PDF (11.4 MB)
Collect
Submit Manuscript
Research Article | Open Access

Performance evaluation of homogeneous dual-atom site M2-N6-graphene catalysts for hydrogen evolution reaction

Jing Meng1,§Letong Feng1,§Zhaoyang Zhang1,2Liang Zhang2Xiangwen Liu3 ()Zhenwei Zhang4 ()Wenming Sun1 ()
Department of Chemistry, Capital Normal University, Beijing 100048, China
Dassault Systemes (Shanghai) Information Technology Co., Ltd., Shanghai 200120, China
Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing 100094, China
Linyi Vocational University of Science and Technology (Linyi Branch of Steinbeis Intelligent Manufacturing Technology Transfer Center), Linyi 276000, China

§ Jing Meng and Letong Feng contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
We constructed a workflow containing both thermodynamic and kinetic descriptors and revealed that the shared nitrogen atoms between dual metal atoms can serve as crucial adsorption sites for hydrogen. This study provides valuable insights for the rational design of efficient hydrogen evolution reaction (HER) catalysts.

Abstract

Using first-principles calculations, we systematically investigated the hydrogen evolution reaction (HER) potential of 27 types of homogeneous dual-atom M2-N6-graphene catalysts. Shared nitrogen atoms between dual metal atoms were identified as crucial adsorption sites for hydrogen atoms. Notably, we found that relying solely on the free energy of hydrogen adsorption (ΔGH) could exclude the extremely unfavorable substrates, but may lead to misleading assessments of HER activation for substrates with modest ΔGH. Thermodynamic activity evaluation reveals that M2-N6-graphene (M = Cr, Co, Ni, Cu, Os, Pt) models exhibit promising HER activities. Kinetic analysis, based on the Volmer–Tafel mechanism, determined that the hydrogen coverage and relative distance between the adsorbed hydrogen atoms in the Tafel step affect the reaction energy barrier significantly. The coverage limits depend on the reaction free energy of the non-spontaneous third hydrogen adsorption step. By integrating the kinetic metric with thermodynamic assessments, we propose that the Co2-N6-graphene model displays superior HER activity. We further recommend selecting one of the metal positions in MaMb-N6-graphene to be Cr and excluding Cu and Ni elements during the selection of the second metal atom when designing heterogeneous MaMb-N6-graphene for alkaline HER catalyst. This study establishes a convenient workflow and provides valuable insights for the rational design of efficient HER catalysts.

Electronic Supplementary Material

Download File(s)
7004_ESM.pdf (3.1 MB)

References

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Chen, C. L.; Sun, M. Z.; Zhang, F.; Li, H. J.; Sun, M. R.; Fang, P.; Song, T. L.; Chen, W. X.; Dong, J. C.; Rosen, B. et al. Adjacent Fe site boosts electrocatalytic oxygen evolution at Co site in single-atom-catalyst through a dual-metal-site design. Energy Environ. Sci. 2023, 16, 1685–1696.

[3]

Hu, Y. F.; Li, Z. S.; Li, B. L.; Yu, C. L. Recent progress of diatomic catalysts: General design fundamentals and diversified catalytic applications. Small 2022, 18, 2203589.

[4]

Sun, F.; Tang, Q.; Jiang, D. E. Theoretical advances in understanding and designing the active sites for hydrogen evolution reaction. ACS Catal. 2022, 12, 8404–8433.

[5]

Zhu, Y. M.; Klingenhof, M.; Gao, C. L.; Koketsu, T.; Weiser, G.; Pi, Y. C.; Liu, S. H.; Sui, L. J.; Hou, J. R.; Li, J. Y. et al. Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping. Nat. Commun. 2024, 15, 1447.

[6]

Barlocco, I.; Di Liberto, G.; Pacchioni, G. Hydrogen and oxygen evolution reactions on single atom catalysts stabilized by a covalent organic framework. Energy Adv. 2023, 2, 1022–1029.

