In the context of achieving carbon neutrality, CO2 catalytic conversion technologies are effective in reducing atmospheric CO2 concentrations while simultaneously producing renewable products. This approach is seen as a viable method for constructing a new carbon cycle, thereby effectively addressing the issue of global warming. Photothermal CO2 conversion has recently emerged as a promising research focus due to its high energy utilization efficiency, superior CO2 conversion, excellent product selectivity, mild operating conditions, low energy consumption and minimal operating costs. Cerium oxide (CeO2) has been widely used in photothermal catalysis due to its unique chemical properties, particularly when used as a support material with supported metals, creating distinctive interfacial sites for catalytic reactions. As an emerging star support in photothermal CO2 conversion, its contributions are equally significant and should not be overlooked. However, to our knowledge, there has been no comprehensive review of CeO2 applications in catalytic hydrogenation of CO2. In this paper, we summarize and discuss CeO2-based materials for photothermal CO2 conversion to value-added products. This research particularly focuses on the synthesis methods of CeO2-supported catalysts, the history of CeO2 in photothermal catalysis, types of photothermal catalytic reactors, unique characterization methods for the photothermal catalysts and the photothermal CO2 hydrogenation reactions by CeO2-based catalysts. Perspectives related to further challenges and future directions for photothermal CO2 hydrogenation are also provided.
Wang, S. W.; Wang, L. G.; Wang, D. S.; Li, Y. D. Recent advances of single-atom catalysts in CO2 conversion. Energy Environ. Sci. 2023, 16, 2759–2803.
Dai, F. X.; Zhang, M. M.; Han, J. S.; Li, Z. J.; Feng, S. H.; Xing, J.; Wang, L. Bifunctional core–shell Co-catalyst for boosting photocatalytic CO2 reduction to CH4. Nano Res. 2024, 17, 1259–1266.
Xie, J.; Lu, Z. J.; Feng, Y.; Huang, J. G.; Hu, J. D.; Hao, A. Z.; Cao, Y. L. A small organic molecule strategy for remedying oxygen vacancies by bismuth defects in BiOBr nanosheet with excellent photocatalytic CO2 reduction. Nano Res. 2024, 17, 297–306.
Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem., Int. Ed. 2021, 60, 6170–6176.
Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem. 2021, 133, 13500–13505.
Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0–Co δ + interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.
Chen, S. H.; Ye, C. L.; Wang, Z. W.; Li, P.; Jiang, W. J.; Zhuang, Z. C.; Zhu, J. X.; Zheng, X. B.; Zaman, S.; Ou, H. H. et al. Selective CO2 reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts. Angew. Chem., Int. Ed. 2023, 62, e202315621.
Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.
Chang, K.; Zhang, H. C.; Cheng, M. J.; Lu, Q. Application of ceria in CO2 conversion catalysis. ACS Catal. 2020, 10, 613–631.
Mac Dowell, N.; Fennell, P. S.; Shah, N.; Maitland, G. C. The role of CO2 capture and utilization in mitigating climate change. Nat. Climate Change 2017, 7, 243–249.
Gao, W. L.; Liang, S. Y.; Wang, R. J.; Jiang, Q.; Zhang, Y.; Zheng, Q. W.; Xie, B. Q.; Toe, C. Y.; Zhu, X. C.; Wang, J. Y. et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges. Chem. Soc. Rev. 2020, 49, 8584–8686.
Zhang, S. H.; Shen, Y.; Shao, P. J.; Chen, J. M.; Wang, L. D. Kinetics, thermodynamics, and mechanism of a novel biphasic solvent for CO2 capture from flue gas. Environ. Sci. Technol. 2018, 52, 3660–3668.
Li, L. C.; Zhang, N. Q.; Wu, Z. Y.; Miyazaki, S.; Toyao, T.; Maeno, Z.; Shimizu, K. I. Rb-Ni/Al2O3 as dual functional material for continuous CO2 capture and selective hydrogenation to CO. Chem. Eng. J. 2023, 477, 147199.
Li, L. C.; Miyazaki, S.; Wu, Z. Y.; Toyao, T.; Selyanchyn, R.; Maeno, Z.; Fujikawa, S.; Shimizu, K. I. Continuous direct air capture and methanation using combined system of membrane-based CO2 capture and Ni-Ca based dual functional materials. Appl. Catal. B: Environ. 2023, 339, 123151.
Li, L. C.; Miyazaki, S.; Yasumura, S.; Ting, K. W.; Toyao, T.; Maeno, Z.; Shimizu, K. I. Continuous CO2 capture and selective hydrogenation to CO over Na-promoted Pt nanoparticles on Al2O3. ACS Catal. 2022, 12, 2639–2650.
Lin, Q. Y.; Zhang, X.; Wang, T.; Zheng, C. H.; Gao, X. Technical perspective of carbon capture, utilization, and storage. Engineering 2022, 14, 27–32.
Zhang, J. P.; Li, Z. W.; Zhang, Z. H.; Feng, K.; Yan, B. H. Can thermocatalytic transformations of captured CO2 reduce CO2 emissions. Appl. Energy 2021, 281, 116076.
Keith, D. W.; Holmes, G.; St. Angelo, D.; Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2018, 2, 1573–1594.
Wang, W. H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 2015, 115, 12936–12973.
Jiang, X.; Nie, X. W.; Guo, X. W.; Song, C. S.; Chen, J. G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem. Rev. 2020, 120, 7984–8034.
Wang, Z.; Sun, Z. H.; Yin, H.; Wei, H. H.; Peng, Z. C.; Pang, Y. X.; Jia, G. H.; Zhao, H. T.; Pang, C. H.; Yin, Z. Y. The role of machine learning in carbon neutrality: Catalyst property prediction, design, and synthesis for carbon dioxide reduction. eScience 2023, 3, 100136.
Zhou, J.; Liu, H.; Wang, H. Q. Photothermal catalysis for CO2 conversion. Chin. Chem. Lett. 2023, 34, 107420.
Liu, Q. G.; Yang, X. F.; Li, L.; Miao, S.; Li, Y.; Li, Y. Q.; Wang, X. K.; Huang, Y. Q.; Zhang, T. Direct catalytic hydrogenation of CO2 to formate over a schiff-base-mediated gold nanocatalyst. Nat. Commun. 2017, 8, 1407.
Ye, X.; Ma, J. G.; Yu, W. G.; Pan, X. L.; Yang, C. Y.; Wang, C.; Liu, Q. G.; Huang, Y. Q. Construction of bifunctional single-atom catalysts on the optimized β-Mo2C surface for highly selective hydrogenation of CO2 into ethanol. J. Energy Chem. 2022, 67, 184–192.
Ding, X. X.; Zhu, M. H.; Sun, B.; Yang, Z. X.; Han, Y. F. An overview on dynamic phase transformation and surface reconstruction of iron catalysts for catalytic hydrogenation of CO x for hydrocarbons. ACS Catal. 2024, 14, 6137–6168.
Galadima, A.; Muraza, O. Catalytic thermal conversion of CO2 into fuels: Perspective and challenges. Renew. Sustain. Energy Rev. 2019, 115, 109333.
Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.
Ma, R.; Sun, J.; Li, D. H.; Wei, J. J. Review of synergistic photo-thermo-catalysis: Mechanisms, materials and applications. Int. J. Hydrogen Energy 2020, 45, 30288–30324.
Fu, J. W.; Jiang, K. X.; Qiu, X. Q.; Yu, J. G.; Liu, M. Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 2020, 32, 222–243.
Zeng, Y.; Zhao, M. T.; Zeng, H. L.; Jiang, Q.; Ming, F. W.; Xi, K.; Wang, Z. C.; Liang, H. F. Recent progress in advanced catalysts for electrocatalytic hydrogenation of organics in aqueous conditions. eScience 2023, 3, 100156.
