Using first-principles calculations, we systematically investigated the hydrogen evolution reaction (HER) potential of 27 types of homogeneous dual-atom M2-N6-graphene catalysts. Shared nitrogen atoms between dual metal atoms were identified as crucial adsorption sites for hydrogen atoms. Notably, we found that relying solely on the free energy of hydrogen adsorption (
Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.
Chen, C. L.; Sun, M. Z.; Zhang, F.; Li, H. J.; Sun, M. R.; Fang, P.; Song, T. L.; Chen, W. X.; Dong, J. C.; Rosen, B. et al. Adjacent Fe site boosts electrocatalytic oxygen evolution at Co site in single-atom-catalyst through a dual-metal-site design. Energy Environ. Sci. 2023, 16, 1685–1696.
Hu, Y. F.; Li, Z. S.; Li, B. L.; Yu, C. L. Recent progress of diatomic catalysts: General design fundamentals and diversified catalytic applications. Small 2022, 18, 2203589.
Sun, F.; Tang, Q.; Jiang, D. E. Theoretical advances in understanding and designing the active sites for hydrogen evolution reaction. ACS Catal. 2022, 12, 8404–8433.
Zhu, Y. M.; Klingenhof, M.; Gao, C. L.; Koketsu, T.; Weiser, G.; Pi, Y. C.; Liu, S. H.; Sui, L. J.; Hou, J. R.; Li, J. Y. et al. Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping. Nat. Commun. 2024, 15, 1447.
Barlocco, I.; Di Liberto, G.; Pacchioni, G. Hydrogen and oxygen evolution reactions on single atom catalysts stabilized by a covalent organic framework. Energy Adv. 2023, 2, 1022–1029.
Zhang, T. Y.; Jin, J.; Chen, J. M.; Fang, Y. Y.; Han, X.; Chen, J. Y.; Li, Y. P.; Wang, Y.; Liu, J. F.; Wang, L. Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 6875.
Yao, R.; Sun, K. A.; Zhang, K. Y.; Wu, Y.; Du, Y. J.; Zhao, Q.; Liu, G.; Chen, C.; Sun, Y. H.; Li, J. P. Stable hydrogen evolution reaction at high current densities via designing the Ni single atoms and Ru nanoparticles linked by carbon bridges. Nat. Commun. 2024, 15, 2218.
Wang, C.; Zang, H.; Liu, C. J.; Wang, J. H.; Kuai, L.; Geng, B. Y. Synergistic acid hydrogen evolution of neighboring Pt single atoms and clusters: Understanding their superior activity and mechanism. Inorg. Chem. 2023, 62, 6856–6863.
Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on mxene. Angew. Chem., Int. Ed. 2024, 63, e202316550.
Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e202308800.
Guan, S. Y.; Yuan, Z. L.; Zhao, S. Q.; Zhuang, Z. C.; Zhang, H. H.; Shen, R. F.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Efficient hydrogen generation from ammonia borane hydrolysis on a tandem ruthenium-platinum-titanium catalyst. Angew. Chem., Int. Ed. 2024, 63, e202408193.
Li, Y. P.; Niu, S. W.; Liu, P. G.; Pan, R. R.; Zhang, H. K.; Ahmad, N.; Shi, Y.; Liang, X.; Cheng, M. Y.; Chen, S. H. et al. Ruthenium nanoclusters and single atoms on α-MoC/N-doped carbon achieves low-input/input-free hydrogen evolution via decoupled/coupled hydrazine oxidation. Angew. Chem., Int. Ed. 2024, 63, e202316755.
Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.
Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.
Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.
Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.
Tang, B.; Zhou, Y. N.; Ji, Q. Q.; Zhuang, Z. C.; Zhang, L.; Wang, C.; Hu, H. B.; Wang, H. J.; Mei, B. B.; Song, F. et al. A janus dual-atom catalyst for electrocatalytic oxygen reduction and evolution. Nat. Synth. 2024, 3, 878–890.
Zhu, P.; Xiong, X.; Wang, D. S.; Li, Y. D. Advances and regulation strategies of the active moiety in dual-atom site catalysts for efficient electrocatalysis. Adv. Energy Mater. 2023, 13, 2300884.
Tian, S. B.; Wang, B. X.; Gong, W. B.; He, Z. Z.; Xu, Q.; Chen, W. X.; Zhang, Q. H.; Zhu, Y. Q.; Yang, J. R.; Fu, Q. et al. Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nat. Commun. 2021, 12, 3181.
Tang, M. H.; Shen, J.; Wang, Y. D.; Zhao, Y. F.; Gan, T.; Zheng, X. S.; Wang, D. S.; Han, B. X.; Liu, Z. M. Highly efficient recycling of polyester wastes to diols using Ru and Mo dual-atom catalyst. Nat. Commun. 2024, 15, 5630.
Fang, C.; Zhou, J.; Zhang, L. L.; Wan, W. C.; Ding, Y. X.; Sun, X. Y. Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction. Nat. Commun. 2023, 14, 4449.
Zhu, P.; Xiong, X.; Wang, X. L.; Ye, C. L.; Li, J. Z.; Sun, W. M.; Sun, X. H.; Jiang, J. J.; Zhuang, Z. B.; Wang, D. S. et al. Regulating the FeN4 moiety by constructing Fe-Mo dual-metal atom sites for efficient electrochemical oxygen reduction. Nano Lett. 2022, 22, 9507–9515.
Li, R. Z.; Wang, D. S. Superiority of dual-atom catalysts in electrocatalysis: One step further than single-atom catalysts. Adv. Energy Mater. 2022, 12, 2103564.
Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the Volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.
Chen, Y.; Lin, J.; Pan, Q.; Liu, X.; Ma, T. Y.; Wang, X. D. Inter-metal interaction of dual-atom catalysts in heterogeneous catalysis. Angew. Chem., Int. Ed. 2023, 62, e202306469.
Gong, Y. N.; Cao, C. Y.; Shi, W. J.; Zhang, J. H.; Deng, J. H.; Lu, T. B.; Zhong, D. C. Modulating the electronic structures of dual-atom catalysts via coordination environment engineering for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202215187.
Wang, Y.; Park, B. J.; Paidi, V. K.; Huang, R.; Lee, Y.; Noh, K. J.; Lee, K. S.; Han, J. W. Precisely constructing orbital coupling-modulated dual-atom Fe pair sites for synergistic CO2 electroreduction. ACS Energy Lett. 2022, 7, 640–649.
Levell, Z.; Le, J. B.; Yu, S.; Wang, R. Y.; Ethirajan, S.; Rana, R.; Kulkarni, A.; Resasco, J.; Lu, D. Y.; Cheng, J. et al. Emerging atomistic modeling methods for heterogeneous electrocatalysis. Chem. Rev. 2024, 124, 8620–8656.
Kumar, A.; Bui, V. Q.; Lee, J.; Wang, L. L.; Jadhav, A. R.; Liu, X. H.; Shao, X. D.; Liu, Y.; Yu, J. M.; Hwang, Y. et al. Moving beyond bimetallic-alloy to single-atom dimer atomic-interface for all-pH hydrogen evolution. Nat. Commun. 2021, 12, 6766.
Zhang, L. H.; Guo, X. Y.; Zhang, S. L.; Huang, S. P. Building up the “genome” of bi-atom catalysts toward efficient HER/OER/ORR. J. Mater. Chem. A 2022, 10, 11600–11612.
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.
Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.
Li, R. Z.; Zhang, Z. D.; Liang, X.; Shen, J.; Wang, J.; Sun, W. M.; Wang, D. S.; Jiang, J. C.; Li, Y. D. Polystyrene waste thermochemical hydrogenation to ethylbenzene by a N-bridged Co, Ni dual-atom catalyst. J. Am. Chem. Soc. 2023, 145, 16218–16227.
Meng, X. B.; Zhao, Z. Q.; Li, K.; Liu, Y. W.; Sun, W. M.; Zhai, T. Y.; Lin, Y. Q. Neighboring V atom as a catalytic switch: Reversing the active site for exceptional water splitting. Appl. Catal. B: Environ. Energy 2024, 351, 123942.
Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter. 2009, 21, 395502.
Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys.: Condens. Matter. 2017, 29, 465901.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Garrity, K. F.; Bennett, J. W.; Rabe, K. M.; Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 2014, 81, 446–452.
Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA + U framework. Phys. Rev. B. 2006, 73, 195107.
Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. Retracted article: A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.
Marzari, N.; Vanderbilt, D.; De Vita, A.; Payne, M. C. Thermal contraction and disordering of the Al (110) surface. Phys. Rev. Lett. 1999, 82, 3296–3299.
Skúlason, E.; Tripkovic, V.; Björketun, M. E.; Gudmundsdóttir, S.; Karlberg, G.; Rossmeisl, J.; Bligaard, T.; Jónsson, H.; Nørskov, J. K. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 2010, 114, 18182–18197.
Di Liberto, G.; Cipriano, L. A.; Pacchioni, G. Universal principles for the rational design of single atom electrocatalysts. Handle with care. ACS Catal. 2022, 12, 5846–5856.