AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (29.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

NIR photothermal enhancement to achieve high-efficiency nitrogen reduction to ammonia by polyoxometalates@Fe-polydopamine

Xiaofei Chen1Lixin Wu2 ( )Feng Bai1 ( )
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
Show Author Information

Graphical Abstract

Integrating near-infrared photothermal properties of Fe-chelated polydopamine into a polyoxometalate-based catalyst has achieved the highest N2 reduction efficiency under mild conditions.

Abstract

The development of atmospheric pressure N2 reduction to NH3 is attracting much attention in green chemistry, yet it is still a challenge to obtain satisfactory activity under mild conditions. Herein, an efficient near-infrared (NIR) photothermal catalysis reduction of N2 constitutes an occurrence is reported. With or without V-substitute polyoxometalates (POMs) loaded on the surface of Fe-chelated polydopamine (Fe-PDA) photothermal support through the electrostatic interactions, NIR photothermal catalysts POMs@Fe-PDA are fabricated. The induction of “FeV” cofactor facilitates electron transfer between V(V)/V(IV)&Fe(III)/Fe(II) and N2, thereby activating N2 molecule. The synergy between the catalytic activity of V-POMs and the local NIR photothermal effect of Fe-PDA dramatically enhances N2 reduction. Noticeably, PMo10V2@Fe-PDA exhibits a significantly enhanced NH3 production rate of 181.1 μmol·L−1 with a turnover frequency of 1006.1 mmol·M−1·h−1 under 808 nm NIR laser radiation, being the highest values reported at atmospheric pressure. We expect that this work could provide an alternative approach for photothermal catalysis N2 reduction under mild conditions.

Electronic Supplementary Material

Download File(s)
7006_ESM.pdf (3.3 MB)

References

[1]

Tanabe, Y.; Nishibayashi, Y. Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions. Chem. Soc. Rev. 2021, 50, 5201–5242.

[2]

Zehr, J. P.; Capone, D. G. Changing perspectives in marine nitrogen fixation. Science 2020, 368, eaay9514.

[3]

Cheng, M.; Xiao, C.; Xie, Y. Shedding light on the role of chemical bond in catalysis of nitrogen fixation. Adv. Mater. 2021, 33, 2007891.

[4]

Liu, Y. L.; Zhuang, Z. C.; Liu, Y. X.; Liu, N. Y.; Li, Y. X.; Cheng, Y. Y.; Yu, J. W.; Yu, R. H.; Li, H. T.; Wang, D. S. Shear-strained Pd single-atom electrocatalysts for nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2024, e202411396.

[5]

Luo, Y. R.; Chen, G. F.; Ding, L.; Chen, X. Z.; Ding, L. X.; Wang, H. H. Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule 2019, 3, 279–289.

[6]

Peng, Y.; Albero, J.; Franconetti, A.; Concepción, P.; García, H. Visible and NIR light assistance of the N2 reduction to NH3 catalyzed by Cs-promoted Ru nanoparticles supported on strontium titanate. ACS Catal. 2022, 12, 4938–4946.

[7]

Hui, X. C.; Li, L. F.; Xia, Q. N.; Hong, S.; Hao, L. D.; Robertson, A. W.; Sun, Z. Y. Interface engineered Sb2O3/W18O49 heterostructure for enhanced visible-light-driven photocatalytic N2 reduction. Chem. Eng. J. 2022, 438, 135485.

[8]

Dong, G. J.; Huang, X. J.; Bi, Y. P. Anchoring black phosphorus quantum dots on Fe-doped W18O49 nanowires for efficient photocatalytic nitrogen fixation. Angew. Chem., Int. Ed. 2022, 61, e202204271.

[9]

Yuan, Y. J.; Wang, P.; Li, Z. J.; Wu, Y. Z.; Bai, W. F.; Su, Y. B.; Guan, J.; Wu, S. T.; Zhong, J. S.; Yu, Z. T. et al. The role of bandgap and interface in enhancing photocatalytic H2 generation activity of 2D-2D black phosphorus/MoS2 photocatalyst. Appl. Catal. B: Environ. 2019, 242, 1–8.

