AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (22.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Design synthesis and synergistic anticorrosion performance of ZIF-8/NiAl LDH heterojunction nanocontainers

Yuan Ma1Tong Li1Si-Rui Zhao1Zhou-Tao Feng1Jin-Ku Liu1,2 ( )
Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
Material Corrosion and Protection Key Laboratory of Sichuan province, Zigong 643000, China
Show Author Information

Graphical Abstract

The nanocontainer loaded with MoO42− corrosion inhibitor was constructed synergistic by zeolitic imidazolate framework-8 (ZIF-8) and layered double hydroxide (LDH), which increased the impedance property of pure epoxy to 28.43 times.

Abstract

This study introduces a novel relay and synergistic anti-corrosion mechanisms by constructing an active anticorrosive coating with nanocontainers through the combination of zinc-based zeolitic imidazolate framework materials (ZIF-8) and layered double hydroxides loaded with molybdate anions (MoO42− LDHs). The incorporation of ZIF-8 provided the material with abundant surface nano-micropores, enhancing its adsorption capacity for corrosive ions such as OH and Cl. Simultaneously, this adsorption enabled the ZIF-8-loaded NiAl-MoO42− LDH to receive signals induced by Cl stimulation or pH changes. After receiving the signals, the corrosion inhibitor MoO42− encapsulated within the NiAl-MoO42− LDH was released responsively and exchanged with Cl. The released MoO42− from nanocontainers adsorbed onto localized corrosion sites, forming a passivation film, thereby blocking the diffusion path of Cl. Additionally, this study demonstrated that the self-assembly of ZIF-8 effectively reduced the hydrophilicity of LDH and enhanced the resistance of coating to permeability. Through supramolecular interactions between LDH hydroxyl groups, metal-organic framework (MOF) functional groups and organic epoxy resin, the cross-linking of the coating and the interfacial compatibility of the materials were significantly improved. The Z-type heterojunction composed of nickel-based LDH and metal organic frameworks not only increased the specific surface area and capacitance performance but also provided photo-induced cathodic protection for metal substrates with matched bandgaps. The experimental results showed that the impedance properties of the ZIF-8/NiAl-MoO42− LDH coatings were 28.43 times of pure epoxy after 168 h. This work can provide new insights and assistance for the study of anti-corrosion mechanisms.

Electronic Supplementary Material

Download File(s)
7000_ESM.pdf (2 MB)

References

[1]

Abrantes Leal, D.; Sousa, I.; Bastos, A. C.; Tedim, J.; Wypych, F.; Bruno Marino, C. E. Combination of layered-based materials as an innovative strategy for improving active corrosion protection of carbon steel. Surf. Coat. Technol. 2023, 473, 129972.

[2]

Prabhu, S.; Maruthapandi, M.; Durairaj, A.; Luong, J. H. T.; Gedanken, A. Enhanced electrochemical performance of CuO Capsules@CDs composites for solid-state hybrid supercapacitor. Energy Fuels 2023, 37, 6824–6833.

[3]

Mohammadi, I.; Izadi, M.; Shahrabi, T.; Fathi, D.; Fateh, A. Enhanced epoxy coating based on cerium loaded Na-montmorillonite as active anti-corrosive nanoreservoirs for corrosion protection of mild steel: Synthesis, characterization, and electrochemical behavior. Prog. Org. Coat. 2019, 131, 119–130.

[4]

Kim, M.; Brewer, L. N.; Kubacki, G. W. Microstructure and corrosion resistance of chromate conversion coating on cold sprayed aluminum alloy 2024. Surf. Coat. Technol. 2023, 460, 129423.

[5]

Yasakau, K. A.; Kallip, S.; Zheludkevich, M. L.; Ferreira, M. G. S. Active corrosion protection of AA2024 by sol–gel coatings with cerium molybdate nanowires. Electrochim. Acta 2013, 112, 236–246.

[6]

Abrantes Leal, D.; Wypych, F.; Bruno Marino, C. E. Zinc-layered hydroxide salt intercalated with molybdate anions as a new smart nanocontainer for active corrosion protection of carbon steel. ACS Appl. Mater. Interfaces 2020, 12, 19823–19833.

[7]

Wang, T. G.; Cao, H. J. Orientation control and characterization strategies towards developing 2D materials-based composite coatings for corrosion protection on metals: Progresses and challenges. Prog. Org. Coat. 2023, 182, 107715.

[8]

Wang, J. B.; Zhao, J. M.; Tabish, M.; Shi, F.; Fan, B. M.; Peng, L. J.; Cheng, Q. Intelligent anticorrosion coating based on mesostructured BTA@mCeO2/g-C3N4 nanocomposites for inhibiting the filiform corrosion of Zn-Mg-Al coated steel. Corros. Sci. 2023, 221, 111331.

