AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Hydrogen-bonded organic framework-ionic liquid composite quasi-solid electrolyte for high-performance lithium battery

Junmei ZhangYatao WuChenye WangYong Liu ( )Zhirong YangShiyue ZhouWenpeng LiWenjia Wu ( )Jingtao Wang
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
Show Author Information

Graphical Abstract

A hydrogen-bonded organic framework (HOF)-ionic liquid (IL) composite quasi-solid electrolyte was prepared by confining IL electrolyte (ILE) into the pore of HOF lamellar framework, which exhibits superior ionic conductivity and lithium-ion transference number at low temperatures.

Abstract

Ionic liquids (ILs) hold great promise as high-performance electrolyte material due to their unique advantages including nonvolatility, high thermal stability and high ionic conductivity. However, the IL-based electrolytes always suffer from serious ion aggregation and high viscosity at low temperatures, leading to significantly decline in ionic conductivity. Here, hydrogen-bonded organic framework-ionic liquid composite quasi-solid electrolyte (high temperature treatment (HT)-HOF-IL CQSE) was prepared through confining the IL electrolytes (ILEs) into the pore of HOF lamellar framework. The weak hydrogen bonding interactions within HOF nanosheets, together with the generated interactions between ILE and HOF, enable uniform and continuous distribution of ILE in HOF lamellar framework. This effectively inhibits the ion migration of ILE, which meanwhile serves as Li+ transfer sites, affording high ionic conductivity of 5.7 × 10−5 S·cm−1 at −60 °C, with high lithium-ion transference number of 0.69, whereas ILEs usually lose ionic conduction ability at such low temperatures. The assembled Li symmetrical cell can stably cycle at 0.2 mA·cm−2 and −20 °C for more than 1500 h. The LiFePO4|HT-HOF-IL CQSE|Li cell shows excellent cycling performance at 0.5 C at a wide temperature range of −20 to 60 °C. This work may pave a new avenue for the development of high-performance IL-based composite electrolytes.

Electronic Supplementary Material

Download File(s)
6993_ESM.pdf (2.3 MB)

References

[1]

Yang, Q. W.; Zhang, Z. Q.; Sun, X. G.; Hu, Y. S.; Xing, H. B.; Dai, S. Ionic liquids and derived materials for lithium and sodium batteries. Chem. Soc. Rev. 2018, 47, 2020–2064.

[2]

Fan, L.; Xie, H. B.; Hu, Y. Y.; Caixiang, Z. M.; Rao, A. M.; Zhou, J.; Lu, B. G. A tailored electrolyte for safe and durable potassium ion batteries. Energy Environ. Sci. 2023, 16, 305–315.

[3]

Huang, Z. J.; Lai, J. C.; Kong, X.; Rajkovic, I.; Xiao, X.; Celik, H.; Yan, H. P.; Gong, H. X.; Rudnicki, P. E.; Lin, Y. J. et al. A solvent-anchored non-flammable electrolyte. Matter 2023, 6, 445–459.

[4]

Zhu, G. R.; Zhang, Q.; Liu, Q. S.; Bai, Q. Y.; Quan, Y. Z.; Gao, Y.; Wu, G.; Wang, Y. Z. Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries. Nat. Commun. 2023, 14, 4617.

[5]

Giffin, G. A. Ionic liquid-based electrolytes for “beyond lithium” battery technologies. J. Mater. Chem. A 2016, 4, 13378–13389.

[6]

Wang, Z. C.; Zhang, F. R.; Sun, Y. Y.; Zheng, L.; Shen, Y. B.; Fu, D. S.; Li, W. F.; Pan, A. R.; Wang, L.; Xu, J. J. et al. Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries. Adv. Energy Mater. 2021, 11, 2003752.

[7]

Sun, H.; Zhu, G. Z.; Zhu, Y. M.; Lin, M. C.; Chen, H.; Li, Y. Y.; Hung, W. H.; Zhou, B.; Wang, X.; Bai, Y. X. et al. High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte. Adv. Mater. 2020, 32, 2001741.

