PDF (25.4 MB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Tables (1)
Table 1
Research Article | Open Access

A mechanical reinforced and antifreezing polyacrylate hydrogel electrolyte for high-performance zinc-ion batteries

Zili Zhang1Ruolin Wang1Hongfei Lu1Di Zhang1Yu Zhao1Jing Xu1Bin Sun1Zhi-Min Dang1,2Yang Jin1 ()
School of Electrical and Information Engineering, Zheng Zhou University, Zhengzhou 450001, China
State Key Laboratory of Power System Operation and Control, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

View original image Download original image
A polyacrylate hydrogel electrolyte with good mechanical property and freezing resistance is prepared in one step by ultraviolet (UV) curing method. The as-synthetic hydrogel electrolyte possesses an excellent reversibility and stability at various temperature. The flexible full cell can power light-emitting diode (LED) lamp under bending, warping and cutting without liquid leakage and an electronic watch at −20 °C.

Abstract

The operation of aqueous zinc-ion batteries in flexible energy storage field is plagued by the uncontrollable growth of Zn-dendrite and inevitable freeze of water below 0 °C. Therefore, it is necessary to design a hydrogel electrolyte with good mechanical property and freezing resistance to uniform the Zn-deposition and resist flexibility loss at low temperature. We find that the mechanical property (strength and toughness) of hydrogel electrolyte has a significant impact on the suppression of dendrite growth and the uniform deposition of zinc ions. Herein, a polyacrylate hydrogel is prepared in one step by ultraviolet (UV) curing method with Zn(CF3SO3)2 salt and polyvinyl alcohol (PVA) addition to increase the antifreezing ability and mechanical properties. The adsorption of water molecules by 2-hydroxyethyl acrylate (HEA) and PVA reduces the freezing point of the hydrogel, which is beneficial for enhancing the electrochemical stability at low temperature. On this basis, the Zn-symmetrical battery with hydrogel electrolyte has a long lifespan of 4710 h at 0.5 mA·cm−2 and 0.5 mAh·cm−2 at room temperature. Furthermore, the hydrogel electrolyte exhibits an outstanding stability at low temperature of −20 °C, the lifespan of symmetrical battery reaches to 4000 h at 0.5 mA·cm−2 and 0.5 mAh·cm−2. The assembled full cell with NaV3O8·1.5H2O (NVO) cathode and hydrogel electrolyte possesses a high capacity retention ratio of 77% after 10,000 cycles at −20 °C. The flexible cell can power light-emitting diode (LED) lamp under bending, warping and cutting without liquid leakage and an electronic watch at the operating temperature of −20 °C.

Electronic Supplementary Material

Download File(s)
6999_ESM.pdf (2.4 MB)

References

[1]

Zhang, Q.; Gao, X. W.; Liu, X.; Mu, J. J.; Gu, Q. F.; Liu, Z. M.; Luo, W. B. Flexible wearable energy storage devices: Materials, structures, and applications. Batt. Energy. 2024, 3, 20230061.

[2]

Li, C. F.; Zhang, K.; Cheng, X. R.; Li, J. X.; Jiang, Y.; Li, P. Z.; Wang, B. J.; Peng, H. S. Polymers for flexible energy storage devices. Prog. Polym. Sci. 2023, 143, 101714.

[3]

He, J. Y.; Cao, L. Q.; Cui, J. J.; Fu, G. W.; Jiang, R. Y.; Xu, X.; Guan, C. Flexible energy storage devices to power the future. Adv. Mater. 2024, 36, 2306090.

[4]

Chen, S. Y.; Chen, Y. L.; Mu, X. J.; Wang, P. F.; Miao, L.; Tanemura, S.; Cai, H. F. Strategies for enhancing ionic conductivity and energy density of gel polymer electrolytes for next-generation flexible energy storage devices. Sustain. Mater. Technol. 2023, 36, e00635.

[5]

Xiang, S. W.; Qin, L.; Wei, X. F.; Fan, X.; Li, C. M. Fabric-type flexible energy-storage devices for wearable electronics. Energies 2023, 16, 4047.

[6]

Wang, D. H.; Han, C. P.; Mo, F. N.; Yang, Q.; Zhao, Y. W.; Li, Q.; Liang, G. J.; Dong, B. B.; Zhi, C. Y. Energy density issues of flexible energy storage devices. Energy Stor. Mater. 2020, 28, 264–292.