Wang, M.; Luo, J. S. A coupled electrochemical system for CO2 capture, conversion and product purification. eScience 2023, 3, 100155.
Zhao, X. X.; Guan, J. R.; Li, J. Z.; Li, X.; Wang, H. Q.; Huo, P. W.; Yan, Y. S. CeO2/3D g-C3N4 heterojunction deposited with Pt cocatalyst for enhanced photocatalytic CO2 reduction. Appl. Surf. Sci. 2021, 537, 147891.
Yang, C.; Li, Q.; Xia, Y.; Lv, K. L.; Li, M. Enhanced visible-light photocatalytic CO2 reduction performance of Znln2S4 microspheres by using CeO2 as cocatalyst. Appl. Surf. Sci. 2019, 464, 388–395.
Mahyoub, S. A.; Hezam, A.; Qaraah, F. A.; Namratha, K.; Nayan, M. B.; Drmosh, Q. A.; Ponnamma, D.; Byrappa, K. Surface plasmonic resonance and Z-scheme charge transport synergy in three-dimensional flower-like Ag–CeO2–ZnO heterostructures for highly improved photocatalytic CO2 reduction. ACS Appl. Energy Mater. 2021, 4, 3544–3554.
Yaseen, M.; Jiang, H. P.; Li, J. H.; Yu, X. H.; Ashfaq Ahmad, M.; Nauman Ali, R.; Wang, L. L.; Yang, J.; Liu, Q. Q. Synergistic effect of Z-scheme and oxygen vacancy of CeO2/WO3 heterojunction for enhanced CO2 reduction activity. Appl. Surf. Sci. 2023, 631, 157360.
Yaashikaa, P. R.; Senthil Kumar, P.; Varjani, S. J.; Saravanan, A. A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. J. CO2 Util. 2019, 33, 131–147.
Overa, S.; Ko, B. H.; Zhao, Y. R.; Jiao, F. Electrochemical approaches for CO2 conversion to chemicals: A journey toward practical applications. Acc. Chem. Res. 2022, 55, 638–648.
Lee, W. J.; Li, C. E.; Prajitno, H.; Yoo, J.; Patel, J.; Yang, Y. X.; Lim, S. Recent trend in thermal catalytic low temperature CO2 methanation: A critical review. Catal. Today 2021, 368, 2–19.
Wang, W. X.; Zhao, S. Z.; Tang, X. L.; Chen, C. Q.; Yi, H. H. Electrothermal catalysis for heterogeneous reaction: Mechanisms and design strategies. Chem. Eng. J. 2023, 455, 140272.
Ye, L. T.; Xie, K. High-temperature electrocatalysis and key materials in solid oxide electrolysis cells. J. Energy Chem. 2021, 54, 736–745.
Lv, C. C.; Bai, X. H.; Ning, S. B.; Song, C. X.; Guan, Q. Q.; Liu, B.; Li, Y. G.; Ye, J. H. Nanostructured materials for photothermal carbon dioxide hydrogenation: Regulating solar utilization and catalytic performance. ACS Nano 2023, 17, 1725–1738.
Li, J. W.; Dou, L. G.; Gao, Y.; Hei, X. T.; Yu, F.; Shao, T. Revealing the active sites of the structured Ni-based catalysts for one-step CO2/CH4 conversion into oxygenates by plasma-catalysis. J. CO2 Util. 2021, 52, 101675.
Luo, S. Q.; Ren, X. H.; Lin, H. W.; Song, H.; Ye, J. H. Plasmonic photothermal catalysis for solar-to-fuel conversion: Current status and prospects. Chem. Sci. 2021, 12, 5701–5719.
Zhang, X.; Xu, Y.; Liu, Y.; Niu, L.; Diao, Y. N.; Gao, Z. R.; Chen, B. B.; Xie, J. L.; Bi, M.; Wang, M. et al. A novel Ni–MoC x O y interfacial catalyst for syngas production via the chemical looping dry reforming of methane. Chem 2023, 9, 102–116.
Zheng, T. T.; Jiang, K.; Wang, H. T. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Adv. Mater. 2018, 30, 1802066.
George, A.; Shen, B. X.; Craven, M.; Wang, Y. L.; Kang, D. R.; Wu, C. F.; Tu, X. A review of non-thermal plasma technology: A novel solution for CO2 conversion and utilization. Renew. Sustain. Energy Rev. 2021, 135, 109702.
Zhu, Y. F.; Xie, B. Q.; Amal, R.; Lovell, E. C.; Scott, J. Light-enhanced conversion of CO2 to light olefins: Basis in thermal catalysis, current progress, and future prospects. Small Struct. 2023, 4, 2200285.
Wang, Z. Q.; Yang, Z. Q.; Fang, R. M.; Yan, Y. F.; Ran, J. Y.; Zhang, L. A State-of-the-art review on action mechanism of photothermal catalytic reduction of CO2 in full solar spectrum. Chem. Eng. J. 2022, 429, 132322.
Wang, Y. Y.; Zhou, Q. X.; Zhu, Y. F.; Xu, D. S. High efficiency reduction of CO2 to CO and CH4 via photothermal synergistic catalysis of lead-free perovskite Cs3Sb2I9. Appl. Catal. B: Environ. 2021, 294, 120236.
Zhao, J. Q.; Guo, X. D.; Shi, R.; Waterhouse, G. I. N.; Zhang, X. R.; Dai, Q.; Zhang, T. R. NiFe nanoalloys derived from layered double hydroxides for photothermal synergistic reforming of CH4 with CO2. Adv. Funct. Mater. 2022, 32, 2204056.
Wang, Z. Q.; Yang, Z. Q.; Kadirova, Z. C.; Guo, M.; Fang, R. M.; He, J.; Yan, Y. F.; Ran, J. Y. Photothermal functional material and structure for photothermal catalytic CO2 reduction: Recent advance, application and prospect. Coord. Chem. Rev. 2022, 473, 214794.
Xiao, Z. R.; Li, P.; Zhang, H.; Zhang, S. L.; Tan, X. Y.; Ye, F.; Gu, J. M.; Zou, J. J.; Wang, D. S. A comprehensive review on photo-thermal co-catalytic reduction of CO2 to value-added chemicals. Fuel 2024, 362, 130906.
Guo, R. T.; Xia, C.; Bi, Z. X.; Zhang, Z. R.; Pan, W. G. Recent progress of photothermal effect on photocatalytic reduction of CO2. Fuel Process. Technol. 2023, 241, 107617.
Huang, X. B.; Zhang, K. Y.; Peng, B. X.; Wang, G.; Muhler, M.; Wang, F. Ceria-based materials for thermocatalytic and photocatalytic organic synthesis. ACS Catal. 2021, 11, 9618–9678.
Yan, H.; Zhang, N. Q.; Wang, D. S. Highly efficient CeO2-supported noble-metal catalysts: From single atoms to nanoclusters. Chem Catal. 2022, 2, 1594–1623.
Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 2016, 116, 5987–6041.
Dong, F.; Liang, X.; Zhang, Z. D.; Yin, H. B.; Wang, D. S.; Li, J. H.; Li, Y. D. Atomic Pt sites anchored in the interface between grains on vacancy-enriched CeO2 nanosheets: One-step precursor combustion synthesis. Adv. Mater. 2024, 36, 2401055.
Zhang, N. Q.; Tong, J. H.; Miyazaki, S.; Zhao, S. R.; Kubota, H.; Jing, Y.; Mine, S.; Toyao, T.; Shimizu, K. I. Mechanism of NH3-SCR over P/CeO2 catalysts investigated by operando spectroscopies. Environ. Sci. Technol. 2023, 57, 16289–16295.
