Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Garnet electrolytes with high ionic conductivity and electrochemical stability are widely used as fillers to fabricate composite solid electrolytes within polymer matrices. However, the performance of composite solid electrolytes (CPEs) is significantly influenced by the surface characteristics of the garnet electrolyte. Herein, the impact of garnet surface characteristics on CPEs was systematically investigated, and a conversion from a typically unstable and Lewis basic surface to a more stable Lewis acidic surface was realized, which is shown to be more conducive to the improved performance of CPEs. By simultaneously removing the Li2CO3 layer and applying a Li-Al-O coating, the influence of surface characteristics on CPEs was investigated. The Lewis acid Li-Al-O surface coating not only promotes lithium salt dissociation, improving the ionic conductivity and ionic transfer number, but also prevents the reformation of the passive Lewis basic Li2CO3 layer. Compared to garnet with a Lewis basic Li2CO3 surface, the garnet modified with a Lewis acid Li-Al-O coating enhances CPEs, which exhibit an improved critical current density of 1.0 mA cm−2 and highly stable lithium symmetric cell cycling for 400 h at 0.2 mA cm−2. This research highlights the importance of surface chemistry in the design of high-performance solid-state batteries and presents a strategic modification approach for garnet-based CPEs.
268
Views
67
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
© The author(s) 2025
This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made.
See https://creativecommons.org/licenses/by/4.0/