[7]

Zhang, T. Y.; Jin, J.; Chen, J. M.; Fang, Y. Y.; Han, X.; Chen, J. Y.; Li, Y. P.; Wang, Y.; Liu, J. F.; Wang, L. Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 6875.

[8]

Yao, R.; Sun, K. A.; Zhang, K. Y.; Wu, Y.; Du, Y. J.; Zhao, Q.; Liu, G.; Chen, C.; Sun, Y. H.; Li, J. P. Stable hydrogen evolution reaction at high current densities via designing the Ni single atoms and Ru nanoparticles linked by carbon bridges. Nat. Commun. 2024, 15, 2218.

[9]

Wang, C.; Zang, H.; Liu, C. J.; Wang, J. H.; Kuai, L.; Geng, B. Y. Synergistic acid hydrogen evolution of neighboring Pt single atoms and clusters: Understanding their superior activity and mechanism. Inorg. Chem. 2023, 62, 6856–6863.

[10]

Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on mxene. Angew. Chem., Int. Ed. 2024, 63, e202316550.

[11]

Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e202308800.

[12]

Guan, S. Y.; Yuan, Z. L.; Zhao, S. Q.; Zhuang, Z. C.; Zhang, H. H.; Shen, R. F.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Efficient hydrogen generation from ammonia borane hydrolysis on a tandem ruthenium-platinum-titanium catalyst. Angew. Chem., Int. Ed. 2024, 63, e202408193.

[13]

Li, Y. P.; Niu, S. W.; Liu, P. G.; Pan, R. R.; Zhang, H. K.; Ahmad, N.; Shi, Y.; Liang, X.; Cheng, M. Y.; Chen, S. H. et al. Ruthenium nanoclusters and single atoms on α-MoC/N-doped carbon achieves low-input/input-free hydrogen evolution via decoupled/coupled hydrazine oxidation. Angew. Chem., Int. Ed. 2024, 63, e202316755.

[14]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[15]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[16]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[17]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[18]

Tang, B.; Zhou, Y. N.; Ji, Q. Q.; Zhuang, Z. C.; Zhang, L.; Wang, C.; Hu, H. B.; Wang, H. J.; Mei, B. B.; Song, F. et al. A janus dual-atom catalyst for electrocatalytic oxygen reduction and evolution. Nat. Synth. 2024, 3, 878–890.

[19]

Zhu, P.; Xiong, X.; Wang, D. S.; Li, Y. D. Advances and regulation strategies of the active moiety in dual-atom site catalysts for efficient electrocatalysis. Adv. Energy Mater. 2023, 13, 2300884.

[20]

Tian, S. B.; Wang, B. X.; Gong, W. B.; He, Z. Z.; Xu, Q.; Chen, W. X.; Zhang, Q. H.; Zhu, Y. Q.; Yang, J. R.; Fu, Q. et al. Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nat. Commun. 2021, 12, 3181.

[21]

Tang, M. H.; Shen, J.; Wang, Y. D.; Zhao, Y. F.; Gan, T.; Zheng, X. S.; Wang, D. S.; Han, B. X.; Liu, Z. M. Highly efficient recycling of polyester wastes to diols using Ru and Mo dual-atom catalyst. Nat. Commun. 2024, 15, 5630.

[22]

Fang, C.; Zhou, J.; Zhang, L. L.; Wan, W. C.; Ding, Y. X.; Sun, X. Y. Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction. Nat. Commun. 2023, 14, 4449.

[23]

Zhu, P.; Xiong, X.; Wang, X. L.; Ye, C. L.; Li, J. Z.; Sun, W. M.; Sun, X. H.; Jiang, J. J.; Zhuang, Z. B.; Wang, D. S. et al. Regulating the FeN4 moiety by constructing Fe-Mo dual-metal atom sites for efficient electrochemical oxygen reduction. Nano Lett. 2022, 22, 9507–9515.

[24]

Li, R. Z.; Wang, D. S. Superiority of dual-atom catalysts in electrocatalysis: One step further than single-atom catalysts. Adv. Energy Mater. 2022, 12, 2103564.