[8]

Zheng, Y. Y.; Wang, D.; Kaushik, S.; Zhang, S. N.; Wada, T.; Hwang, J.; Matsumoto, K.; Hagiwara, R. Ionic liquid electrolytes for next-generation electrochemical energy devices. EnergyChem 2022, 4, 100075.

[9]

Tang, X.; Lv, S. Y.; Jiang, K.; Zhou, G. H.; Liu, X. M. Recent development of ionic liquid-based electrolytes in lithium-ion batteries. J. Power Sources 2022, 542, 231792.

[10]

Borodin, O.; Self, J.; Persson, K. A.; Wang, C. S.; Xu, K. Uncharted waters: Super-concentrated electrolytes. Joule 2020, 4, 69–100.

[11]

Yao, Z. C.; Zhao, S. S.; Yang, S. N.; Ma, W. T.; Gong, J. J.; Rong, J. F.; Hou, G. L.; Chen S. M. Multifunctional polyzwitterion ionic liquid based solid-state electrolytes for enhancing the low-temperature performance of lithium-metal batteries. Chem. Eng. J. 2024, 495, 153005.

[12]

Wang, Z. C.; Zhang, H. Y.; Xu, J. J.; Pan, A. R.; Zhang, F. R.; Wang, L.; Han, R.; Hu, J. C.; Liu, M. N.; Wu, X. D. Advanced Ultralow-concentration electrolyte for wide-temperature and high-voltage Li-metal batteries. Adv. Funct. Mater. 2022, 32, 2112598.

[13]

Zhang, H. Q.; Qu, W. J.; Chen, N.; Huang, Y. X.; Li, L.; Wu, F.; Chen, R. J. Ionic liquid electrolyte with highly concentrated LiTFSI for lithium metal batteries. Electrochim. Acta 2018, 285, 78–85.

[14]

Nordness, O.; Brennecke, J. F. Ion dissociation in ionic liquids and ionic liquid solutions. Chem. Rev. 2020, 120, 12873–12902.

[15]

Lee, S.; Park, K.; Koo, B.; Park, C.; Jang, M.; Lee, H.; Lee, H. Safe, stable cycling of lithium metal batteries with low-viscosity, fire-retardant locally concentrated ionic liquid electrolytes. Adv. Funct. Mater. 2020, 30, 2003132.

[16]

Watanabe, M.; Thomas, M. L.; Zhang, S. G.; Ueno, K.; Yasuda, T.; Dokko, K. Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 2017, 117, 7190–7239.

[17]

Liu, X.; Mariani, A.; Diemant, T.; Dong, X.; Su, P. H.; Passerini, S. Locally concentrated ionic liquid electrolytes enabling low-temperature lithium metal batteries. Angew. Chem., Int. Ed. 2023, 62, e202305840.

[18]

Yu, L.; Yu, L.; Liu, Q.; Meng, T.; Wang, S.; Hu, X. L. Monolithic task-specific ionogel electrolyte membrane enables high-performance solid-state lithium-metal batteries in wide temperature range. Adv. Funct. Mater. 2022, 32, 2110653.

[19]

Zhou, P.; Zhang, X. K.; Xiang, Y.; Liu, K. Strategies to enhance Li+ transference number in liquid electrolytes for better lithium batteries. Nano Res. 2023, 16, 8055–8071.

[20]

Liu, X.; Mariani, A.; Diemant, T.; Di Pietro, M. E.; Dong, X.; Su, P. H.; Mele, A.; Passerini, S. PFAS-free locally concentrated ionic liquid electrolytes for lithium metal batteries. ACS Energy Lett. 2024, 9, 3049–3057.

[21]

Shi, Q. X.; Guan, X.; Pei, H. J.; Chang, C.; Qu, H.; Xie, X. L.; Ye, Y. S. Functional covalent triazine frameworks-based quasi-solid-state electrolyte used to enhance lithium metal battery safety. Batteries Supercaps 2020, 3, 936–945.

