AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (31.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication | Open Access

A cellulose-based lithium-ion battery separator with regulated ionic transport and high thermal stability for extreme environments

Kun-Peng Yang1,§Song Xie1,§Zi-Meng Han1,§Hao-Cheng Liu1Chong-Han Yin1Wen-Bin Sun1Zhang-Chi Ling1Huai-Bin Yang1De-Han Li1Qing-Fang Guan1 ( )Shu-Hong Yu1,2 ( )
Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
Institute of Innovative Materials, Department of Materials Science and Engineering, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

§ Kun-Peng Yang, Song Xie, and Zi-Meng Han contributed equally to this work.

Show Author Information

Graphical Abstract

A cellulose-based lithium-ion battery (LIBs) separator is fabricated through a cellulose nanofiber-assisted self-assembly strategy. Through binding anions of electrolyte on the surface of the nanochannels in the separator, Li-ions released can transport at high speed, resulting in ultrahigh Li-ion conductivity. Combined with high thermal stability, it is highly expected to enable LIBs to work safely and efficiently in extreme conditions.

Abstract

Separators play a critical role in lithium-ion batteries. However, the restrictions of thermal stability and inferior electrical performance in commercial polyolefin separators significantly limit their applications under harsh conditions. Here, we report a cellulose-assisted self-assembly strategy to construct a cellulose-based separator massively and continuously. With an ultrahigh ionic conductivity in electrolytes of 3.7 mS·cm−1 and the ability to regulate ion transport, the obtained separator is a promising alternative for high-performance lithium-ion batteries. In addition, integrated with high thermal stability, the cellulose-based separator endows batteries with high safety at high temperatures, greatly expanding the application scenarios of energy storage devices in extreme environments.

Electronic Supplementary Material

Video
6994_Movie S1.mp4
6994_Movie S2.mp4
Download File(s)
6994_ESM.pdf (3.3 MB)

References

[1]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[2]

Arbabzadeh, M.; Sioshansi, R.; Johnson, J. X.; Keoleian, G. A. The role of energy storage in deep decarbonization of electricity production. Nat. Commun. 2019, 10, 3413.

[3]

Pomerantseva, E.; Bonaccorso, F.; Feng, X. L.; Cui, Y.; Gogotsi, Y. Energy storage: The future enabled by nanomaterials. Science 2019, 366, eaan8285.

[4]

Zheng, J. X.; Archer, L. A. Controlling electrochemical growth of metallic zinc electrodes: Toward affordable rechargeable energy storage systems. Sci. Adv. 2021, 7, eabe0219.

[5]

Jones, J. P.; Smart, M. C.; Krause, F. C.; West, W. C.; Brandon, E. J. Batteries for robotic spacecraft. Joule 2022, 6, 923–928.

[6]

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

[7]

Yoshino, A. The birth of the lithium-ion battery. Angew. Chem., Int. Ed. 2012, 51, 5798–5800.

[8]

Yang, C. P.; Wu, Q. S.; Xie, W. Q.; Zhang, X.; Brozena, A.; Zheng, J.; Garaga, M. N.; Ko, B. H.; Mao, Y. M.; He, S. M. et al. Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 2021, 598, 590–596.

[9]

Manthiram, A. Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2011, 2, 176–184.

[10]

Kuang, Y. D.; Chen, C. J.; Pastel, G.; Li, Y. J.; Song, J. W.; Mi, R. Y.; Kong, W. Q.; Liu, B. Y.; Jiang, Y. Q.; Yang, K. et al. Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv. Energy Mater. 2018, 8, 1802398.

[11]

Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264.

[12]

Zhang, S. S. A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 2007, 164, 351–364.

[13]

Francis, C. F. J.; Kyratzis, I. L.; Best, A. S. Lithium-ion battery separators for ionic-liquid electrolytes: A review. Adv. Mater. 2020, 32, 1904205.

[14]

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

[15]

Eng, A. Y. S.; Soni, C. B.; Lum, Y.; Khoo, E.; Yao, Z. P.; Vineeth, S. K.; Kumar, V.; Lu, J.; Johnson, C. S.; Wolverton, C. et al. Theory-guided experimental design in battery materials research. Sci. Adv. 2022, 8, eabm2422.

[16]

Zheng, H.; Wang, Z. Y.; Shi, L. Y.; Zhao, Y.; Yuan, S. Enhanced thermal stability and lithium ion conductivity of polyethylene separator by coating colloidal SiO2 nanoparticles with porous shell. J. Colloid Interface Sci. 2019, 554, 29–38.

[17]

Nunes-Pereira, J.; Costa, C. M.; Lanceros-Méndez, S. Polymer composites and blends for battery separators: State of the art, challenges and future trends. J. Power Sources 2015, 281, 378–398.

[18]

Woo, J. J.; Zhang, Z. C.; Dietz Rago, N. L.; Lu, W. Q.; Amine, K. A high performance separator with improved thermal stability for Li-ion batteries. J. Mater. Chem. A 2013, 1, 8538–8540.

