AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (16.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

From blocker to booster: Harnessing garnet surface chemistry for advanced solid-state electrolytes

Jun Cheng§Xuan Zhou§Hongqiang ZhangZhen ZengYuanyuan LiYulong ZhuYingsheng LiaoLijie Ci ( )Deping Li ( )
State Key Laboratory of Precision Welding and Joining of Materials and Structures, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China

§ Jun Cheng and Xuan Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

A one-step coating process that converts the surface Lewis basic passivation layer of the garnet electrolyte into a Lewis acidic ionic conductive layer, not only enhances the ionic conductivity and lithium-ion transference number of the garnet-enhanced composite electrolyte but also improves the air stability of the garnet solid-state electrolyte powder.

Abstract

Garnet electrolytes with high ionic conductivity and electrochemical stability are widely used as fillers to fabricate composite solid electrolytes (CPEs) within polymer matrices. However, the performance of CPEs is significantly influenced by the surface characteristics of the garnet electrolyte. Herein, the impact of garnet surface characteristics on CPEs was systematically investigated and a conversion from a typically unstable and Lewis basic surface to a more stable Lewis acidic surface was realized, which is shown to be more conductive to the improved performance of CPEs. By simultaneously removing the Li2CO3 layer and applying a Li-Al-O coating, the influence of surface characteristics on CPEs was investigated. The Lewis acid Li-Al-O surface coating not only promotes lithium salt dissociation, improving the ionic conductivity and ionic transfer number, but also prevents the reformation of the passive Lewis basic Li2CO3 layer. Compared to garnet with a Lewis basic Li2CO3 surface, the garnet modified with a Lewis acid Li-Al-O coating enhances CPEs, which exhibit an improved critical current density of 1.0 mA·cm−2 and highly stable lithium symmetric cell cycling for 400 h at 0.2 mA·cm−2. This research highlights the importance of surface chemistry in the design of high-performance solid-state batteries and presents a strategic modification approach for garnet-based CPEs.

Electronic Supplementary Material

Download File(s)
6992_ESM.pdf (876.4 KB)

References

[1]

Janek, J.; Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy 2023, 8, 230–240.

[2]

Fan, L. Z.; He, H. C.; Nan, C. W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 2021, 6, 1003–1019.

[3]

Wan, J. Y.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F. F.; Pei, A.; Chen, H.; Chen, W.; Chen, J. et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 2019, 14, 705–711.

[4]
Dong, X. R.; Zhang, Y.; You, Z. C.; Chen, Y. M.; Wu, X. W.; Wen, Z. Y. Polyanion-induced single Na-ion polymer electrolytes for ultra-stable sodium metal batteries. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202405931.
[5]

Bao, C. S.; Zheng, C. J.; Zhang, J.; Zhang, Y.; You, Z. C.; Jin, J.; Yuan, H. H.; Wu, M. F.; Wen, Z. Y. A high performance fireproof quasi-solid-state electrolyte enabled by multi-phase synergistic mechanism. Energy Storage Mater. 2024, 68, 103362.

[6]

Han, L. F.; Wang, L.; Chen, Z. H.; Kan, Y. C.; Hu, Y.; Zhang, H.; He, X. M. Incombustible polymer electrolyte boosting safety of solid-state lithium batteries: A review. Adv. Funct. Mater. 2023, 33, 2300892.

[7]

Liu, S. L.; Liu, W. Y.; Ba, D. L.; Zhao, Y. Z.; Ye, Y. H.; Li, Y. Y.; Liu, J. P. Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 2023, 35, 2110423.

[8]

Liu, W.; Lee, S. W.; Lin, D. C.; Shi, F. F.; Wang, S.; Sendek, A. D.; Cui, Y. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2017, 2, 17035.

[9]

Li, A. J.; Liao, X. B.; Zhang, H. R.; Shi, L.; Wang, P. Y.; Cheng, Q.; Borovilas, J.; Li, Z. Y.; Huang, W. L.; Fu, Z. X. et al. Nacre-inspired composite electrolytes for load-bearing solid-state lithium-metal batteries. Adv. Mater. 2020, 32, 1905517.

[10]

Wang, W.; Zhou, X. S.; Yu, L.; Liu, L.; Li, X. K.; Zhang, K. W.; Liang, G. M.; Xie, P. T.; Sun, J. K.; Chen, L. et al. Surface sulfidation of NiCo-layered double-hydroxide nanosheets for flexible all-solid-state fiber-shaped asymmetric supercapacitors. Adv. Compos. Hybrid Mater. 2023, 6, 216.

[11]

Yi, P.; Song, Y. Y.; Liu, Z. K.; Xie, P. T.; Liang, G. M.; Liu, R. Z.; Chen, L.; Sun, J. K. Boosting alkaline urea oxidation with a nickel sulfide/cobalt oxide heterojunction catalyst via interface engineering. Adv. Compos. Hybrid Mater. 2023, 6, 228.