[22]

Tian, X. L.; Chen, S. H.; Zhang, P.; Yang, P.; Yi, Y. K.; Wang, T.; Fang, B. R.; Liu, P.; Qu, L.; Li, M. T. et al. Covalent organic frameworks with immobilized anions to liberate lithium ions: Quasi-solid electrolytes with enhanced rate capabilities. Electrochim. Acta 2021, 389, 138585.

[23]

Ho, J. W.; Choi, J.; Kim, D. G.; Ha, C.; Koo, J. K.; Nam, M. G.; Kim, J.; Lee, J. H.; Kim, M.; Moon, M. W. et al. Bimetallic UiO-66(Zr/Ti)-ionic liquid grafted fillers with intensified lewis acidity for high-performance composite solid electrolytes. Adv. Funct. Mater. 2024, 34, 2308250.

[24]

Wang, Z. Q.; Tan, R.; Wang, H. B.; Yang, L. Y.; Hu, J. T.; Chen, H. B.; Pan, F. A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv. Mater. 2018, 30, 1704436.

[25]

Liu, H. L.; Pan, H. G.; Yan, M.; Zhang, X.; Jiang, Y. Z. Extraordinary ionic conductivity excited by hierarchical ion-transport pathways in MOF-based quasi-solid electrolytes. Adv. Mater. 2023, 35, 2300888.

[26]

Zhao, H. F.; Zhou, Z. W.; Feng, X. N.; Liu, C.; Wu, H.; Zhou, W.; Wang, H. L. Hydrogen-bonded organic framework for red light-mediated photocatalysis. Nano Res. 2023, 16, 8809–8816.

[27]

Chen, Y.; Li, J. Y.; Zhu, Q.; Fan, K.; Cao, Y. Q.; Zhang, G. Q.; Zhang, C. Y.; Gao, Y. B.; Zou, J. C.; Zhai, T. Y. et al. Two-dimensional organic supramolecule via hydrogen bonding and π–π stacking for ultrahigh capacity and long-life aqueous zinc-organic batteries. Angew. Chem., Int. Ed. 2022, 61, e202116289.

[28]

Wang, C. L. Weak intermolecular interactions for strengthening organic batteries. Energy Environ. Mater. 2020, 3, 441–452.

[29]

Wu, Y. L.; Mao, X. N.; Zhang, M. C.; Zhao, X.; Xue, R. J.; Di, S. J.; Huang, W.; Wang, L.; Li, Y. Y.; Li, Y. G. 2D molecular sheets of hydrogen-bonded organic frameworks for ultrastable sodium-ion storage. Adv. Mater. 2021, 33, 2106079.

[30]

Guo, C. F.; Gao, Y.; Li, S. Q.; Wang, Y. X.; Yang, X. J.; Zhi, C. W.; Zhang, H.; Zhu, Y. F.; Chen, S. Q.; Chou, S. L. et al. Chemical-stabilized aldehyde-tuned hydrogen-bonded organic frameworks for long-cycle and high-rate sodium-ion organic batteries. Adv. Funct. Mater. 2024, 34, 2314851.

[31]

Han, Z. S.; Zhang, R. H.; Jiang, J. L.; Chen, Z. H.; Ni, Y. X.; Xie, W. W.; Xu, J.; Zhou, Z.; Chen, J.; Cheng, P. et al. High-efficiency lithium-ion transport in a porous coordination chain-based hydrogen-bonded framework. J. Am. Chem. Soc. 2023, 145, 10149–10158.

[32]

Liu, Y. T.; Wu, H.; Li, R. L.; Wang, J. Y.; Kong, Y.; Guo, Z. Y.; Jiang, H. F.; Ren, Y. X.; Pu, Y. C.; Liang, X. et al. MOF-COF “alloy” membranes for efficient propylene/propane separation. Adv. Mater. 2022, 34, 2201423.

[33]

Yang, Z. W.; Zhang, Y. F.; Wu, W. J.; Zhou, Z. F.; Gao, H. X.; Wang, J. T.; Jiang, Z. Y. Hydrogen-bonded organic framework membrane with efficient proton conduction. J. Membr. Sci. 2022, 664, 121118.