[25]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the Volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[26]

Chen, Y.; Lin, J.; Pan, Q.; Liu, X.; Ma, T. Y.; Wang, X. D. Inter-metal interaction of dual-atom catalysts in heterogeneous catalysis. Angew. Chem., Int. Ed. 2023, 62, e202306469.

[27]

Gong, Y. N.; Cao, C. Y.; Shi, W. J.; Zhang, J. H.; Deng, J. H.; Lu, T. B.; Zhong, D. C. Modulating the electronic structures of dual-atom catalysts via coordination environment engineering for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202215187.

[28]

Wang, Y.; Park, B. J.; Paidi, V. K.; Huang, R.; Lee, Y.; Noh, K. J.; Lee, K. S.; Han, J. W. Precisely constructing orbital coupling-modulated dual-atom Fe pair sites for synergistic CO2 electroreduction. ACS Energy Lett. 2022, 7, 640–649.

[29]

Levell, Z.; Le, J. B.; Yu, S.; Wang, R. Y.; Ethirajan, S.; Rana, R.; Kulkarni, A.; Resasco, J.; Lu, D. Y.; Cheng, J. et al. Emerging atomistic modeling methods for heterogeneous electrocatalysis. Chem. Rev. 2024, 124, 8620–8656.

[30]

Kumar, A.; Bui, V. Q.; Lee, J.; Wang, L. L.; Jadhav, A. R.; Liu, X. H.; Shao, X. D.; Liu, Y.; Yu, J. M.; Hwang, Y. et al. Moving beyond bimetallic-alloy to single-atom dimer atomic-interface for all-pH hydrogen evolution. Nat. Commun. 2021, 12, 6766.

[31]

Zhang, L. H.; Guo, X. Y.; Zhang, S. L.; Huang, S. P. Building up the “genome” of bi-atom catalysts toward efficient HER/OER/ORR. J. Mater. Chem. A 2022, 10, 11600–11612.

[32]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[33]

Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

[34]

Li, R. Z.; Zhang, Z. D.; Liang, X.; Shen, J.; Wang, J.; Sun, W. M.; Wang, D. S.; Jiang, J. C.; Li, Y. D. Polystyrene waste thermochemical hydrogenation to ethylbenzene by a N-bridged Co, Ni dual-atom catalyst. J. Am. Chem. Soc. 2023, 145, 16218–16227.

[35]

Meng, X. B.; Zhao, Z. Q.; Li, K.; Liu, Y. W.; Sun, W. M.; Zhai, T. Y.; Lin, Y. Q. Neighboring V atom as a catalytic switch: Reversing the active site for exceptional water splitting. Appl. Catal. B: Environ. Energy 2024, 351, 123942.

[36]

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter. 2009, 21, 395502.

[37]

Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys.: Condens. Matter. 2017, 29, 465901.

[38]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[39]

Garrity, K. F.; Bennett, J. W.; Rabe, K. M.; Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 2014, 81, 446–452.

[40]

Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA + U framework. Phys. Rev. B. 2006, 73, 195107.

[41]

Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. Retracted article: A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

[42]

Marzari, N.; Vanderbilt, D.; De Vita, A.; Payne, M. C. Thermal contraction and disordering of the Al (110) surface. Phys. Rev. Lett. 1999, 82, 3296–3299.

[43]

Skúlason, E.; Tripkovic, V.; Björketun, M. E.; Gudmundsdóttir, S.; Karlberg, G.; Rossmeisl, J.; Bligaard, T.; Jónsson, H.; Nørskov, J. K. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 2010, 114, 18182–18197.

[44]

Di Liberto, G.; Cipriano, L. A.; Pacchioni, G. Universal principles for the rational design of single atom electrocatalysts. Handle with care. ACS Catal. 2022, 12, 5846–5856.

Nano Research
Article number: 94907004
Cite this article:
Meng J, Feng L, Zhang Z, et al. Performance evaluation of homogeneous dual-atom site M2-N6-graphene catalysts for hydrogen evolution reaction. Nano Research, 2025, 18(1): 94907004. https://doi.org/10.26599/NR.2025.94907004
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return