Zhang, N. Q.; Qian, Y. C.; Toyao, T.; Shimizu, K. I. Continuous unsteady-state De-NO x system via tandem water-gas shift, NH3 synthesis, and NH3-SCR under periodic lean/rich conditions. Environ. Sci. Technol. 2023, 57, 19584–19593.
Zhang, N. Q.; Yan, H.; Li, L. C.; Wu, R.; Song, L. Y.; Zhang, G. Z.; Liang, W. J.; He, H. Use of rare earth elements in single-atom site catalysis: A critical review—Commemorating the 100th anniversary of the birth of academician Guangxian Xu. J. Rare Earths 2021, 39, 233–242.
Pang, D. W.; Li, W.; Zhang, N. Q.; He, H.; Mao, S. C.; Chen, Y. H.; Cao, L. W.; Li, C.; Li, A.; Han, X. D. Direct observation of oxygen vacancy formation and migration over ceria surface by in situ environmental transmission electron microscopy. J. Rare Earths 2024, 42, 676–682.
Chitsazi, H.; Zhang, N. Q.; Li, L. C.; Liu, X. J.; Wu, R.; He, J. D.; Song, L. Y.; He, H. In-situ DRIFT assessment on strengthening effect of cerium over FeO x /TiO2 catalyst for selective catalytic reduction of NO x with NH3. J. Rare Earths 2021, 39, 526–531.
Xu, Q.; Cheng, X. W.; Zhang, N. Q.; Tu, Y.; Wu, L. H.; Pan, H. B.; Hu, J.; Ding, H. H.; Zhu, J. F.; Li, Y. D. Unraveling the advantages of Pd/CeO2 single-atom catalysts in the NO + CO reaction by model catalysts. Nano Res. 2023, 16, 8882–8892.
Xie, S. H.; Liu, L. P.; Lu, Y.; Wang, C. Y.; Cao, S. F.; Diao, W. J.; Deng, J. G.; Tan, W.; Ma, L.; Ehrlich, S. N. et al. Pt atomic single-layer catalyst embedded in defect-enriched ceria for efficient CO oxidation. J. Am. Chem. Soc. 2022, 144, 21255–21266.
Yan, H.; Qin, X. T.; Liu, J. C.; Cai, L. H.; Xu, P.; Song, J. J.; Ma, C.; Wang, W. W.; Jin, Z.; Jia, C. J. Releasing the limited catalytic activity of CeO2-supported noble metal catalysts via UV-induced deep dechlorination. J. Catal. 2022, 413, 703–712.
Li, Q. Q.; Song, L. P.; Liang, Z.; Sun, M. Z.; Wu, T.; Huang, B. L.; Luo, F.; Du, Y. P.; Yan, C. H. A review on CeO2-based electrocatalyst and photocatalyst in energy conversion. Adv. Energy Sustain. Res. 2021, 2, 2000063.
Tran, D. P. H.; Pham, M. T.; Bui, X. T.; Wang, Y. F.; You, S. J. CeO2 as a photocatalytic material for CO2 conversion: A review. Solar Energy 2022, 240, 443–466.
Zhang, Y.; Zhao, S. N.; Feng, J.; Song, S. Y.; Shi, W. D.; Wang, D.; Zhang, H. J. Unraveling the physical chemistry and materials science of CeO2-based nanostructures. Chem 2021, 7, 2022–2059.
Yang, Y.; Zhao, S. H.; Cui, L. F.; Bi, F. K.; Zhang, Y. N.; Liu, N.; Wang, Y. X.; Liu, F. D.; He, C.; Zhang, X. D. Recent advancement and future challenges of photothermal catalysis for VOCs elimination: From catalyst design to applications. Green Energy Environ. 2023, 8, 654–672.
Liu, H. M.; Shi, L. Z.; Zhang, Q. J.; Qi, P.; Zhao, Y. H.; Meng, Q. R.; Feng, X. Q.; Wang, H.; Ye, J. H. Photothermal catalysts for hydrogenation reactions. Chem. Commun. 2021, 57, 1279–1294.
Zhang, J. Q.; Chen, H. J.; Duan, X. G.; Sun, H. Q.; Wang, S. B. Photothermal catalysis: From fundamentals to practical applications. Mater. Today 2023, 68, 234–253.
Mateo, D.; Cerrillo, J. L.; Durini, S.; Gascon, J. Fundamentals and applications of photo-thermal catalysis. Chem. Soc. Rev. 2021, 50, 2173–2210.
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.
Melsheimer, J.; Guo, W.; Ziegler, D.; Wesemann, M.; Schlögl, R. Methanation of carbon dioxide over Ru/titania at room temperature: Explorations for a photoassisted catalytic reaction. Catal. Lett. 1991, 11, 157–168.
Anikeev, V. I.; Parmon, V. N.; Kirillov, V. A.; Zamaraev, K. I. Theoretical and experimental studies of solar catalytic power plants based on reversible reactions with participation of methane and synthesis gas. Int. J. Hydrogen Energy 1990, 15, 275–286.
Christopher, P.; Xin, H. L.; Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 2011, 3, 467–472.
Langhammer, C.; Larsson, E. M. Nanoplasmonic in situ spectroscopy for catalysis applications. ACS Catal. 2012, 2, 2036–2045.
Trovarelli, A. Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. 1996, 38, 439–520.
Jiang, D.; Wang, W. Z.; Sun, S. M.; Zhang, L.; Zheng, Y. L. Equilibrating the plasmonic and catalytic roles of metallic nanostructures in photocatalytic oxidation over Au-modified CeO2. ACS Catal. 2015, 5, 613–621.
Zou, J. S.; Si, Z. C.; Cao, Y. D.; Ran, R.; Wu, X. D.; Weng, D. Localized surface plasmon resonance assisted photothermal catalysis of CO and toluene oxidation over Pd–CeO2 catalyst under visible light irradiation. J. Phys. Chem. C 2016, 120, 29116–29125.
Lee, J.; Ryou, Y.; Chan, X.; Kim, T. J.; Kim, D. H. How Pt interacts with CeO2 under the reducing and oxidizing environments at elevated temperature: The origin of improved thermal stability of Pt/CeO2 compared to CeO2. J. Phys. Chem. C 2016, 120, 25870–25879.
Zhong, H. X.; Wei, Y.; Yue, Y. Z.; Zhang, L. H.; Liu, Y. Preparation of core–shell Ag@CeO2 nanocomposite by LSPR photothermal induced interface reaction. Nanotechnology 2016, 27, 135701.
Zhang, Q.; Mao, M. Y.; Li, Y. Z.; Yang, Y.; Huang, H.; Jiang, Z. K.; Hu, Q. Q.; Wu, S. W.; Zhao, X. J. Novel photoactivation promoted light-driven CO2 reduction by CH4 on Ni/CeO2 nanocomposite with high light-to-fuel efficiency and enhanced stability. Appl. Catal. B: Environ. 2018, 239, 555–564.
Quan, F. J.; Zhan, G. M.; Mao, C. L.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z.; Gu, H. G.; Liu, S. Y. Efficient light-driven CO2 hydrogenation on Ru/CeO2 catalysts. Catal. Sci. Technol. 2018, 8, 6503–6510.
Bernal, S.; Calvino, J. J.; Cauqui, M. A.; Gatica, J. M.; Larese, C.; Pérez Omil, J. A.; Pintado, J. M. Some recent results on metal/support interaction effects in NM/CeO2 (NM: noble metal) catalysts. Catal. Today 1999, 50, 175–206.
Zhu, L. L.; Gao, M. M.; Nuo Peh, C. K.; Wei Ho, G. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 2018, 5, 323–343.
Jiang, H. J.; Liu, X. H.; Wang, D. W.; Qiao, Z. N.; Wang, D.; Huang, F.; Peng, H. Y.; Hu, C. Q. Designing high-efficiency light-to-thermal conversion materials for solar desalination and photothermal catalysis. J. Energy Chem. 2023, 79, 581–600.