[7]

Xu, Y. K.; Zhou, X.; Chen, Z. F.; Hou, Y.; You, Y.; Lu, J. Electrolyte formulas of aqueous zinc ion battery: A physical difference with chemical consequences. Mater. Today 2023, 66, 339–347.

[8]

Shin, J.; Lee, J.; Park, Y.; Choi, J. W. Aqueous zinc ion batteries: Focus on zinc metal anodes. Chem. Sci. 2020, 11, 2028–2044.

[9]

Kim, H. J.; Kim, S.; Heo, K.; Lim, J. H.; Yashiro, H.; Myung, S. T. Nature of zinc-derived dendrite and its suppression in mildly acidic aqueous zinc-ion battery. Adv. Energy Mater. 2023, 13, 2203189.

[10]

Shang, Y.; Kundu, D. A path forward for the translational development of aqueous zinc-ion batteries. Joule 2023, 7, 244–250.

[11]

Li, G. J.; Sun, L.; Zhang, S. L.; Zhang, C. F.; Jin, H. Y.; Davey, K.; Liang, G. M.; Liu, S. L.; Mao, J. F.; Guo, Z. P. Developing cathode materials for aqueous zinc ion batteries: Challenges and practical prospects. Adv. Funct. Mater. 2024, 34, 2301291.

[12]

Zhu, J. C.; Tie, Z. W.; Bi, S. S.; Niu, Z. Q. Towards more sustainable aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2024, 136, e202403712.

[13]

Zhang, Y. S.; Khademhosseini, A. Advances in engineering hydrogels. Science 2017, 356, aaf3627.

[14]

Vandeginste, V.; Wang, J. R. A review of the synthesis of biopolymer hydrogel electrolytes for improved electrode–electrolyte interfaces in zinc-ion batteries. Energies 2024, 17, 310.

[15]

Yang, Y.; Hua, H. M.; Lv, Z. H.; Meng, W. W.; Zhang, M. H.; Li, H.; Lin, P. X.; Yang, J.; Chen, G. H.; Kang, Y. H. et al. Diminishing space-charge layer effect of zinc anodes by an anion-immobilized electrolyte membrane. ACS Energy Lett. 2023, 8, 1959–1968.

[16]

Wang, Y. B.; Li, Q.; Hong, H.; Yang, S.; Zhang, R.; Wang, X. Q.; Jin, X.; Xiong, B.; Bai. S.; Zhi. C. Y. Lean-water hydrogel electrolyte for zinc ion batteries. Nat. Commun. 2023, 14, 3890.

[17]

Ji, S. G.; Qin, J. X.; Yang, S. S.; Shen, P.; Hu, Y. Y.; Yang, K.; Luo, H.; Xu, J. A mechanically durable hybrid hydrogel electrolyte developed by controllable accelerated polymerization mechanism towards reliable aqueous zinc-ion battery. Energy Stor. Mater. 2023, 55, 236–243.

[18]

Lin, P. X.; Chen, G. H.; Kang, Y. H.; Zhang, M. H.; Yang, J.; Lv, Z. H.; Yang, Y.; Zhao, J. B. Simultaneous inhibition of Zn dendrites and polyiodide ions shuttle effect by an anion concentrated electrolyte membrane for long lifespan aqueous zinc-iodine batteries. ACS Nano 2023, 17, 15492–15503.

[19]

Ma, R. J.; Xu, Z. X.; Wang. X. L. Polymer hydrogel electrolytes for flexible and multifunctional zinc-ion batteries and capacitors. Energy Environ. Mater. 2023, 6, e12464.

[20]

Yuan, C. M.; Zhong, X.; Tian, P. S.; Wang, Z.; Gao, G. H.; Duan, L. F.; Wang, C. S.; Shi, F. W. Antifreezing zwitterionic-based hydrogel electrolyte for aqueous Zn ion batteries. ACS Appl. Energy Mater. 2022, 5, 7530–7537.

[21]

Chen, M. H.; Xie, S. A.; Zhao, X. Y.; Zhou, W. H.; Li, Y.; Zhang, J. W.; Chen, Z.; Chao, D. L. Aqueous zinc-ion batteries at extreme temperature: Mechanisms, challenges, and strategies. Energy Stor. Mater. 2022, 51, 683–718.

[22]

Mo, F. N.; Cui, M. W.; He, N.; Chen, L. N.; Fei, J. B.; Ma, Z. Y.; Yu, S. Z.; Wei, J.; Huang, Y. Recent progress and perspectives on advanced flexible Zn-based batteries with hydrogel electrolytes. Mater. Res. Lett. 2022, 10, 501–520.