[34]

Dong, M. Y.; Zhang, K. Y.; Wan, X. Y.; Wang, S. L.; Fan, S. K.; Ye, Z. Z.; Wang, Y. Q.; Yan, Y. G.; Peng, X. S. Stable two-dimensional nanoconfined ionic liquids with highly efficient ionic conductivity. Small 2022, 18, 2108026.

[35]

Yang, L.; Wang, Y. S.; Wang, J. W.; Zheng, Y. P.; Ang, E. H.; Hu, Y.; Zhu, J. X. Imidazole-intercalated cobalt hydroxide enabling the Li+ desolvation/diffusion reaction and flame retardant catalytic dynamics for lithium ion batteries. Angew. Chem., Int. Ed. 2024, 63, e202402827.

[36]

Liu, M.; Zhang, S. N.; van Eck, E. R. H.; Wang, C.; Ganapathy, S.; Wagemaker, M. Improving Li-ion interfacial transport in hybrid solid electrolytes. Nat. Nanotechnol. 2022, 17, 959–967.

[37]

Zeng, Q. Y.; Mukherjee, A.; Müller, P.; Rogers, R. D.; Myerson, A. S. Exploring the role of ionic liquids to tune the polymorphic outcome of organic compounds. Chem. Sci. 2018, 9, 1510–1520.

[38]

Wang, Y.; Wang, W. W.; Xie, J.; Wang, C. H.; Yang, Y. W.; Lu, Y. C. Electrochemical reduction of CO2 in ionic liquid: Mechanistic study of Li-CO2 batteries via in situ ambient pressure X-ray photoelectron spectroscopy. Nano Energy 2021, 83, 105830.

[39]

Yan, Y. C.; Liu, Z.; Wan, T.; Li, W. N.; Qiu, Z. P.; Chi, C. L.; Huangfu, C.; Wang, G. W.; Qi, B.; Yan, Y. G. et al. Bioinspired design of Na-ion conduction channels in covalent organic frameworks for quasi-solid-state sodium batteries. Nat. Commun. 2023, 14, 3066.

[40]

Yi, M. Y.; Li, J.; Wang, M. R.; Fan, X. M.; Hong, B.; Zhang, Z. A.; Zhang, Z.; Jiang, H.; Wang, A. N.; Lai, Y. Q. Suppressing structural degradation of single crystal nickel-rich cathodes in PEO-based all-solid-state batteries: Mechanistic insight and performance. Energy Storage Mater. 2023, 54, 579–588.

[41]

Zhang, Y. F.; Huang, J. J.; Liu, H.; Kou, W. J.; Dai, Y.; Dang, W.; Wu, W. J.; Wang, J. T.; Fu, Y. Z.; Jiang, Z. Y. Lamellar ionic liquid composite electrolyte for wide-temperature solid-state lithium-metal battery. Adv. Energy Mater. 2023, 13, 2300156.

[42]

Kim, D.; Liu, X.; Yu, B. Z.; Mateti, S.; O’Dell, L. A.; Rong, Q. Z.; Chen, Y. Amine-functionalized boron nitride nanosheets: A new functional additive for robust, flexible ion gel electrolyte with high lithium-ion transference number. Adv. Funct. Mater. 2020, 30, 1910813.

[43]

Zhang, X. X.; Su, Q. M.; Du, G. H.; Xu, B. S.; Wang, S.; Chen, Z.; Wang, L. M.; Huang, W. H.; Pang, H. Stabilizing solid-state lithium metal batteries through in situ generated Janus-heterarchical LiF-rich SEI in ionic liquid confined 3D MOF/polymer membranes. Angew. Chem., Int. Ed. 2023, 62, e202304947.

Nano Research
Article number: 94906993
Cite this article:
Zhang J, Wu Y, Wang C, et al. Hydrogen-bonded organic framework-ionic liquid composite quasi-solid electrolyte for high-performance lithium battery. Nano Research, 2025, 18(1): 94906993. https://doi.org/10.26599/NR.2025.94906993
Topics:

393

Views

44

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 03 July 2024
Revised: 14 August 2024
Accepted: 18 August 2024
Published: 24 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return