Xie, B. Q.; Lovell, E.; Tan, T. H.; Jantarang, S.; Yu, M. Y.; Scott, J.; Amal, R. Emerging material engineering strategies for amplifying photothermal heterogeneous CO2 catalysis. J. Energy Chem. 2021, 59, 108–125.
Hong, J. N.; Xu, C. Y.; Deng, B. W.; Gao, Y.; Zhu, X.; Zhang, X. H.; Zhang, Y. W. Photothermal chemistry based on solar energy: From synergistic effects to practical applications. Adv. Sci. 2022, 9, 2103926.
Keller, N.; Ivanez, J.; Highfield, J.; Ruppert, A. M. Photo-/thermal synergies in heterogeneous catalysis: Towards low-temperature (solar-driven) processing for sustainable energy and chemicals. Appl. Catal. B: Environ. 2021, 296, 120320.
Tian, J. D.; Han, R.; Guo, Q. S.; Zhao, Z.; Sha, N. Direct conversion of CO2 into hydrocarbon solar fuels by a synergistic photothermal catalysis. Catalysts 2022, 12, 612.
Xu, J.; Wang, Y.; Wang, K.; Zhao, M.; Zhang, R.; Cui, W. J.; Liu, L.; Bootharaju, M. S.; Kim, J. H.; Hyeon, T. et al. Single-atom Rh on high-index CeO2 facet for highly enhanced catalytic CO oxidation. Angew. Chem. 2023, 135, e202302877.
Song, S. Y.; Wang, X.; Zhang, H. J. CeO2-encapsulated noble metal nanocatalysts: Enhanced activity and stability for catalytic application. NPG Asia Mater. 2015, 7, e179.
Sivan, S. E.; Kang, K. H.; Han, S. J.; Francis Ngome Okello, O.; Choi, S. Y.; Sudheeshkumar, V.; Scott, R. W. J.; Chae, H. J.; Park, S.; Lee, U. H. Facile MOF-derived one-pot synthetic approach toward Ru single atoms, nanoclusters, and nanoparticles dispersed on CeO2 supports for enhanced ammonia synthesis. J. Catal. 2022, 408, 316–328.
Li, L. C.; Zhang, N. Q. Atomic dispersion of bulk/nano metals to atomic-sites catalysts and their application in thermal catalysis. Nano Res. 2023, 16, 6380–6401.
Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.
Zhuang, J. H.; Wang, D. S. Recent advances of single-atom alloy catalyst: Properties, synthetic methods and electrocatalytic applications. Mater. Today Catal. 2023, 2, 100009.
Zhou, A. W.; Wang, D. S.; Li, Y. D. Hollow microstructural regulation of single-atom catalysts for optimized electrocatalytic performance. Microstructures 2022, 2, 2022005.
Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene. Angew. Chem., Int. Ed. 2024, 63, e202316550.
Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.
Wang, X. Y.; Pan, Y. Z.; Yang, J. R.; Li, W. H.; Gan, T.; Pan, Y. M.; Tang, H. T.; Wang, D. S. Single-atom iron catalyst as an advanced redox mediator for anodic oxidation of organic electrosynthesis. Angew. Chem., Int. Ed. 2024, 63, e202404295.
Yang, J. R.; Zhu, C. X.; Li, W. H.; Zheng, X. S.; Wang, D. S. Organocatalyst supported by a single-atom support accelerates both electrodes used in the chlor-alkali industry via modification of non-covalent interactions. Angew. Chem., Int. Ed. 2024, 63, e202314382.
Li, W. H.; Ye, B. C.; Yang, J. R.; Wang, Y.; Yang, C. J.; Pan, Y. M.; Tang, H. T.; Wang, D. S.; Li, Y. D. A single-atom cobalt catalyst for the fluorination of acyl chlorides at parts-per-million catalyst loading. Angew. Chem., Int. Ed. 2022, 61, e202209749.
Chen, Y. J.; Jiang, B.; Hao, H. G.; Li, H. J.; Qiu, C. Y.; Liang, X.; Qu, Q. Y.; Zhang, Z. D.; Gao, R.; Duan, D. M. et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew. Chem., Int. Ed. 2023, 62, e202301879.
Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.
Li, Y. P.; Niu, S. W.; Liu, P. G.; Pan, R. R.; Zhang, H. K.; Ahmad, N.; Shi, Y.; Liang, X.; Cheng, M. Y.; Chen, S. H. et al. Ruthenium nanoclusters and single atoms on α-MoC/N-doped carbon achieves low-input/input-free hydrogen evolution via decoupled/coupled hydrazine oxidation. Angew. Chem., Int. Ed. 2024, 63, e202316755.
Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e202308800.
Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. Synergistic Fe–Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.
Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe–N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.
Guan, S. Y.; Yuan, Z. L.; Zhao, S. Q.; Zhuang, Z. C.; Zhang, H. H.; Shen, R. F.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Efficient hydrogen generation from ammonia borane hydrolysis on a tandem ruthenium-platinum-titanium catalyst. Angew. Chem., Int. Ed. 2024, 63, e202408193.
Qiu, W. B.; Qin, S. M.; Li, Y. B.; Cao, N.; Cui, W. R.; Zhang, Z. D.; Zhuang, Z. C.; Wang, D. S.; Zhang, Y. Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis. Angew. Chem., Int. Ed. 2024, 63, e202402684.
Lv, L. Y.; Tan, H.; Kong, Y.; Tang, B.; Ji, Q. Q.; Liu, Y. Y.; Wang, C.; Zhuang, Z. C.; Wang, H. J.; Ge, M. et al. Breaking the scaling relationship in C–N coupling via the doping effects for efficient urea electrosynthesis. Angew. Chem., Int. Ed. 2024, 63, e202401943.
Tao, Y.; Guan, J. P.; Zhang, J.; Hu, S. Y.; Ma, R. Z.; Zheng, H. R.; Gong, J. X.; Zhuang, Z. C.; Liu, S. J.; Ou, H. H. et al. Ruthenium single atomic sites surrounding the support pit with exceptional photocatalytic activity. Angew. Chem., Int. Ed. 2024, 63, e202400625.
Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.
Zhang, Y. D.; Sun, Y. J.; Wang, Q. Y.; Zhuang, Z. C.; Ma, Z. T.; Liu, L. M.; Wang, G. M.; Wang, D. S.; Zheng, X. S. Synergy of photogenerated electrons and holes toward efficient photocatalytic urea synthesis from CO2 and N2. Angew. Chem., Int. Ed. 2024, 63, e202405637.
Zhao, J.; Zhang, Y. X.; Zhuang, Z. C.; Deng, Y. T.; Gao, G.; Li, J. Y.; Meng, A. L.; Li, G. C.; Wang, L.; Li, Z. J. et al. Tailoring d–p orbital hybridization to decipher the essential effects of heteroatom substitution on redox kinetics. Angew. Chem. 2024, 136, e202404968.
Yang, J. R.; Zhu, C. X.; Wang, D. S. A simple organo-electrocatalysis system for the chlor-related industry. Angew. Chem., Int. Ed. 2024, 63, e202406883.
Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.
Zhang, Y. F.; Liu, L. S.; Li, Y. X.; Mu, X. Q.; Mu, S. C.; Liu, S. L.; Dai, Z. H. Strong synergy between physical and chemical properties: Insight into optimization of atomically dispersed oxygen reduction catalysts. J. Energy Chem. 2024, 91, 36–49.
Wang, S. C.; Zhang, M. Y.; Mu, X. Q.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Atomically dispersed multi-site catalysts: Bifunctional oxygen electrocatalysts boost flexible zinc-air battery performance. Energy Environ. Sci. 2024, 17, 4847–4870.
Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. Q.; Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.
Chen, X. W.; Peng, M.; Xiao, D. Q.; Liu, H. Y.; Ma, D. Fully exposed metal clusters: Fabrication and application in alkane dehydrogenation. ACS Catal. 2022, 12, 12720–12743.
Rong, H. P.; Ji, S. F.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat. Commun. 2020, 11, 5884.
Shin, S.; Haaring, R.; So, J.; Choi, Y.; Lee, H. Highly durable heterogeneous atomic catalysts. Acc. Chem. Res. 2022, 55, 1372–1382.
Babucci, M.; Guntida, A.; Gates, B. C. Atomically dispersed metals on well-defined supports including zeolites and metal-organic frameworks: Structure, bonding, reactivity, and catalysis. Chem. Rev. 2020, 120, 11956–11985.
Tian, S. B.; Wang, B. X.; Gong, W. B.; He, Z. Z.; Xu, Q.; Chen, W. X.; Zhang, Q. H.; Zhu, Y. Q.; Yang, J. R.; Fu, Q. et al. Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nat. Commun. 2021, 12, 3181.
Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem. 2022, 134, e202200366.
Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423.
Zhou, X.; Li, K.; Lin, Y. X.; Song, L.; Liu, J. C.; Liu, Y.; Zhang, L. L.; Wu, Z. J.; Song, S. Y.; Li, J. et al. A single-atom manipulation approach for synthesis of atomically mixed nanoalloys as efficient catalysts. Angew. Chem., Int. Ed. 2020, 59, 13568–13574.
Konsolakis, M.; Lykaki, M. Facet-dependent reactivity of ceria nanoparticles exemplified by CeO2-based transition metal catalysts: A critical review. Catalysts 2021, 11, 452.
Zhao, S. Z.; Kang, D. J.; Liu, Y. P.; Wen, Y. F.; Xie, X. Z.; Yi, H. H.; Tang, X. L. Spontaneous formation of asymmetric oxygen vacancies in transition-metal-doped CeO2 nanorods with improved activity for carbonyl sulfide hydrolysis. ACS Catal. 2020, 10, 11739–11750.
Mock, S. A.; Sharp, S. E.; Stoner, T. R.; Radetic, M. J.; Zell, E. T.; Wang, R. G. CeO2 nanorods-supported transition metal catalysts for CO oxidation. J. Colloid Interface Sci. 2016, 466, 261–267.
Yang, W. T.; Wang, X.; Song, S. Y.; Zhang, H. J. Syntheses and applications of noble-metal-free CeO2-based mixed-oxide nanocatalysts. Chem 2019, 5, 1743–1774.
Li, Z. H.; Liu, Z. S.; Gao, G. Q.; Zhao, W. N.; Jiang, Y. J.; Tang, X.; Dai, S.; Qu, Z.; Yan, N. Q.; Ma, L. Enhanced catalytic oxidation reactivity over atomically dispersed Pt/CeO2 catalysts by CO activation. Environ. Sci. Technol. 2024, 58, 12201–12211.
Maurer, F.; Jelic, J.; Wang, J. J.; Gänzler, A.; Dolcet, P.; Wöll, C.; Wang, Y. M.; Studt, F.; Casapu, M.; Grunwaldt, J. D. Tracking the formation, fate and consequence for catalytic activity of Pt single sites on CeO2. Nat. Catal. 2020, 3, 824–833.
Yuan, K.; Guo, Y.; Lin, Q. L.; Huang, L.; Ren, J. T.; Liu, H. C.; Yan, C. H.; Zhang, Y. W. Size effect-tuned water gas shift reaction activity and pathway on ceria supported platinum catalysts. J. Catal. 2021, 394, 121–130.
Spezzati, G.; Su, Y. Q.; Hofmann, J. P.; Benavidez, A. D.; DeLaRiva, A. T.; McCabe, J.; Datye, A. K.; Hensen, E. J. M. Atomically dispersed Pd–O species on CeO2(111) as highly active sites for low-temperature CO oxidation. ACS Catal. 2017, 7, 6887–6891.
Guo, L. W.; Du, P. P.; Fu, X. P.; Ma, C.; Zeng, J.; Si, R.; Huang, Y. Y.; Jia, C. J.; Zhang, Y. W.; Yan, C. H. Contributions of distinct gold species to catalytic reactivity for carbon monoxide oxidation. Nat. Commun. 2016, 7, 13481.
Guo, Y.; Mei, S.; Yuan, K.; Wang, D. J.; Liu, H. C.; Yan, C. H.; Zhang, Y. W. Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect. ACS Catal. 2018, 8, 6203–6215.
Van Deelen, T. W.; Hernández Mejía, C.; De Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970.
Otero, G. S.; Lustemberg, P. G.; Prado, F.; Ganduglia-Pirovano, M. V. Relative stability of near-surface oxygen vacancies at the CeO2(111) surface upon zirconium doping. J. Phys. Chem. C 2020, 124, 625–638.
Sudarsanam, P.; Mallesham, B.; Reddy, P. S.; Großmann, D.; Grünert, W.; Reddy, B. M. Nano-Au/CeO2 catalysts for CO oxidation: Influence of dopants (Fe, La and Zr) on the physicochemical properties and catalytic activity. Appl. Catal. B: Environ. 2014, 144, 900–908.
Xu, H. D.; Zhang, Z. H.; Liu, J. X.; Do-Thanh, C. L.; Chen, H.; Xu, S. H.; Lin, Q. J.; Jiao, Y.; Wang, J. L.; Wang, Y. et al. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 2020, 11, 3908.
Liu, X.; Jia, S. F.; Yang, M.; Tang, Y. T.; Wen, Y. W.; Chu, S. Q.; Wang, J. B.; Shan, B.; Chen, R. Author correction: Activation of subnanometric Pt on Cu-modified CeO2 via redox-coupled atomic layer deposition for CO oxidation. Nat. Commun. 2020, 11, 5879.
Wang, C. L.; Gu, X. K.; Yan, H.; Lin, Y.; Li, J. J.; Liu, D. D.; Li, W. X.; Lu, J. L. Water-mediated Mars–van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal. 2017, 7, 887–891.
Han, A. J.; Chen, W. X.; Zhang, S. L.; Zhang, M. L.; Han, Y. H.; Zhang, J.; Ji, S. F.; Zheng, L. R.; Wang, Y.; Gu, L. et al. A polymer encapsulation strategy to synthesize porous nitrogen-doped carbon-nanosphere-supported metal isolated-single-atomic-site catalysts. Adv. Mater. 2018, 30, 1706508.
Lii-Rosales, A.; Han, Y.; Jing, D. P.; Tringides, M. C.; Julien, S.; Wan, K. T.; Wang, C. Z.; Lai, K. C.; Evans, J. W.; Thiel, P. A. Encapsulation of metal nanoparticles at the surface of a prototypical layered material. Nanoscale 2021, 13, 1485–1506.
Gao, C. B.; Lyu, F.; Yin, Y. D. Encapsulated metal nanoparticles for catalysis. Chem. Rev. 2021, 121, 834–881.
Elias, R. C.; Linic, S. Elucidating the roles of local and nonlocal rate enhancement mechanisms in plasmonic catalysis. J. Am. Chem. Soc. 2022, 144, 19990–19998.
Schuurmans, J. H. A.; Masson, T. M.; Zondag, S. D. A.; Buskens, P.; Noël, T. Solar-driven continuous CO2 reduction to CO and CH4 using heterogeneous photothermal catalysts: Recent progress and remaining challenges. ChemSusChem 2024, 17, e202301405.
Chuang, C. C.; Chu, H. C.; Huang, S. B.; Chang, W. S.; Tuan, H. Y. Laser-induced plasmonic heating in copper nanowire fabric as a photothermal catalytic reactor. Chem. Eng. J. 2020, 379, 122285.