[10]

Wang, G. X.; Li, B. J.; Li, B.; Wu, L. X. Gold nanocrystal-loaded 2D supramolecular network for plasmon-enhanced nitrogen fixation. Green Chem. 2023, 25, 10556–10566.

[11]

Li, X. H.; Li, H.; Jiang, S. L.; Yang, L.; Li, H. Y.; Liu, Q. L.; Bai, W.; Zhang, Q.; Xiao, C.; Xie, Y. Constructing mimic-enzyme catalyst: Polyoxometalates regulating carrier dynamics of metal-organic frameworks to promote photocatalytic nitrogen fixation. ACS Catal. 2023, 13, 7189–7198.

[12]

Han, Q. T.; Bai, X. W.; Chen, J. M.; Feng, S. N.; Gao, W.; Tu, W. G.; Wang, X. Y.; Wang, J. L.; Jia, B.; Shen, Q. et al. Hollow InVO4 nanocuboid assemblies toward promoting photocatalytic N2 conversion performance. Adv. Mater. 2021, 33, 2006780.

[13]

Zhao, Y. F.; Gao, W.; Li, S. W.; Williams, G. R.; Mahadi, A. H.; Ma, D. Solar- versus thermal-driven catalysis for energy conversion. Joule 2019, 3, 920–937.

[14]

Mateo, D.; Cerrillo, J. L.; Durini, S.; Gascon, J. Fundamentals and applications of photo-thermal catalysis. Chem. Soc. Rev. 2021, 50, 2173–2210.

[15]

Chen, X. F.; Zhang, G. H.; Li, B.; Wu, L. X. An integrated giant polyoxometalate complex for photothermally enhanced catalytic oxidation. Sci. Adv. 2021, 7, eabf8413.

[16]

Chen, X. F.; Wei, M. F.; Yang, A. B.; Jiang, F. R.; Li, B.; Kholdeeva, O. A.; Wu, L. X. Near-infrared photothermal catalysis for enhanced conversion of carbon dioxide under mild conditions. ACS Appl. Mater. Interfaces 2022, 14, 5194–5202.

[17]

Zhao, Z. F.; Yang, D.; Ren, H. J.; An, K.; Chen, Y.; Zhou, Z. Y.; Wang, W. J.; Jiang, Z. Y. Nitrogenase-inspired mixed-valence MIL-53(FeII/FeIII) for photocatalytic nitrogen fixation. Chem. Eng. J. 2020, 400, 125929.

[18]

Spatzal, T.; Schlesier, J.; Burger, E. M.; Sippel, D.; Zhang, L. M.; Andrade, S. L. A.; Rees, D. C.; Einsle, O. Nitrogenase FeMoco investigated by spatially resolved anomalous dispersion refinement. Nat. Commun. 2016, 7, 10902.

[19]

Meredith, P.; Sarna, T. The physical and chemical properties of eumelanin. Pigm. Cell Res. 2006, 19, 572–594.

[20]

Lv, J. Y.; Xing, Y.; Li, X. Y.; Du, X. NIR light-propelled bullet-shaped carbon hollow nanomotors with controllable shell thickness for the enhanced dye removal. Exploration 2022, 2, 20210162.

[21]

Xu, N.; Hu, A.; Pu, X. M.; Li, J. F.; Wang, X. M.; Wang, J.; Huang, Z. B.; Liao, X. M.; Yin, G. F. Fe(III)-chelated polydopamine nanoparticles for synergistic tumor therapies of enhanced photothermal ablation and antitumor immune activation. ACS Appl. Mater. Interfaces 2022, 14, 15894–15910.

[22]

Zhu, Y. D.; Xin, N. N.; Qiao, Z.; Chen, S. P.; Zeng, L. W.; Zhang, Y. S.; Wei, D.; Sun, J.; Fan, H. S. Novel tumor-microenvironment-based sequentialcatalytic therapy by Fe(II)-engineered polydopamine nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 43018–43030.

