang, K.; Wang, Y. F.; Liu, Y. Q.; Wang, T.; Ding, S. Y.; Zhang, X. Z.; Xiong, W. W.; Zheng, F. F.; Yang, H. T. et al. One-pot synthesis of tumor-microenvironment responsive degradable nanoflower-medicine for multimodal cancer therapy with reinvigorating antitumor immunity. Adv. Healthc. Mater. 2023, 12, 2302016.

[58]

Sabzehmeidani, M. M.; Kazemzad, M. Recent advances in surface-mounted metal-organic framework thin film coatings for biomaterials and medical applications: A review. Biomater. Res. 2023, 27, 115.

[59]
Wang, B. Tumor Microenvironment responsive porphyrin-metal coordination polymers nanoparticles: Synthesis and their application in tumor thersnostics. Master Degree Thesis, Nanjing University of Posts and Telecommunications, Nanjing, 2021.
Nano Research
Article number: 94906991
Cite this article:
Zhu R, Liao S, Cai M, et al. Anti-breast cancer effect of quercetin nanoparticles based on MOFs for chemo-phototherapy and heat shock proteins inhibition. Nano Research, 2025, 18(1): 94906991. https://doi.org/10.26599/NR.2025.94906991
Topics:

224

Views

39

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 22 February 2024
Revised: 29 May 2024
Accepted: 30 May 2024
Published: 20 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return