Olivo, A.; Ghedini, E.; Pascalicchio, P.; Manzoli, M.; Cruciani, G.; Signoretto, M. Sustainable carbon dioxide photoreduction by a cooperative effect of reactor design and titania metal promotion. Catalysts 2018, 8, 41.
Cao, X. E.; Kaminer, Y.; Hong, T.; Schein, P.; Liu, T. W.; Hanrath, T.; Erickson, D. HI-light: A glass-waveguide-based “shell-and-tube” photothermal reactor platform for converting CO2 to fuels. iScience 2020, 23, 101856.
Wang, S. H.; Tountas, A. A.; Pan, W. B.; Zhao, J. J.; He, L.; Sun, W.; Yang, D. R.; Ozin, G. A. CO2 footprint of thermal versus photothermal CO2 catalysis. Small 2021, 17, 2007025.
Fang, S. Y.; Hu, Y. H. Thermo-photo catalysis: A whole greater than the sum of its parts. Chem. Soc. Rev. 2022, 51, 3609–3647.
Liu, Z. W.; Niu, L. J.; Zong, X. P.; An, L.; Qu, D.; Wang, X. Y.; Sun, Z. C. Ambient photothermal catalytic CO oxidation over a carbon-supported Palladium catalyst. Appl. Catal. B: Environ. 2022, 313, 121439.
Bhatta, S.; Nagassou, D.; Mohsenian, S.; Trelles, J. P. Photo-thermochemical decomposition of carbon-dioxide in a direct solar receiver-reactor. Solar Energy 2019, 178, 201–214.
Liu, X. Y.; Xing, C. S.; Yang, F.; Liu, Z.; Wang, Y. J.; Dong, T. J.; Zhao, L. L.; Liu, H.; Zhou, W. J. Strong interaction over Ru/defects-rich aluminium oxide boosts photothermal CO2 methanation via microchannel flow-type system. Adv. Energy Mater. 2022, 12, 2201009.
Fang, B. Z.; Xing, Y. L.; Bonakdarpour, A.; Zhang, S. C.; Wilkinson, D. P. Hierarchical CuO–TiO2 hollow microspheres for highly efficient photodriven reduction of CO2 to CH4. ACS Sustain. Chem. Eng. 2015, 3, 2381–2388.
Jantarang, S.; Lovell, E. C.; Tan, T. H.; Scott, J.; Amal, R. Role of support in photothermal carbon dioxide hydrogenation catalysed by Ni/Ce x Ti y O2. Prog. Natl. Sci.: Mater. Int. 2018, 28, 168–177.
Vita, A.; Italiano, C.; Pino, L.; Laganà, M.; Ferraro, M.; Antonucci, V. High-temperature CO2 methanation over structured Ni/GDC catalysts: Performance and scale-up for power-to-gas application. Fuel Process. Technol. 2020, 202, 106365.
Azam, M. U.; Tahir, M.; Umer, M.; Jaffar, M. M.; Nawawi, M. G. M. Engineering approach to enhance photocatalytic water splitting for dynamic H2 production using La2O3/TiO2 nanocatalyst in a monolith photoreactor. Appl. Surf. Sci. 2019, 484, 1089–1101.
Usubharatana, P.; McMartin, D.; Veawab, A.; Tontiwachwuthikul, P. Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Ind. Eng. Chem. Res. 2006, 45, 2558–2568.
Khan, A. A.; Tahir, M. Recent advancements in engineering approach towards design of photo-reactors for selective photocatalytic CO2 reduction to renewable fuels. J. CO2 Util. 2019, 29, 205–239.
Wei, L. F.; Yu, C. L.; Yang, K.; Fan, Q. Z.; Ji, H. B. Recent advances in VOCs and CO removal via photothermal synergistic catalysis. Chin. J. Catal. 2021, 42, 1078–1095.
Qi, Y. H.; Jiang, J. W.; Liang, X. C.; Ouyang, S. X.; Mi, W. B.; Ning, S.; Zhao, L.; Ye, J. H. Fabrication of black In2O3 with dense oxygen vacancy through dual functional carbon doping for enhancing photothermal CO2 hydrogenation. Adv. Funct. Mater. 2021, 31, 2100908.
Kong, N.; Han, B.; Li, Z.; Fang, Y. S.; Feng, K.; Wu, Z. Y.; Wang, S. H.; Xu, A. B.; Yu, Y. Y.; Li, C. R. et al. Ruthenium nanoparticles supported on Mg(OH)2 microflowers as catalysts for photothermal carbon dioxide hydrogenation. ACS Appl. Nano Mater. 2020, 3, 3028–3033.
Fan, W. K.; Tahir, M. Recent developments in photothermal reactors with understanding on the role of light/heat for CO2 hydrogenation to fuels: A review. Chem. Eng. J. 2022, 427, 131617.
Song, C. Q.; Wang, Z. H.; Yin, Z.; Xiao, D. Q.; Ma, D. Principles and applications of photothermal catalysis. Chem. Catal. 2022, 2, 52–83.
Qin, X. T.; Xu, M.; Guan, J. X.; Feng, L.; Xu, Y.; Zheng, L. R.; Wang, M.; Zhao, J. W.; Chen, J. L.; Zhang, J. et al. Direct conversion of CO and H2O to hydrocarbons at atmospheric pressure using a TiO2− x /Ni photothermal catalyst. Nat. Energy 2024, 9, 154–162.
Jiang, H. Y.; Wang, L. Y.; Kaneko, H.; Gu, R. T.; Su, G. X.; Li, L.; Zhang, J.; Song, H. C.; Zhu, F.; Yamaguchi, A. et al. Light-driven CO2 methanation over Au-grafted Ce0.95Ru0.05O2 solid–solution catalysts with activities approaching the thermodynamic limit. Nat. Catal. 2023, 6, 519–530.
Ezugwu, S.; Kazemian, S.; William Choi, D. Y.; Fanchini, G. Contactless near-field scanning thermoreflectance imaging. Nanoscale 2017, 9, 4097–4106.
Kurbanova, B. A.; Mussabek, G. K.; Timoshenko, V. Y.; Lysenko, V.; Utegulov, Z. N. Photothermal effects and heat conduction in nanogranular Silicon films. Nanomaterials 2021, 11, 2379.
Brites, C. D. S.; Lima, P. P.; Silva, N. J. O.; Millán, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D. Thermometry at the nanoscale. Nanoscale 2012, 4, 4799–4829.
Wang, D.; Koh, Y. R.; Kudyshev, Z. A.; Maize, K.; Kildishev, A. V.; Boltasseva, A.; Shalaev, V. M.; Shakouri, A. Spatial and temporal nanoscale plasmonic heating quantified by thermoreflectance. Nano Lett. 2019, 19, 3796–3803.
Sivan, Y.; Baraban, J.; Un, I. W.; Dubi, Y. Comment on “quantifying hot carrier and thermal contributions in plasmonic photocatalysis”. Science 2019, 364, eaaw9367.
Jiang, K.; Siahrostami, S.; Akey, A. J.; Li, Y. B.; Lu, Z. Y.; Lattimer, J.; Hu, Y. F.; Stokes, C.; Gangishetty, M.; Chen, G. X. et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 2017, 3, 950–960.
Wei, Y. C.; Wu, X. X.; Zhao, Y. L.; Wang, L.; Zhao, Z.; Huang, X. T.; Liu, J. M.; Li, J. Efficient photocatalysts of TiO2 nanocrystals-supported PtRu alloy nanoparticles for CO2 reduction with H2O: Synergistic effect of Pt-Ru. Appl. Catal. B: Environ. 2018, 236, 445–457.