[19]

Li, H.; Wu, D. B.; Wu, J.; Dong, L. Y.; Zhu, Y. J.; Hu, X. L. Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries. Adv. Mater. 2017, 29, 1703548.

[20]

Evans, T.; Lee, J. H.; Bhat, V.; Lee, S. H. Electrospun polyacrylonitrile microfiber separators for ionic liquid electrolytes in Li-ion batteries. J. Power Sources 2015, 292, 1–6.

[21]

Pan, Y. D.; Chou, S. L.; Liu, H. K.; Dou, S. X. Functional membrane separators for next-generation high-energy rechargeable batteries. Natl. Sci. Rev. 2017, 4, 917–933.

[22]

Zhang, T. W.; Chen, J. L.; Tian, T.; Shen, B.; Peng, Y. D.; Song, Y. H.; Jiang, B.; Lu, L. L.; Yao, H. B.; Yu, S. H. Sustainable separators for high-performance lithium ion batteries enabled by chemical modifications. Adv. Funct. Mater. 2019, 29, 1902023.

[23]

Nestler, T.; Schmid, R.; Münchgesang, W.; Bazhenov, V.; Schilm, J.; Leisegang, T.; Meyer, D. C. Separators-technology review: Ceramic based separators for secondary batteries. AIP Conf. Proc. 2014, 1597, 155–184.

[24]

Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X. W. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7, 3857–3886.

[25]

Huang, X. S. Separator technologies for lithium-ion batteries. J. Solid State Electrochem. 2011, 15, 649–662.

[26]

Lagadec, M. F.; Zahn, R.; Wood, V. Characterization and performance evaluation of lithium-ion battery separators. Nat. Energy 2019, 4, 16–25.

[27]

Halalay, I. C.; Lukitsch, M. J.; Balogh, M. P.; Wong, C. A. Nanoindentation testing of separators for lithium-ion batteries. J. Power Sources 2013, 238, 469–477.

[28]

Jia, S. J.; Yang, S. H.; Zhang, M. Q.; Huang, K. L.; Long, J. T.; Xiao, J. Eco-friendly xonotlite nanowires/wood pulp fibers ceramic hybrid separators through a simple papermaking process for lithium ion battery. J. Membr. Sci. 2020, 597, 117725.

[29]

Podsiadlo, P.; Kaushik, A. K.; Arruda, E. M.; Waas, A. M.; Shim, B. S.; Xu, J. D.; Nandivada, H.; Pumplin, B. G.; Lahann, J.; Ramamoorthy, A. et al. Ultrastrong and stiff layered polymer nanocomposites. Science 2007, 318, 80–83.

[30]

Munch, E.; Launey, M. E.; Alsem, D. H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Tough, bio-inspired hybrid materials. Science 2008, 322, 1516–1520.

[31]

Nogi, M.; Yano, H. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv. Mater. 2008, 20, 1849–1852.

[32]

Fukuzumi, H.; Saito, T.; Iwata, T.; Kumamoto, Y.; Isogai, A. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 2009, 10, 162–165.

[33]

Guan, Q. F.; Ling, Z. C.; Han, Z. M.; Yang, H. B.; Yu, S. H. Ultra-strong, ultra-tough, transparent, and sustainable nanocomposite films for plastic substitute. Matter 2020, 3, 1308–1317.

[34]

Nogi, M.; Iwamoto, S.; Nakagaito, A. N.; Yano, H. Optically transparent nanofiber paper. Adv. Mater. 2009, 21, 1595–1598.

[35]

Guan, Q. F.; Yang, H. B.; Han, Z. M.; Zhou, L. C.; Zhu, Y. B.; Ling, Z. C.; Jiang, H. B.; Wang, P. F.; Ma, T.; Wu, H. A. et al. Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Sci. Adv. 2020, 6, eaaz1114.

[36]

Meyers, M. A.; McKittrick, J.; Chen, P. Y. Structural biological materials: Critical mechanics-materials connections. Science 2013, 339, 773–779.

[37]

Guan, Q. F.; Yang, K. P.; Han, Z. M.; Yang, H. B.; Ling, Z. C.; Yin, C. H.; Yu, S. H. Sustainable multiscale high-haze transparent cellulose fiber film via a biomimetic approach. ACS Mater. Lett. 2022, 4, 87–92.

[38]

Liu, Z. F.; Jiang, Y. J.; Hu, Q. M.; Guo, S. T.; Yu, L.; Li, Q.; Liu, Q.; Hu, X. L. Safer lithium-ion batteries from the separator aspect: Development and future perspectives. Energy Environ. Mater. 2021, 4, 336–362.

[39]

Liu, Z. F.; Peng, Y. T.; Meng, T.; Yu, L.; Wang, S.; Hu, X. L. Thermal-triggered fire-extinguishing separators by phase change materials for high-safety lithium-ion batteries. Energy Storage Mater. 2022, 47, 445–452.