[23]

Li, X. Y.; Wang, D. H.; Ran, F. Key approaches and challenges in fabricating advanced flexible zinc-ion batteries with functional hydrogel electrolytes. Energy Stor. Mater. 2023, 56, 351–393.

[24]

Wang, D. H.; Li, H. F.; Liu, Z. X.; Tang, Z. J.; Liang, G. J.; Mo, F. N.; Yang, Q.; Ma, L. T.; Zhi, C. Y. A nanofibrillated cellulose/polyacrylamide electrolyte-based flexible and sewable high-performance Zn–MnO2 battery with superior shear resistance. Small 2018, 14, 1803978.

[25]

Hu, Y. Q.; Wang, Z.; Li, Y. Z.; Liu, P. W.; Liu, X. L.; Liang, G. X.; Zhang, D.; Fan, X.; Lu, Z. G.; Wang, W. X. Sulfonated hydrogel electrolyte enables dendrite-free zinc-ion batteries. Chem. Eng. J. 2024, 479, 147762.

[26]

Shi, Y.; Wang, R.; Bi, S. S.; Yang, M.; Liu, L. L.; Niu, Z. Q. An anti-freezing hydrogel electrolyte for flexible zinc-ion batteries operating at −70 °C. Adv. Funct. Mater. 2023, 33, 2214546.

[27]

Huang, S. W.; Hou, L.; Li, T. Y.; Jiao, Y. C.; Wu, P. Y. Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 2022, 34, 2110140.

[28]

Yan, Y. C.; Duan, S. D.; Liu, B.; Wu, S. W.; Alsaid, Y.; Yao, B. W.; Nandi, S.; Du, Y. J.; Wang, T. W.; Li, Y. Z. et al. Tough hydrogel electrolytes for anti-freezing zinc-ion batteries. Adv. Mater. 2023, 35, 2211673.

[29]

Sun, T. J.; Yuan, X. M.; Wang, K.; Zheng, S. B.; Shi, J. Q.; Zhang, Q.; Cai, W. S.; Liang, Jing.; Tao, Z. L. An ultralow-temperature aqueous zinc-ion battery. J. Mater. Chem. A 2021, 9, 7042–7047.

[30]

Hu, F. L.; Li, M. Y.; Gao, G. W.; Fan, H. Q.; Ma, L. T. The gel-state electrolytes in zinc-ion batteries. Batteries 2022, 8, 214.

[31]

Zhao, S. Y.; Zuo, Y. Y.; Liu, T.; Zhai, S.; Dai, Y. W.; Guo, Z. J.; Wang, Y.; He, Q. J.; Xia, L. C.; Zhi, C. Y. et al. Multi-functional hydrogels for flexible zinc-based batteries working under extreme conditions. Adv. Energy Mater. 2021, 11. 2101749.

[32]

Bu, F.; Gao, Y.; Wang, Q. Z.; Wang, Y. X.; Li, C.; Yang, J. Y.; Liu, X. Y.; Guan, C. Ultraviolet-assisted printing of flexible solid-state Zn-ion battery with a heterostructure electrolyte. Small 2023, 19, 2303108.

[33]

Bu, F.; Li, C.; Wang, Q. Z.; Liu, X. Y. Ultraviolet-assisted printing of flexible all-solid-state zinc batteries with enhanced interfacial bond. Chem. Eng. J. 2022, 449, 137710.

[34]

Wan, F.; Zhang, L. L.; Dai, X.; Wang, X. Y.; Niu, Z. Q.; Chen, J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 2018, 9, 1656.

[35]

Meng, Y.; Zhang, L. F.; Peng, M. J.; Shen, D. N.; Zhu, C. H.; Qian, S. Y.; Liu, J.; Cao, Y. F.; Yan, C. L.; Zhou, J. Q. et al. Developing thermoregulatory hydrogel electrolyte to overcome thermal runaway in zinc-ion batteries. Adv. Funct. Mater. 2022, 32, 2206653.

[36]

Lu, H. F.; Zhang, D.; Jin, Q. Z.; Zhang, Z. L.; Lyu, N. W.; Zhu, Z. J.; Duan, C. X.; Qin, Y.; Jin, Y. Gradient electrolyte strategy achieving long-life zinc anodes. Adv. Mater. 2023, 35, 2300620.

[37]

Wei, T. T.; Ren, Y. K.; Li, Z. Q.; Zhang, X. X.; Ji, D. H.; Hu, L. H. Bonding interaction regulation in hydrogel electrolyte enable dendrite-free aqueous zinc-ion batteries from −20 to 60 °C. Chem. Eng. J. 2022, 434, 134646.