Gao, M. M.; Zhang, T. X.; Ho, G. W. Advances of photothermal chemistry in photocatalysis, thermocatalysis, and synergetic photothermocatalysis for solar-to-fuel generation. Nano Res. 2022, 15, 9985–10005.
Toyao, T.; Kayamori, S.; Maeno, Z.; Siddiki, S. M. A. H.; Shimizu, K. I. Heterogeneous Pt and MoO x Co-loaded TiO2 catalysts for low-temperature CO2 hydrogenation to form CH3OH. ACS Catal. 2019, 9, 8187–8196.
Xiong, Y.; Zhao, W. H.; Gu, D.; Tie, Z.; Zhang, W. H.; Jin, Z. Tunable C2 products via photothermal steam reforming of CO2 over surface-modulated mesoporous cobalt oxides. Nano Lett. 2023, 23, 4876–4884.
Kattel, S.; Ramírez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 2017, 355, 1296–1299.
Dai, B. C.; Cao, S. Q.; Xie, H. M.; Zhou, G. L.; Chen, S. M. Reduction of CO2 to CO via reverse water-gas shift reaction over CeO2 catalyst. Korean J. Chem. Eng. 2018, 35, 421–427.
Liu, H. X.; Li, S. Q.; Wang, W. W.; Yu, W. Z.; Zhang, W. J.; Ma, C.; Jia, C. J. Partially sintered copper‒ceria as excellent catalyst for the high-temperature reverse water gas shift reaction. Nat. Commun. 2022, 13, 867.
Gu, D.; Jia, C. J.; Weidenthaler, C.; Bongard, H. J.; Spliethoff, B.; Schmidt, W.; Schüth, F. Highly ordered mesoporous cobalt-containing oxides: Structure, catalytic properties, and active sites in oxidation of carbon monoxide. J. Am. Chem. Soc. 2015, 137, 11407–11418.
Zhao, J. Q.; Yang, Q.; Shi, R.; Waterhouse, G. I. N.; Zhang, X.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. FeO–CeO2 nanocomposites: An efficient and highly selective catalyst system for photothermal CO2 reduction to CO. NPG Asia Mater. 2020, 12, 5.
Deng, B. W.; Song, H.; Peng, K.; Li, Q.; Ye, J. H. Metal-organic framework-derived Ga-Cu/CeO2 catalyst for highly efficient photothermal catalytic CO2 reduction. Appl. Catal. B: Environ. 2021, 298, 120519.
Jia, Z. W.; Ning, S. B.; Tong, Y. X.; Chen, X.; Hu, H. L.; Liu, L. Q.; Ye, J. H.; Wang, D. F. Selective photothermal reduction of CO2 to CO over Ni-nanoparticle/N-doped CeO2 nanocomposite catalysts. ACS Appl. Nano Mater. 2021, 4, 10485–10494.
Lu, B. W.; Quan, F. J.; Sun, Z.; Jia, F. L.; Zhang, L. Z. Photothermal reverse-water-gas-shift over Au/CeO2 with high yield and selectivity in CO2 conversion. Catal. Commun. 2019, 129, 105724.
Yang, Z.; Zeng, M.; Wang, K.; Yue, X. Y.; Chen, X.; Dai, W. X.; Fu, X. Z. Visible light-assisted thermal catalytic reverse water gas reaction over Cu-CeO2: The synergistic of hot electrons and oxygen vacancies induced by LSPR effect. Fuel 2022, 315, 123186.
Zhu, Z. H.; Zhou, J.; Li, Q. H.; Liu, Z. R.; Deng, Q. Y.; Zhou, Z. L.; Li, C. X.; Fu, L.; Zhou, J. C.; Li, H. N. et al. Preparation of heterostructured Cu-CeO2/SrTiO3 catalysts by rapid plasma exsolution for photothermal reverse water gas shift reaction. J. CO2 Util. 2024, 80, 102665.
Xiong, Y.; Liu, X.; Hu, Y.; Gu, D.; Jiang, M. H.; Tie, Z.; Jin, Z. Ag24Au cluster decorated mesoporous Co3O4 for highly selective and efficient photothermal CO2 hydrogenation. Nano Res. 2022, 15, 4965–4972.
Ashok, J.; Pati, S.; Hongmanorom, P.; Tianxi, Z.; Junmei, C.; Kawi, S. A review of recent catalyst advances in CO2 methanation processes. Catal. Today 2020, 356, 471–489.
Ulmer, U.; Dingle, T.; Duchesne, P. N.; Morris, R. H.; Tavasoli, A.; Wood, T.; Ozin, G. A. Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 2019, 10, 3169.
Ghaib, K.; Nitz, K.; Ben-Fares, F. Z. Chemical methanation of CO2: A review. ChemBioEng Rev. 2016, 3, 266–275.
Frontera, P.; Macario, A.; Ferraro, M.; Antonucci, P. Supported catalysts for CO2 methanation: A review. Catalysts 2017, 7, 59.
Zhang, K.; Xu, C. P.; Zhang, X. J.; Huang, Z. Y.; Pian, Q.; Che, K. H.; Cui, X. K.; Hu, Y. R.; Xuan, Y. M. Structural heredity in catalysis: CO2 self-selective CeO2 nanocrystals for efficient photothermal CO2 hydrogenation to methane. Small 2024, 23, 2308823.
Pan, D.; Wang, Y. N.; Li, H.; Zhang, Y. Z.; Liang, Q.; Zhou, M.; Li, Z. Y.; Xu, S. Solar light promoted CO2 hydrogenation to CH4 over photo-thermal responsive dispersed Co on defective CeO2 composite derived from MOFs. Sep. Purif. Technol. 2024, 332, 125756.
Fiorenza, R.; Bellardita, M.; Balsamo, S. A.; Spitaleri, L.; Gulino, A.; Condorelli, M.; D’Urso, L.; Scirè, S.; Palmisano, L. A solar photothermocatalytic approach for the CO2 conversion: Investigation of different synergisms on CoO-CuO/brookite TiO2-CeO2 catalysts. Chem. Eng. J. 2022, 428, 131249.
Yue, X. Y.; Wang, K.; Yang, Z.; Ni, W. K.; Zhang, Z. Z.; Dai, W. X.; Fu, X. Z. Visible light-regulated thermal catalytic selectivity induced by nonthermal effects over CuNi/CeO2. Chem. Eng. J. 2023, 458, 141491.
Bian, Z. F.; Chan, Y. M.; Yu, Y.; Kawi, S. Morphology dependence of catalytic properties of Ni/CeO2 for CO2 methanation: A kinetic and mechanism study. Catal. Today 2020, 347, 31–38.
Siakavelas, G. I.; Charisiou, N. D.; AlKhoori, S.; AlKhoori, A. A.; Sebastian, V.; Hinder, S. J.; Baker, M. A.; Yentekakis, I. V.; Polychronopoulou, K.; Goula, M. A. Highly selective and stable nickel catalysts supported on ceria promoted with Sm2O3, Pr2O3 and MgO for the CO2 methanation reaction. Appl. Catal. B: Environ. 2021, 282, 119562.
Golovanova, V.; Spadaro, M. C.; Arbiol, J.; Golovanov, V.; Rantala, T. T.; Andreu, T.; Morante, J. R. Effects of solar irradiation on thermally driven CO2 methanation using Ni/CeO2-based catalyst. Appl. Catal. B: Environ. 2021, 291, 120038.
Zhang, Z. Y.; Li, T.; Sun, X. L.; Luo, D. C.; Yao, J. L.; Yang, G. D.; Xie, T. Efficient photo-thermal catalytic CO2 methanation and dynamic structural evolution over Ru/Mg-CeO2 single-atom catalyst. J. Catal. 2024, 430, 115303.
Tsiotsias, A. I.; Charisiou, N. D.; Yentekakis, I. V.; Goula, M. A. Bimetallic Ni-based catalysts for CO2 methanation: A review. Nanomaterials 2020, 11, 28.