[40]

Zhang, T. W.; Tian, T.; Shen, B.; Song, Y. H.; Yao, H. B. Recent advances on biopolymer fiber based membranes for lithium-ion battery separators. Compos. Commun. 2019, 14, 7–14.

[41]

Wang, Y.; Guo, M. H.; Fu, H.; Wu, Z. Z.; Zhang, Y. Z.; Chao, G. J.; Chen, S. L.; Zhang, L. S.; Liu, T. X. Thermotolerant separator of cross-linked polyimide fibers with narrowed pore size for lithium-ion batteries. J. Membr. Sci. 2022, 662, 121004.

[42]

Lagadec, M. F.; Zahn, R.; Müller, S.; Wood, V. Topological and network analysis of lithium ion battery components: The importance of pore space connectivity for cell operation. Energy Environ. Sci. 2018, 11, 3194–3200.

[43]

Cosgrove, D. J. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 2005, 6, 850–861.

[44]

Varner, J. E.; Lin, L. S. Plant cell wall architecture. Cell 1989, 56, 231–239.

[45]

Nardini, A.; Lo Gullo, M. A.; Salleo, S. Refilling embolized xylem conduits: Is it a matter of phloem unloading. Plant Sci. 2011, 180, 604–611.

[46]

Steudle, E.; Frensch, J. Water transport in plants: Role of the apoplast. Plant Soil 1996, 187, 67–79.

[47]

Sattelmacher, B. The apoplast and its significance for plant mineral nutrition. New Phytol. 2001, 149, 167–192.

[48]

Xie, Y.; Zou, H. L.; Xiang, H. F.; Xia, R.; Liang, D. D.; Shi, P. C.; Dai, S.; Wang, H. H. Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes. J. Membr. Sci. 2016, 503, 25–30.

[49]

l'Abee, R.; DaRosa, F.; Armstrong, M. J.; Hantel, M. M.; Mourzagh, D. High temperature stable Li-ion battery separators based on polyetherimides with improved electrolyte compatibility. J. Power Sources 2017, 345, 202–211.

[50]

Wang, J.; Liu, Y. P.; Cai, Q. F.; Dong, A. G.; Yang, D.; Zhao, D. Y. Hierarchically porous silica membrane as separator for high-performance lithium-ion batteries. Adv. Mater. 2022, 34, 2107957.

[51]

Zhang, C.; Shen, L.; Shen, J. Q.; Liu, F.; Chen, G.; Tao, R.; Ma, S. X.; Peng, Y. T.; Lu, Y. F. Anion-sorbent composite separators for high-rate lithium-ion batteries. Adv. Mater. 2019, 31, 1808338.

[52]

Evans, J.; Vincent, C. A.; Bruce, P. G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28, 2324–2328.

[53]

Galluzzo, M. D.; Maslyn, J. A.; Shah, D. B.; Balsara, N. P. Ohm’s law for ion conduction in lithium and beyond-lithium battery electrolytes. J. Chem. Phys. 2019, 151, 020901.

[54]

Hallinan, D. T.; Villaluenga, I.; Balsara, N. P. Polymer and composite electrolytes. MRS Bull. 2018, 43, 759–767.

[55]

Mittal, N.; Ojanguren, A.; Cavasin, N.; Lizundia, E.; Niederberger, M. Transient rechargeable battery with a high lithium transport number cellulosic separator. Adv. Funct. Mater. 2021, 31, 2101827.

[56]

Zahn, R.; Lagadec, M. F.; Hess, M.; Wood, V. Improving ionic conductivity and lithium-ion transference number in lithium-ion battery separators. ACS Appl. Mater. Interfaces 2016, 8, 32637–32642.

[57]

Diederichsen, K. M.; McShane, E. J.; McCloskey, B. D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2017, 2, 2563–2575.

[58]

Li, M. N.; Zhang, Z. J.; Yin, Y. T.; Guo, W. C.; Bai, Y. G.; Zhang, F.; Zhao, B.; Shen, F.; Han, X. G. Novel polyimide separator prepared with two porogens for safe lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 3610–3616.

[59]

Liu, W.; Lin, D. C.; Pei, A.; Cui, Y. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. J. Am. Chem. Soc. 2016, 138, 15443–15450.

[60]

Lu, Z. H.; Sui, F.; Miao, Y. E.; Liu, G. H.; Li, C.; Dong, W.; Cui, J.; Liu, T. X.; Wu, J. X.; Yang, C. L. Polyimide separators for rechargeable batteries. J. Energy Chem. 2021, 58, 170–197.

Nano Research
Article number: 94906994
Cite this article:
Yang K-P, Xie S, Han Z-M, et al. A cellulose-based lithium-ion battery separator with regulated ionic transport and high thermal stability for extreme environments. Nano Research, 2025, 18(1): 94906994. https://doi.org/10.26599/NR.2025.94906994
Topics:

230

Views

44

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 14 July 2024
Revised: 19 August 2024
Accepted: 19 August 2024
Published: 24 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return