[38]

Xiong, T.; Zhang, D. Q.; Yeo, J. Y.; Zhan, Y. F.; Ong, Y. K.; Limpo, C. M. A.; Shi, L.; Rao, Y. F.; Pu, Y. H.; Lai, W. H. et al. Interfacial design towards stable zinc metal-free zinc-ion batteries with high energy density. J. Mater. Chem. A 2024, 12, 5499–5507.

[39]

Xiang, Z. P.; Li, Y. Y.; Cheng, X. J.; Yang, C.; Wang, K. P.; Zhang, Q.; Wang, L. Lean-water hydrogel electrolyte with improved ion conductivity for dendrite-free zinc-ion batteries. Chem. Eng. J. 2024, 490, 151524.

[40]

Lu, H. Y.; Hu, J. S.; Wei, X. J.; Zhang, K. Q.; Xiao, X.; Zhao, J. X.; Hu, Q.; Yu, J.; Zhou, G. M.; Xu, B. G. A recyclable biomass electrolyte towards green zinc-ion batteries. Nat. Commun. 2023, 14, 4435.

[41]

Zhang, H. D.; Gan, X. T.; Yan, Y. Y.; Zhou, J. P. A sustainable dual cross-linked cellulose hydrogel electrolyte for high-performance zinc-metal batteries. Nano-Micro Lett. 2024, 16, 106.

[42]

Lu, H. Y.; Hu, J. S.; Wang, L. T.; Li, J. Z.; Ma, X.; Zhu, Z. C.; Li, H. Q.; Zhao, Y. J.; Li, Y. J.; Zhao, J. X. et al. Multi-component crosslinked hydrogel electrolyte toward dendrite-free aqueous Zn ion batteries with high temperature adaptability. Adv. Funct. Mater. 2022, 32, 2112540.

[43]

Gu, Y.; Zheng, X. W.; Zhou, Z.; Chen, G. X.; Chen, S. M.; Li, Q. F. Amphiphilic ionic liquid hydrogel electrolytes with high ionic conductivity towards dendrite-free ultra-stable aqueous zinc ion batteries. J. Energy Storage 2024, 89, 111892.

[44]

Lv, Y. Q.; Zhao, M.; Du, Y. D.; Kang, Y.; Xiao, Y.; Chen, S. M. Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries. Energy Environ. Sci. 2022, 15, 4748–4760.

[45]

Qin, M. L.; Zhang, Z. L.; Zhao, Y. Z.; Liu, L.; Jia, B. R.; Han, K.; Wu, H. Y.; Liu, Y.; Wang, L. J.; Min, X. et al. Optimization of von mises stress distribution in mesoporous α-Fe2O3/C hollow bowls synergistically boosts gravimetric/volumetric capacity and high-rate stability in alkali-ion batteries. Adv. Funct. Mater. 2019, 29, 1902822.

[46]

Islam, S.; Lee, S.; Lee, S.; Hilmy Alfaruqi, M.; Sambandam, B.; Mathew, V.; Hwang, J. Y.; Kim, J. Triggering the theoretical capacity of Na1.1V3O7.9 nanorod cathode by polypyrrole coating for high-energy zinc-ion batteries. Chem. Eng. J. 2022, 446, 137069.

[47]

He, P.; Zhang, G. B.; Liao, X. B.; Yan, M. Y.; Xu, X.; An, Q. Y.; Liu, J.; Mai, L. Q. Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 2018, 8, 1702463.

[48]

Soundharrajan, V.; Sambandam, B.; Kim, S.; Alfaruqi, M. H.; Putro, D. Y.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y. K.; Kim, J. Na2V6O16·3H2O barnesite nanorod: An open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett. 2018, 18, 2402–2410.

[49]

She, B. H.; Shan, L. T.; Chen, H. J.; Zhou, J.; Guo, X.; Fang, G. Z.; Cao, X. X.; Liang, S. Q. Investigation of sodium vanadate as a high-performance aqueous zinc-ion battery cathode. J. Energy Chem. 2019, 37, 172–175.

Nano Research
Article number: 94906999
Cite this article:
Zhang Z, Wang R, Lu H, et al. A mechanical reinforced and antifreezing polyacrylate hydrogel electrolyte for high-performance zinc-ion batteries. Nano Research, 2025, 18(1): 94906999. https://doi.org/10.26599/NR.2025.94906999
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return