Quindimil, A.; De-La-Torre, U.; Pereda-Ayo, B.; Davó-Quiñonero, A.; Bailón-García, E.; Lozano-Castelló, D.; González-Marcos, J. A.; Bueno-López, A.; González-Velasco, J. R. Effect of metal loading on the CO2 methanation: A comparison between alumina supported Ni and Ru catalysts. Catal. Today 2020, 356, 419–432.
Fu, G.; Jiang, M. H.; Liu, J.; Zhang, K. Q.; Hu, Y.; Xiong, Y.; Tao, A. Y.; Tie, Z.; Jin, Z. Rh/Al nanoantenna photothermal catalyst for wide-spectrum solar-driven CO2 methanation with nearly 100% selectivity. Nano Lett. 2021, 21, 8824–8830.
Li, Z. H.; Shi, R.; Zhao, J. Q.; Zhang, T. R. Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system. Nano Res. 2021, 14, 4828–4832.
Xiong, Y.; Chen, H. W.; Hu, Y.; Yang, S. Y.; Xue, X. L.; He, L. F.; Liu, X.; Ma, J.; Jin, Z. Photodriven catalytic hydrogenation of CO2 to CH4 with nearly 100% selectivity over Ag25 clusters. Nano Lett. 2021, 21, 8693–8700.
Bowker, M. Methanol synthesis from CO2 hydrogenation. ChemCatChem 2019, 11, 4238–4246.
Rodriguez, J. A.; Liu, P.; Stacchiola, D. J.; Senanayake, S. D.; White, M. G.; Chen, J. G. Hydrogenation of CO2 to methanol: Importance of metal-oxide and metal-carbide interfaces in the activation of CO2. ACS Catal. 2015, 5, 6696–6706.
Jadhav, S. G.; Vaidya, P. D.; Bhanage, B. M.; Joshi, J. B. Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies. Chem. Eng. Res. Des. 2014, 92, 2557–2567.
Ren, M. H.; Zhang, Y. M.; Wang, X.; Qiu, H. S. Catalytic hydrogenation of CO2 to methanol: A review. Catalysts 2022, 12, 403.
Fasihi, M.; Breyer, C. Global production potential of green methanol based on variable renewable electricity. Energy Environ. Sci. 2024, 17, 3503–3522.
Yang, M.; Fan, D.; Wei, Y. X.; Tian, P.; Liu, Z. M. Recent progress in methanol-to-olefins (MTO) catalysts. Adv. Mater. 2019, 31, 1902181.
Ganesh, I. Conversion of carbon dioxide into methanol—A potential liquid fuel: Fundamental challenges and opportunities (a review). Renew. Sustain. Energy Rev. 2014, 31, 221–257.
Xie, B. Q.; Tan, T. H.; Kalantar-Zadeh, K.; Zheng, J. W.; Kumar, P.; Jiang, J. J.; Zhou, S. J.; Scott, J.; Amal, R. Promoting low-temperature methanol production over mixed oxide supported Cu catalysts: Coupling ceria-promotion and photo-activation. Appl. Catal. B: Environ. 2022, 315, 121599.
Roode-Gutzmer, Q. I.; Kaiser, D.; Bertau, M. Renewable methanol synthesis. ChemBioEng Rev. 2019, 6, 209–236.
Kanuri, S.; Roy, S.; Chakraborty, C.; Datta, S. P.; Singh, S. A.; Dinda, S. An insight of CO2 hydrogenation to methanol synthesis: Thermodynamics, catalysts, operating parameters, and reaction mechanism. Int. J. Energy Res. 2022, 46, 5503–5522.
Niu, J. T.; Liu, H. Y.; Jin, Y.; Fan, B. G.; Qi, W. J.; Ran, J. Y. Comprehensive review of Cu-based CO2 hydrogenation to CH3OH: Insights from experimental work and theoretical analysis. Int. J. Hydrogen Energy 2022, 47, 9183–9200.
Dang, S. S.; Yang, H. Y.; Gao, P.; Wang, H.; Li, X. P.; Wei, W.; Sun, Y. H. A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation. Catal. Today 2019, 330, 61–75.
Murthy, P. S.; Liang, W. B.; Jiang, Y. J.; Huang, J. Cu-based nanocatalysts for CO2 hydrogenation to methanol. Energy Fuels 2021, 35, 8558–8584.
Angelo, L.; Kobl, K.; Tejada, L. M. M.; Zimmermann, Y.; Parkhomenko, K.; Roger, A. C. Study of CuZnMO x oxides (M = Al, Zr, Ce, CeZr) for the catalytic hydrogenation of CO2 into methanol. Comptes Rendus. Chim. 2015, 18, 250–260.
Yoon, S.; Oh, K.; Liu, F. D.; Seo, J. H.; Somorjai, G. A.; Lee, J. H.; An, K. Specific metal-support interactions between nanoparticle layers for catalysts with enhanced methanol oxidation activity. ACS Catal. 2018, 8, 5391–5398.
Wu, C. Y.; Cheng, D. Y.; Wang, M.; Ma, D. Understanding and application of strong metal-support interactions in conversion of CO2 to methanol: A review. Energy Fuels 2021, 35, 19012–19023.
Wang, W. W.; Qu, Z. P.; Song, L. X.; Fu, Q. CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: Tuning methanol selectivity via metal-support interaction. J. Energy Chem. 2020, 40, 22–30.
Senanayake, S. D.; Ramírez, P. J.; Waluyo, I.; Kundu, S.; Mudiyanselage, K.; Liu, Z.; Liu, Z. Y.; Axnanda, S.; Stacchiola, D. J.; Evans, J. et al. Hydrogenation of CO2 to methanol on CeO x /Cu(111) and ZnO/Cu(111) catalysts: Role of the metal-oxide interface and importance of Ce3+ sites. J. Phys. Chem. C 2016, 120, 1778–1784.
Ziemba, M.; Weyel, J.; Hess, C. Elucidating the mechanism of the reverse water-gas shift reaction over Au/CeO2 catalysts using operando and transient spectroscopies. Appl. Catal. B: Environ. 2022, 301, 120825.
Zhang, N. Q.; Miyazaki, S.; Qian, Y. C.; Jing, Y.; Toyao, T.; Shimizu, K. I. Mechanism of the periodic unsteady-state water-gas shift reaction on highly dispersed Cu-loaded CeO2 catalysts. ACS Catal. 2023, 13, 8503–8515.
Zhu, M. H.; Tian, P. F.; Cao, X. Y.; Chen, J. C.; Pu, T. C.; Shi, B. F.; Xu, J.; Moon, J.; Wu, Z. L.; Han, Y. F. Vacancy engineering of the nickel-based catalysts for enhanced CO2 methanation. Appl. Catal. B: Environ. 2021, 282, 119561.
Wang, F.; Wei, M.; Evans, D. G.; Duan, X. CeO2-based heterogeneous catalysts toward catalytic conversion of CO2. J. Mater. Chem. A 2016, 4, 5773–5783.
Lange, J. P. Catalysis for biorefineries—Performance criteria for industrial operation. Catal. Sci. Technol. 2016, 6, 4759–4767.
Kramm, U. I.; Marschall, R.; Rose, M. Pitfalls in heterogeneous thermal, electro- and photocatalysis. ChemCatChem 2019, 11, 2563–2574.
Zhang, N. Q.; Li, L. C.; Jing, Y.; Qian, Y. C.; Chen, D. T.; Maeda, N.; Murayama, T.; Toyao, T.; Shimizu, K. I. In situ/ operando spectroscopic evidence on associative redox mechanism for periodic unsteady-state water-gas shift reaction on Au/CeO2 catalyst. J. Catal. 2024, 433, 115500.