[9]

Liu, W.; Yu, J. G.; Li, T. S.; Li, S. H.; Ding, B. Y.; Guo, X. L.; Cao, A. Q.; Sha, Q. H.; Zhou, D. J.; Kuang, Y. et al. Self-protecting CoFeAl-layered double hydroxides enable stable and efficient brine oxidation at 2 A·cm−2. Nat. Commun. 2024, 15, 4712.

[10]

Zhang, Y.; Feng, B.; Yan, M. L.; Shen, Z.; Chen, Y. Q.; Tian, J. Y.; Xu, F. F.; Chen, G. H.; Wang, X. Z.; Yang, L. J. et al. Self-supported NiFe-LDH nanosheets on NiMo-based nanorods as high-performance bifunctional electrocatalysts for overall water splitting at industrial-level current densities. Nano Res. 2024, 17, 3769–3776.

[11]

Singha Roy, S.; Karmakar, A.; Madhu, R.; Nagappan, S.; N Dhandapani, H.; Kundu, S. Three-dimensional Sm-doped NiCu-LDH on Ni foam as a highly robust bifunctional electrocatalyst for total water splitting. ACS Appl. Energy Mater. 2023, 6, 8818–8829.

[12]

Xing, X. T.; Sui, Y.; Li, Q. S.; Yuan, M.; Zhao, H. T.; Zhou, D.; Chu, X. M.; Liu, S. J.; Tang, E. J. Multifunctional ZnAl-MoO4 LDH assembled Ti3C2T x MXene composite for active/passive corrosion protection behavior of epoxy coatings. Appl. Surf. Sci. 2023, 623, 157092.

[13]

Yasakau, K. A.; Kuznetsova, A.; Maltanava, H. M.; Poznyak, S. K.; Ferreira, M. G. S.; Zheludkevich, M. L. Corrosion protection of zinc by LDH conversion coatings. Corros. Sci. 2024, 229, 111889.

[14]

Karthik Kiran, S.; Shukla, S.; Struck, A.; Saxena, S. Surface engineering of graphene oxide shells using lamellar LDH nanostructures. ACS Appl. Mater. Interfaces 2019, 11, 20232–20240.

[15]

Ahmad, E. A.; Chang, H. Y.; Al-Kindi, M.; Joshi, G. R.; Cooper, K.; Lindsay, R.; Harrison, N. M. Corrosion protection through naturally occurring films: New insights from iron carbonate. ACS Appl. Mater. Interfaces 2019, 11, 33435–33441.

[16]

Xiong, Z. Z.; Qi, Z. H.; Zhang, W. H.; Ji, M. B.; Ma, F. Q.; Ying, L. X.; Wang, G. X. Enhancing frictional and corrosion resistance performance in aluminum alloy through in situ growth of NiZnAl-LDH membrane and its modification. Surf. Interfaces 2024, 46, 104103.

[17]

Yashas, S. R.; Shivaraju, H. P.; Sandeep, S.; Kumara Swamy, N.; Gurupadayya, B. Application of yttrium molybdate tethered polypyrrole nanocomposite for the photocatalytic remediation of nitrofurantoin in water. Surf. Interfaces 2022, 32, 102102.

[18]

Chen, Y. X.; Zhou, D.; Guo, X. J.; Yang, X.; Zhao, S. R.; Lu, Y.; Liu, J. K. Improved anticorrosion performance of mixed valence Mn-modified ZnO dilute magnetic solid solution with multilevel self-assembled network structure. Nano Res. 2022, 15, 6590–6600.

[19]

Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched Ru x Fe3− x O4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.

[20]

Wang, S. C.; Zhang, M. Y.; Mu, X. Q.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Atomically dispersed multi-site catalysts: Bifunctional oxygen electrocatalysts boost flexible zinc-air battery performance. Energy Environ. Sci. 2024, 17, 4847–4870.

[21]

Liu, Y.; Yao, H.; Xie, Z. H.; Yu, G.; Zhong, C. J. In situ depositing a metal-organic framework film on TiO2 nanoarray toward stable photogenerated cathodic protection for nickel-coated magnesium alloy. Appl. Surf. Sci. 2023, 638, 157937.

[22]

Guo, Y.; Jiang, Z. Q.; Ying, W.; Chen, L. P.; Liu, Y. Z.; Wang, X. B.; Jiang, Z. J.; Chen, B. L.; Peng, X. S. A DNA-threaded ZIF-8 membrane with high proton conductivity and low methanol permeability. Adv. Mater. 2018, 30, 1705155.

[23]

Man, T. T.; Xu, C. X.; Liu, X. Y.; Li, D.; Tsung, C. K.; Pei, H.; Wan, Y.; Li, L. Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions. Nat. Commun. 2022, 13, 305.

[24]

Duan, P. F.; An, Y. H.; Wei, X. X.; Tian, Y. J.; Guan, D.; Liu, X. W.; Mao, L. Q. A novel structure of ultra-high-loading small molecules-encapsulated ZIF-8 colloid particles. Nano Res. 2024, 17, 2929–2940.

[25]
Chen, F. J.; Mu, X. Q.; Zhou, J. L.; Wang, S. C.; Liu, Z. Y.; Zhou, D. Y.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Engineering the active sites of MOF-derived catalysts: From oxygen activation to activate metal-air batteries. Chin. J. Chem., in press, DOI: 10.1002/cjoc.202400332.
[26]

Huang, Y.; Zhao, C. Y.; Li, Y.; Wang, C.; Yuan, W. L.; Shen, T.; Liu, J.; Cheng, D.; Wu, C. C.; Shen, Q. H. et al. A smart sol–gel coating incorporating pH-responsive BTA-ZIF-8 MOF assembled hexagonal boron nitride for active/passive corrosion protection of 1060 aluminum alloy. Surf. Coat. Technol. 2023, 474, 130072.

[27]

Zhong, Y.; Wu, C. L.; Jia, X. F.; Sun, S. J.; Chen, D. M.; Yao, W. Q.; Ding, H.; Zhang, J. Y.; Ma, T. Y. Coupling of self-healing atomic layer CoAl-LDH onto Mo:BiVO4 photoanode for fast surface charge transfer toward stable and high-performance water splitting. Chem. Eng. J. 2023, 465, 142893.

[28]

Fu, M. J.; Chai, B.; Zhang, X. H.; Sun, Y.; Fan, G. Z.; Song, G. S. Nitrogen self-doped chitosan carbon aerogel integrating with CoAl-LDH for ultra-efficient sulfamethoxazole degradation based on PS-AOPs: From batch to continuous process. J. Environ. Chem. Eng. 2023, 11, 110650.

[29]

Xu, J.; Li, Q.; Liu, X. Y.; Yang, Q. P-doped nanorod MoO3 and nanoflower NiAl-LDH construct S-type heterojunction for photocatalytic high-efficiency hydrogen evolution. Surf. Interfaces 2023, 43, 103593.

[30]

Li, Z. K.; Xu, Z. H.; Wang, G. S.; Ding, Y. J.; Yan, Z. X.; Yue, L. Interfacial construction promoted binder-free NiCo-LDH/Mn-ZIF on carbon cloth for high-performance supercapacitor. Electrochim. Acta 2024, 475, 143701.

[31]

Zhang, Y. Y.; Liu, H.; Zhu, P. F.; Yang, M. X.; Jin, Z. L. In situ XPS proved effective charge transfer over ZIF-67@CoFe LDH S-scheme heterojunctions for efficient visible light driven hydrogen evolution. Int. J. Hydrogen Energy 2023, 48, 32631–32641.

[32]

Wang, G. R.; Jin, Z. L.; Zhang, W. X. Ostensibly phosphatized NiAl LDHs nanoflowers with remarkable charge storage property for asymmetric supercapacitors. J. Colloid Interface Sci. 2020, 577, 115–126.

[33]

Tonda, S.; Kumar, S.; Bhardwaj, M.; Yadav, P.; Ogale, S. g-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels. ACS Appl. Mater. Interfaces 2018, 10, 2667–2678.

[34]

Sun, C.; Hu, J.; Wu, L. X.; Xia, Q. L.; Jiao, F. P. Construction of a novel visible-light-driven Z-scheme NiAl-LDH modified (BiO)2CO3 heterostructure for enhanced photocatalytic degradation antibiotics performance in natural water bodies. Ind. Eng. Chem. Res. 2023, 62, 466–477.

[35]

Liu, Q.; Zhou, F.; Bai, Y. Y.; Hu, W. K. Evaluating properties of carbon-free nano-NiCoFe-LDHs with molybdate as oxygen evolution catalysts and their applications in rechargeable air electrodes. Energy Fuels 2021, 35, 20374–20385.

[36]

Wang, H. O.; Wang, H. M.; Wang, H. F.; Su, Q. D.; Jiang, H.; Pan, Y. P.; Ma, X. F.; Hao, S. J.; Liu, J. W. β supported Fe2(MoO4)3: An efficient solid acidic heterogeneous catalyst for the synthesis of 2-ethoxyethyl acetate. Microporous Mesoporous Mater. 2024, 369, 112985.

[37]

Popov, V. V.; Menushenkov, A. P.; Yastrebtsev, A. A.; Molokova, A. Y.; Rudakov, S. G.; Svetogorov, R. D.; Tsarenko, N. A.; Ponkratov, K. V.; Ognevskaya, N. V.; Seregina, O. N. The effect of the synthesis conditions on the structure and phase transitions in Ln2(MoO4)3. Solid State Sci. 2021, 112, 106518.

[38]

Chen, X.; Fan, B. C.; Wang, H.; Liu, X. F.; Liu, Y.; Gao, J. K. Multiflower-like ReS2/NiAl-LDH heterojunction for visible-light-driven photocatalytic CO2 reduction. Inorg. Chem. 2024, 63, 5132–5141.

[39]

Kalusulingam, R.; Mariyaselvakumar, M.; Antonyraj, C. A.; Mathi, S.; Mikhailova, T. S.; Khubezhov, S. A.; Pankov, I. V.; Srinivasan, K.; Myasoedova, T. N. Highly efficient water splitting with Pd-integrated NiAl-LDH nanosheets as bifunctional electrocatalysts. Energy Fuels 2023, 37, 13319–13330.

[40]

Chaudhary, K.; Dhiman, D.; Venkatesu, P.; Masram, D. T. Classically synthesized ZIF-8 and Au/ZIF-8 for biocompatibility assessment with hemoglobin. ACS Sustain. Chem. Eng. 2022, 10, 12962–12967.

[41]

Wang, X. B.; Liu, J.; Leong, S.; Lin, X. C.; Wei, J.; Kong, B.; Xu, Y. F.; Low, Z. X.; Yao, J. F.; Wang, H. T. Rapid construction of ZnO@ZIF-8 heterostructures with size-selective photocatalysis properties. ACS Appl. Mater. Interfaces 2016, 8, 9080–9087.

[42]

Pei, X. Y.; Song, W. Y.; Zhang, Z. W.; Zhao, Y.; Li, Z. Y. CO2-responsive CuI-ionic liquid/zeolitic imidazolate frameworks stabilized Pickering emulsions for azide-alkyne click reaction. ACS Appl. Nano Mater. 2023, 6, 19972–19980.

[43]

Ding, R. J.; Zhu, H. F.; Zhou, J. S.; Luo, H. H.; Xue, K. H.; Yu, L. Q.; Zhang, Y. P. Highly water-stable and efficient hydrogen-producing heterostructure synthesized from Mn0.5Cd0.5S and a zeolitic imidazolate framework ZIF-8 via ligand and cation exchange. ACS Appl. Mater. Interfaces 2023, 15, 36477–36488.

[44]

Niu, X. H.; Yan, S. M.; Zhao, R.; Li, H. X.; Liu, X. Y.; Wang, K. J. Design and electrochemical chiral sensing of the robust sandwich chiral composite D-His-ZIF-8@Au@ZIF-8. ACS Appl. Mater. Interfaces 2023, 15, 22435–22444.

[45]

Mu, C. L.; Ren, J. H.; Chen, H.; Wu, Y.; Xu, Q. N.; Sun, X. D.; Yan, K. Graphitic carbon nitride/zeolitic imidazolate framework-8 nanoparticles with antibacterial properties for textile coating. ACS Appl. Nano Mater. 2021, 4, 10634–10644.

[46]

Jin, Z. L.; Wang, X. Y.; Wang, Y. P.; Yan, T.; Hao, X. Q. Snowflake-like Cu2S coated with NiAl-LDH forms a p–n heterojunction for efficient photocatalytic hydrogen evolution. ACS Appl. Energy Mater. 2021, 4, 14220–14231.

[47]

Ma, B. C.; Zhang, C.; Jia, D. J.; Zhao, Q. X.; Yang, P. P. NiAl-LDH-modified core–shell rod-like ZnO@ZnS heterostructures for enhanced photocatalytic hydrogen precipitation. J. Phys. Chem. C 2023, 127, 2908–2917.

[48]

Ren, R.; Liu, G. C.; Kim, J. Y.; Ardhi, R. E. A.; Tran, M. X.; Yang, W.; Lee, J. K. Photoactive g-C3N4/CuZIF-67 bifunctional electrocatalyst with staggered p–n heterojunction for rechargeable Zn-air batteries. Appl. Catal. B: Environ. 2022, 306, 121096.

[49]

Tantisriyanurak, S.; Klinyod, S.; Leangsiri, W.; Nunthakitgoson, W.; Soyphet, A.; Ketkaew, M.; Thivasasith, A.; Iadrat, P.; Rodaum, C.; Atithep, T. et al. Carbon nanotubes deposited on mordenite zeolite/NiAl-layered double hydroxide composites as electrocatalysts for 2,5-furandicarboxylic acid production from 5-hydroxymethylfurfural. ACS Appl. Nano Mater. 2023, 6, 8784–8794.

[50]

Wu, Y. L.; Zhu, P. F.; Li, Y. J.; Zhang, L. J.; Jin, Z. L. In situ derivatization of NiAl-LDH/NiS a p–n heterojunction for efficient photocatalytic hydrogen evolution. ACS Appl. Energy Mater. 2022, 5, 8157–8168.

[51]

Ma, X. L.; Zhou, L. X.; Chen, T.; Sun, P. P.; Lv, X. W.; Yu, H. Z.; Sun, X. H.; Leo Liu, T. High-performance aqueous rechargeable NiCo//Zn battery with molybdate anion intercalated CoNi-LDH@CP bilayered cathode. J. Colloid Interface Sci. 2024, 658, 728–738.

[52]

Ju, X. Q.; Yang, Z. Y.; Wang, J. W.; Cui, B. L.; Xin, Y. Y.; Zheng, Y. P.; Wang, D. C. Converting nanoflower-like layered double hydroxides into solvent-free nanofluids for CO2 capture. ACS Appl. Mater. Interfaces 2023, 15, 56181–56191.

[53]

Wang, Q. X.; Lei, Y. T.; Cui, Y. Y.; Lin, J. R. L.; Huang, W.; He, Y. Thermal stability and kinetics of single I2@ZIF-8 particles. ACS Appl. Mater. Interfaces 2022, 14, 22643–22649.

[54]

Tian, J. J.; Chen, Y. X.; Liu, Z. X.; Liu, J. K. Synthesis and mechanism of Co2+/Sr2+ codoped magnetic lanthanum cuprate with excellent corrosion resistance. ACS Appl. Mater. Interfaces 2023, 15, 53651–53664.

[55]

Liu, S. Y.; Duan, J. Q.; Zhang, M. Y.; Wang, H.; Liu, Y. X.; Chen, W. P.; Wen, H. M.; Fu, Z. Q. Correlation of microstructure, mechanical properties and corrosion behavior in a Ni34Co28Cr28Al10 multi-principal element alloy with outstanding corrosion resistance. Corros. Sci. 2024, 228, 111835.

[56]

Liu, Z. X.; Zhou, D.; Tian, J. J.; Liu, J. K. Vanadium-doped induction of bare active crystalline planes of tungsten oxide and its excellent anticorrosion properties. ACS Appl. Eng. Mater 2023, 1, 2926–2940.

[57]

Wang, Z.; Jin, Z. Y.; Liu, H. X.; Liu, R. L.; Zhang, Y.; Yin, Y. S.; Liu, H. F.; Yuan, X.; Fan, S. J.; Liu, H. W. Insights into the hydrophobic coating with integrated high-efficiency anti-corrosion, anti-biofouling and self-healing properties based on anti-bacterial nano LDH materials. Corros. Sci. 2024, 231, 111995.

[58]

Zan, G. T.; Li, S. Q.; Chen, P.; Dong, K. Z.; Wu, Q. S.; Wu, T. Mesoporous cubic nanocages assembled by coupled monolayers with 100% theoretical capacity and robust cycling. ACS Cent. Sci. 2024, 10, 1283–1294.

[59]

Song, L. Y.; Ma, X. M.; Chen, Z. Y.; Hou, B. R. The role of UV illumination on the initial atmospheric corrosion of 09CuPCrNi weathering steel in the presence of NaCl particles. Corros. Sci. 2014, 87, 427–437.

[60]

Xu, D.; Zhang, S. N.; Chen, J. S.; Li, X. H. Design of the synergistic rectifying interfaces in Mott–Schottky catalysts. Chem. Rev. 2023, 123, 1–30.

[61]

Yamasaki, T.; Iimura, S.; Kim, J.; Hosono, H. Extremely shallow valence band in lanthanum trihydride. J. Am. Chem. Soc. 2023, 145, 560–566.

Nano Research
Article number: 94907000
Cite this article:
Ma Y, Li T, Zhao S-R, et al. Design synthesis and synergistic anticorrosion performance of ZIF-8/NiAl LDH heterojunction nanocontainers. Nano Research, 2025, 18(1): 94907000. https://doi.org/10.26599/NR.2025.94907000
Topics:

229

Views

36

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 June 2024
Revised: 13 August 2024
Accepted: 24 August 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return