[12]

Huo, S. D.; Sheng, L.; Xue, W. D.; Wang, L.; Xu, H.; Zhang, H.; He, X. M. Challenges of polymer electrolyte with wide electrochemical window for high energy solid-state lithium batteries. InfoMat 2023, 5, e12394.

[13]

Liu, X. P.; Xiao, Z.; Peng, H. R.; Jiang, D. T.; Xie, H. G.; Sun, Y. L.; Zhong, S. K.; Qian, Z. F.; Wang, R. H. Rational design of LLZO/polymer solid electrolytes for solid-state batteries. Chem.—Asian J. 2022, 17, e202200929.

[14]

Zhou, D.; Zhang, M. Y.; Sun, F.; Arlt, T.; Frerichs, J. E.; Dong, K.; Wang, J.; Hilger, A.; Wilde, F.; Kolek, M. et al. Performance and behavior of LLZO-based composite polymer electrolyte for lithium metal electrode with high capacity utilization. Nano Energy 2020, 77, 105196.

[15]

Wang, L. C.; Wu, J. X.; Bao, C. S.; You, Z. C.; Lu, Y.; Wen, Z. Y. Interfacial engineering for high-performance garnet-based solid-state lithium batteries. SusMat 2024, 4, 72–105.

[16]

Bao, C. S.; Zheng, C. J.; Wu, M. F.; Zhang, Y.; Jin, J.; Chen, H.; Wen, Z. Y. 12 µm-thick sintered garnet ceramic skeleton enabling high-energy-density solid-state lithium metal batteries. Adv. Energy Mater. 2023, 13, 2204028.

[17]

Sharafi, A.; Kazyak, E.; Davis, A. L.; Yu, S.; Thompson, T.; Siegel, D. J.; Dasgupta, N. P.; Sakamoto, J. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem. Mater. 2017, 29, 7961–7968.

[18]

Huo, H. Y.; Luo, J.; Thangadurai, V.; Guo, X. X.; Nan, C. W.; Sun, X. L. Li2CO3: A critical issue for developing solid garnet batteries. ACS Energy Lett. 2020, 5, 252–262.

[19]

Xu, B. Y.; Li, W. L.; Duan, H. N.; Wang, H. J.; Guo, Y. P.; Li, H.; Liu, H. Z. Li3PO4-added garnet-type Li6.5La3Zr1.5Ta0.5O12 for Li-dendrite suppression. J. Power Sources 2017, 354, 68–73.

[20]

Kim, Y.; Waluyo, I.; Hunt, A.; Yildiz, B. Avoiding CO2 improves thermal stability at the interface of Li7La3Zr2O12 electrolyte with layered oxide cathodes. Adv. Energy Mater. 2022, 12, 2102741.

[21]

Li, W. W.; Sun, C. Z.; Jin, J.; Li, Y. P.; Chen, C. H.; Wen, Z. Y. Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries. J. Mater. Chem. A 2019, 7, 27304–27312.

[22]

Hailu Mengesha, T.; Lemma Beshahwured, S.; Wu, Y. S.; Wu, S. H.; Jose, R.; Yang, C. C. A polydopamine-modified garnet-based polymer-in-ceramic hybrid solid electrolyte membrane for high-safety lithium metal batteries. Chem. Eng. J. 2023, 452, 139340.

[23]

Vema, S.; Sayed, F. N.; Nagendran, S.; Karagoz, B.; Sternemann, C.; Paulus, M.; Held, G.; Grey, C. P. Understanding the surface regeneration and reactivity of garnet solid-state electrolytes. ACS Energy Lett. 2023, 8, 3476–3484.

[24]

Duan, H.; Chen, W. P.; Fan, M.; Wang, W. P.; Yu, L.; Tan, S. J.; Chen, X.; Zhang, Q.; Xin, S.; Wan, L. J. et al. Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry. Angew. Chem., Int. Ed. 2020, 59, 12069–12075.

[25]

Xiong, B. Q.; Nian, Q. S.; Zhao, X.; Chen, Y. W.; Li, Y. C.; Jiang, J. Y.; Jiao, S. H.; Zhan, X. W.; Ren, X. D. Transforming interface chemistry throughout garnet electrolyte for dendrite-free solid-state batteries. ACS Energy Lett. 2023, 8, 537–544.

[26]

Huo, H. Y.; Chen, Y.; Zhao, N.; Lin, X. T.; Luo, J.; Yang, X. F.; Liu, Y. L.; Guo, X. X.; Sun, X. L. In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries. Nano Energy 2019, 61, 119–125.

[27]

Huo, H. Y.; Li, X. N.; Sun, Y. P.; Lin, X. T.; Doyle-Davis, K.; Liang, J. W.; Gao, X. J.; Li, R. Y.; Huang, H.; Guo, X. X. et al. Li2CO3 effects: New insights into polymer/garnet electrolytes for dendrite-free solid lithium batteries. Nano Energy 2020, 73, 104836.