[23]

Zhang, G. H.; Li, X. Y.; Chen, G.; Zhang, Y.; Wei, M. F.; Chen, X. F.; Li, B.; Wu, Y. Q.; Wu, L. X. Supramolecular framework membrane for precise sieving of small molecules, nanoparticles and proteins. Nat. Commun. 2023, 14, 975.

[24]

Guan, W. M.; Wang, G. X.; Li, B.; Wu, L. X. Organic macrocycle-polyoxometalate hybrids. Coord. Chem. Rev. 2023, 481, 215039.

[25]

Yamaguchi, M.; Shioya, K.; Li, C. F.; Yonesato, K.; Murata, K.; Ishii, K.; Yamaguchi, K.; Suzuki, K. Porphyrin-polyoxotungstate molecular hybrid as a highly efficient, durable, visible-light-responsive photocatalyst for aerobic oxidation reactions. J. Am. Chem. Soc. 2024, 146, 4549–4556.

[26]

Pope, M. T.; Müller, A. Polyoxometalate chemistry: An old field with new dimensions in several disciplines. Angew. Chem., Int. Ed. 1991, 30, 34–48.

[27]

Chen, X. F.; Yang, A. B.; Wang, G. X.; Wei, M. F.; Liu, N.; Li, B.; Wu, L. X. Reinforced catalytic oxidation of polyoxometalate@charge transfer complex by on-site heating from photothermal conversion. Chem. Eng. J. 2022, 446, 137134.

[28]

Huang, Q.; Liu, J.; Feng, L.; Wang, Q.; Guan, W.; Dong, L. Z.; Zhang, L.; Yan, L. K.; Lan, Y. Q.; Zhou, H. C. Multielectron transportation of polyoxometalate-grafted metalloporphyrin coordination frameworks for selective CO2-to-CH4 photoconversion. Natl. Sci. Rev. 2020, 7, 53–63.

[29]

Li, X. H.; Chen, W. L.; Tan, H. Q.; Li, F. R.; Li, J. P.; Li, Y. G.; Wang, E. B. Reduced state of the graphene oxide@polyoxometalate nanocatalyst achieving high-efficiency nitrogen fixation under light driving conditions. ACS Appl. Mater. Interfaces 2019, 11, 37927–37938.

[30]

Tsigdinos, G. A.; Hallada, C. J. Molybdovanadophosphoric acids and their salts. I. Investigation of methods of preparation and characterization. Inorg. Chem. 1968, 7, 437–441.

[31]

Kumar, A.; Kumar, S.; Kumari, N.; Lee, S. H.; Han, J.; Michael, I. J.; Cho, Y. K.; Lee, I. S. Plasmonically coupled nanoreactors for NIR-light-mediated remote stimulation of catalysis in living cells. ACS Catal. 2019, 9, 977–990.

[32]

Qiu, J. C.; Shi, Y. F.; Xia, Y. N. Polydopamine nanobottles with photothermal capability for controlled release and related applications. Adv. Mater. 2021, 33, 2104729.

[33]

Wu, Y. Z.; Zhou, W. Q.; Zhou, L.; In, S. I.; Lei, J. Y.; Wang, L. Z.; Zhang, J. L.; Liu, Y. D. Near-infrared photothermal effect enhanced heterogeneous catalysis of Co3O4/PDA composite for highly efficient activation of peroxymonosulfate to degrade antibiotic pollutants. Chem. Eng. J. 2023, 474, 145267.

[34]

Andersen, S. Z.; Čolić, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C.; McEnaney, J. M.; Enemark-Rasmussen, K.; Baker, J. G.; Singh, A. R.; Rohr, B. A. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019, 570, 504–508.

[35]

Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.

[36]

Huang, H. J.; Yu, D. S.; Hu, F.; Huang, S. C.; Song, J. N.; Chen, H. Y.; Li, L. L.; Peng, S. J. Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew. Chem., Int. Ed. 2022, 61, e202116068.

[37]

Zhao, Y. X.; Shi, R.; Bian, X. A. N.; