In-depth research on structural transformations induced by electron beam will be helpful for the design and manufacture of nanostructures. The nucleation and growth mechanism of CdO nanocrystals on CdS matrix was studied through in situ transmission electron microscopy observation. The results of energy dispersive spectrum reveal the electron beam induced surface oxidation of CdS. CdO nanocrystals nucleate through a non-classical two-step nucleation path on CdS surface. Amorphous cluster forms first as the intermediate phase in the two-step nucleation of CdO nanocrystals. Then unstable crystal nucleus is formed in the amorphous phase, accompanied by reversible disorder–order transitions. After absorbing the amorphous phase and rapidly growing, the CdO nucleus grows through the classic layer-by-layer growth mechanism. Furthermore, six nonequivalent heterojunction interface orientation relationships between CdO nanocrystals and CdS matrix were deeply analyzed. This work demonstrates potential application prospects for atomic manufacturing and interface control of semiconductor heterojunction.
Han, Q.; Han, Z. W.; Wang, Y. M.; Zhang, S. Y.; Fang, J. P.; Li, H. J.; Fang, P. F. Enhanced photocatalytic hydrogen evolution by piezoelectric effects based on MoSe2/Se-decorated CdS nanowire edge-on heterostructure. J. Colloid Interface Sci. 2023, 630, 460–472.
Zhang, S. Y.; Du, S. W.; Wang, Y. M.; Han, Z. W.; Li, X.; Li, G. J.; Hu, Q.; Xu, H.; He, C. Q.; Fang, P. F. Synergy of yolk-shelled structure and tunable oxygen defect over CdS/CdCO3-CoS2: Wide band-gap semiconductors assist in efficient visible-light-driven H2 production and CO2 reduction. Chem. Eng. J. 2023, 454, 140113.
Dang, T. H.; Khalili, A.; Abadie, C.; Gréboval, C.; Cavallo, M.; Zhang, H. C.; Bossavit, E.; Utterback, J. K.; Dandeu, E.; Prado, Y. et al. Nanocrystal-based active photonics device through spatial design of light-matter coupling. ACS Photonics 2022, 9, 2528–2535.
Li, J. R.; Wang, Z. M.; Zhang, H.; Gao, J.; Zheng, A. P. Progress in the development of stabilization strategies for nanocrystal preparations. Drug Deliv. 2021, 28, 19–36.
Zhang, P.; Yu, X.; Xia, P.; Cui, Z. Z.; Yi, J. H.; Li, C. J.; Song, P.; Zhao, F.; Wang, T.; Qiu, J. B. et al. Real-time evolution of up-conversion nanocrystals from tailored metastable intermediates. Nano Res. 2023, 16, 1552–1557.
Zhan, H. Q.; Deng, C.; Shi, X. L.; Wu, C. Q.; Li, X. H.; Xie, Z. P.; Wang, C. A.; Chen, Z. G. Correlation between the photocatalysis and growth mechanism of SnO2 nanocrystals. J. Phys. D: Appl. Phys. 2020, 53, 154005.
Brown, A. A. M.; Vashishtha, P.; Hooper, T. J. N.; Ng, Y. F.; Nutan, G. V.; Fang, Y. A.; Giovanni, D.; Tey, J. N.; Jiang, L. D.; Damodaran, B. et al. Precise control of CsPbBr3 perovskite nanocrystal growth at room temperature: Size tunability and synthetic insights. Chem. Mater. 2021, 33, 2387–2397.
Xiong, Y.; Li, H. J.; Zeng, W.; Wang, Y. M.; Zhao, X. N.; Fang, P. F.; Hu, W. G.; Zheng, L. R. Lattice origin of few-layer edge-on MoS2@TiO2 octahedral clusters for piezoelectric enhancement. Appl. Surf. Sci. 2022, 588, 152942.
Ondry, J. C.; Philbin, J. P.; Lostica, M.; Rabani, E.; Alivisatos, A. P. Resilient pathways to atomic attachment of quantum dot dimers and artificial solids from faceted CdSe quantum dot building blocks. ACS Nano 2019, 13, 12322–12344.
Nie, X.; Xiong, Y.; Zeng, W. The interfacial lattice origin of anatase titanium dioxide by hydrothermal architecture. J. Cryst. Growth 2020, 552, 125927.
Karthika, S.; Radhakrishnan, T. K.; Kalaichelvi, P. A review of classical and nonclassical nucleation theories. Cryst. Growth Des. 2016, 16, 6663–6681.
Jun, Y. S.; Zhu, Y. G.; Wang, Y.; Ghim, D.; Wu, X. H.; Kim, D.; Jung, H. Classical and nonclassical nucleation and growth mechanisms for nanoparticle formation. Annu. Rev. Phys. Chem. 2022, 73, 453–477.
Fu, H. Y.; Gao, X.; Zhang, X.; Ling, L. Recent advances in nonclassical crystallization: Fundamentals, applications, and challenges. Cryst. Growth Des. 2022, 22, 1476–1499.
Jin, B.; Liu, Z. M.; Tang, R. K. Recent experimental explorations of non-classical nucleation. Crystengcomm 2020, 22, 4057–4073.
Chakrabortty, S.; Guchhait, A.; Ong, X.; Mishra, N.; Wu, W. Y.; Jhon, M. H.; Chan, Y. Facet to facet linking of shape anisotropic inorganic nanocrystals with site specific and stoichiometric control. Nano Lett. 2016, 16, 6431–6436.
Coropceanu, I.; Janke, E. M.; Portner, J.; Haubold, D.; Nguyen, T. D.; Das, A.; Tanner, C. P. N.; Utterback, J. K.; Teitelbaum, S. W.; Hudson, M. H. et al. Self-assembly of nanocrystals into strongly electronically coupled all-inorganic supercrystals. Science 2022, 375, 1422–1426.
Shi, R. P.; Heo, T. W.; Wood, B. C.; Wang, Y. Z. Critical nuclei at hetero-phase interfaces. Acta Mater. 2020, 200, 510–525.
Houben, L.; Weissman, H.; Wolf, S. G.; Rybtchinski, B. A mechanism of ferritin crystallization revealed by cryo-STEM tomography. Nature 2020, 579, 540–543.
Tao, F.; Han, Q.; Deng, M. R.; Miao, S. T.; Yang, P. pH-responsive protein conformation transistor. Angew. Chem., Int. Ed. 2024, 63, e202310879.
Dighe, A. V.; Coliaie, P.; Podupu, P. K. R.; Singh, M. R. Selective desolvation in two-step nucleation mechanism steers crystal structure formation. Nanoscale 2022, 14, 1723–1732.
Yang, S.; Guo, Z. Z.; Bian, B. R.; Du, J.; Hu, Y. Dynamic observation of anisotropic chainlike structures during nonclassical two-step nucleation in solid-state iron oxide crystallization. J. Phys. Chem. Lett. 2022, 13, 8352–8358.
Cao, K. C.; Biskupek, J.; Stoppiello, C. T.; McSweeney, R. L.; Chamberlain, T. W.; Liu, Z.; Suenaga, K.; Skowron, S. T.; Besley, E.; Khlobystov, A. N. et al. Atomic mechanism of metal crystal nucleus formation in a single-walled carbon nanotube. Nat. Chem. 2020, 12, 921–928.
Kim, H. J.; Kim, J. H.; Jeong, J. S.; Moon, C. Y.; Nahm, S.; Nam, K. M.; Park, J.; Kim, Y. H. Heterointerface effect on two-step nucleation mechanism of bi particles. Nano Lett. 2022, 22, 3252–3259.
Zhang, H. T.; Wang, W.; Xu, T.; Xu, F.; Sun, L. T. Phase transformation at controlled locations in nanowires by in situ electron irradiation. Nano Res. 2020, 13, 1912–1919.
Ting, Y. H.; Wu, M. C.; Aoyama, Y.; Lu, K. C.; Wu, W. W. In situ manipulation of E-beam irradiation-induced nanopore formation on molybdenum oxide nanowires. Appl. Surf. Sci. 2021, 544, 148874.
Yasuda, H. Fast in situ ultrahigh-voltage electron microscopy observation of crystal nucleation and growth in amorphous antimony nanoparticles. Cryst. Growth Des. 2018, 18, 3302–3306.
Sheng, H. P.; Zheng, H.; Jia, S. F.; Chan, M. K. Y.; Rajh, T.; Wang, J. B.; Wen, J. G. Atomistic manipulation of reversible oxidation and reduction in Ag with an electron beam. Nanoscale 2019, 11, 10756–10762.
Su, Q. M.; Du, G. H.; Xu, B. S. In situ growth of In2O3 nanocrystals by electron irradiation in transmission electron microscope. Mater. Lett. 2014, 120, 208–211.
Gonzalez-Martinez, I. G.; Bachmatiuk, A.; Bezugly, V.; Kunstmann, J.; Gemming, T.; Liu, Z.; Cuniberti, G.; Rümmeli, M. H. Electron-beam induced synthesis of nanostructures: A review. Nanoscale 2016, 8, 11340–11362.
Yang, K. H.; Yang, Z. Z.; Zhang, C.; Gu, Y. L.; Wei, J. J.; Li, Z. H.; Ma, C.; Yang, X.; Song, K. X.; Li, Y. M. et al. Recent advances in CdS-based photocatalysts for CO2 photocatalytic conversion. Chem. Eng. J. 2021, 418, 129344.
Marder, A. A.; Cassidy, J.; Harankahage, D.; Beavon, J.; Gutiérrez-Arzaluz, L.; Mohammed, O. F.; Mishra, A.; Adams, A. C.; Slinker, J. D.; Hu, Z. J. et al. CdS/CdSe/CdS spherical quantum wells with near-unity biexciton quantum yield for light-emitting-device applications. ACS Mater. Lett. 2023, 5, 1411–1419.
Gao, Y. B.; Kong, D. H.; Han, J. Y.; Zhou, W. R.; Gao, Y.; Wang, T. S.; Lu, G. Y. Cadmium sulfide in-situ derived heterostructure hybrids with tunable component ratio for highly sensitive and selective detection of ppb-level H2S. J. Colloid Interface Sci. 2022, 627, 332–342.
Li, C. H.; Hsu, C. W.; Lu, S. Y. TiO2 nanocrystals decorated Z-schemed core-shell CdS-CdO nanorod arrays as high efficiency anodes for photoelectrochemical hydrogen generation. J. Colloid Interface Sci. 2018, 521, 216–225.
Saha, M.; Ghosh, S.; De, S. K. Nanoscale kirkendall effect driven Au decorated CdS/CdO colloidal nanocomposites for efficient hydrogen evolution, photocatalytic dye degradation and Cr (VI) reduction. Catal. Today 2020, 340, 253–267.
Huang, X.; Jones, T.; Fan, H.; Willinger, M. G. Atomic-scale observation of irradiation-induced surface oxidation by in situ transmission electron microscopy. Adv. Mater. Interfaces 2016, 3, 1600751.
Li, C. H.; Wang, H. M.; Naghadeh, S. B.; Zhang, J. Z.; Fang, P. F. Visible light driven hydrogen evolution by photocatalytic reforming of lignin and lactic acid using one-dimensional NiS/CdS nanostructures. Appl. Catal. B: Environ. 2018, 227, 229–239.
Peterson, K. A.; Shepler, B. C.; Singleton, J. M. The group 12 metal chalcogenides: An accurate multireference configuration interaction and coupled cluster study. Mol. Phys. 2007, 105, 1139–1155.
Yang, J.; Koo, J.; Kim, S.; Jeon, S.; Choi, B. K.; Kwon, S.; Kim, J.; Kim, B. H.; Lee, W. C.; Lee, W. B. et al. Amorphous-phase-mediated crystallization of Ni nanocrystals revealed by high-resolution liquid-phase electron microscopy. J. Am. Chem. Soc. 2019, 141, 763–768.
Li, J. J.; Li, Q.; Wang, Z. C.; Deepak, F. L. Real-time dynamical observation of lattice induced nucleation and growth in interfacial solid-solid phase transitions. Cryst. Growth Des. 2016, 16, 7256–7262.
Giacopetti, L.; Nevin, A.; Comelli, D.; Valentini, G.; Nardelli, M. B.; Satta, A. First principles study of the optical emission of cadmium yellow: Role of cadmium vacancies. AIP Adv. 2018, 8, 065202.
Roehl, J. L.; Liu, Z. T. Y.; Khare, S. V. Diffusion in CdS of Cd and S vacancies and Cu, Cd, Cl, S and Te interstitials studied with first-principles computations. Mater. Res. Express 2014, 1, 025904.
Jeon, S.; Heo, T.; Hwang, S. Y.; Ciston, J.; Bustillo, K. C.; Reed, B. W.; Ham, J.; Kang, S.; Kim, S.; Lim, J. et al. Reversible disorder-order transitions in atomic crystal nucleation. Science 2021, 371, 498–503.