[28]

Li, Y. T.; Xu, B. Y.; Xu, H. H.; Duan, H. N.; Lü, X. J.; Xin, S.; Zhou, W. D.; Xue, L. G.; Fu, G. T.; Manthiram, A. et al. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew. Chem., Int. Ed. 2017, 56, 753–756.

[29]

Dong, S. D.; Zhou, Y.; Hai, C. X.; Zeng, J. B.; Sun, Y. X.; Ma, Y. F.; Shen, Y.; Li, X.; Ren, X. F.; Sun, C. et al. Enhanced cathode performance: Mixed Al2O3 and LiAlO2 coating of Li1.2Ni0.13Co0.13Mn0.54O2. ACS Appl. Mater. Interfaces 2020, 12, 38153–38162.

[30]

Negi, R. S.; Yusim, Y.; Pan, R. J.; Ahmed, S.; Volz, K.; Takata, R.; Schmidt, F.; Henss, A.; Elm, M. T. A dry-processed Al2O3/LiAlO2 coating for stabilizing the cathode/electrolyte interface in high-Ni NCM-based all-solid-state batteries. Adv. Mater. Interfaces 2022, 9, 2101428.

[31]

Guo, Y. X.; Cheng, J.; Zeng, Z.; Li, Y. Y.; Zhang, H. Q.; Li, D. P.; Ci, L. J. Li2CO3: Insights into its blocking effect on Li-ion transfer in garnet composite electrolytes. ACS Appl. Energy Mater. 2022, 5, 2853–2861.

[32]

Wahyudi, W.; Ladelta, V.; Tsetseris, L.; Alsabban, M. M.; Guo, X. R.; Yengel, E.; Faber, H.; Adilbekova, B.; Seitkhan, A.; Emwas, A. H. et al. Lithium-ion desolvation induced by nitrate additives reveals new insights into high performance lithium batteries. Adv. Funct. Mater. 2021, 31, 2101593.

[33]

Paolella, A.; Bertoni, G.; Zhu, W.; Campanella, D.; La Monaca, A.; Girard, G.; Demers, H.; Gheorghe Nita, A. C.; Feng, Z. M.; Vijh, A. et al. Unveiling the cation exchange reaction between the NASICON Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte and the pyr13TFSI ionic liquid. J. Am. Chem. Soc. 2022, 144, 3442–3448.

[34]

Xiong, S. Z.; Liu, Y. Y.; Jankowski, P.; Liu, Q.; Nitze, F.; Xie, K.; Song, J. X.; Matic, A. Design of a multifunctional interlayer for NASCION-based solid-state Li metal batteries. Adv. Funct. Mater. 2020, 30, 2001444.

[35]

Chae, S.; Williams, L.; Lee, J.; Heron, J. T.; Kioupakis, E. Effects of local compositional and structural disorder on vacancy formation in entropy-stabilized oxides from first-principles. npj Comput. Mater. 2022, 8, 95.

[36]

Yun, H.; Cho, J.; Ryu, S.; Pyo, S.; Kim, H.; Lee, J.; Min, B.; Cho, Y. H.; Seo, H.; Yoo, J. et al. Surface oxygen vacancy inducing Li-ion-conducting percolation network in composite solid electrolytes for all-solid-state lithium-metal batteries. Small 2023, 19, 2207223.

[37]

Song, Y. L.; Yang, L. Y.; Li, J. W.; Zhang, M. Z.; Wang, Y. H.; Li, S. N.; Chen, S. M.; Yang, K.; Xu, K.; Pan, F. Synergistic dissociation-and-trapping effect to promote Li-ion conduction in polymer electrolytes via oxygen vacancies. Small 2021, 17, 2102039.

[38]

Gao, L.; Wu, N.; Deng, N. P.; Li, Z. C.; Li, J. X.; Che, Y.; Cheng, B. W.; Kang, W. M.; Liu, R. P.; Li, Y. T. Optimized CeO2 nanowires with rich surface oxygen vacancies enable fast Li-ion conduction in composite polymer electrolytes. Energy Environ. Mater. 2023, 6, e12272.

[39]

Ao, X.; Wang, X. T.; Tan, J. W.; Zhang, S. L.; Su, C. L.; Dong, L.; Tang, M. X.; Wang, Z. C.; Tian, B. B.; Wang, H. H. Nanocomposite with fast Li+ conducting percolation network: Solid polymer electrolyte with Li+ non-conducting filler. Nano Energy 2021, 79, 105475.

[40]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[41]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[42]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.

Nano Research
Article number: 94906992
Cite this article:
Cheng J, Zhou X, Zhang H, et al. From blocker to booster: Harnessing garnet surface chemistry for advanced solid-state electrolytes. Nano Research, 2025, 18(1): 94906992. https://doi.org/10.26599/NR.2025.94906992
Topics:

395

Views

104

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 19 June 2024
Revised: 26 July 2024
Accepted: 19 August 2024
Published: 24 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return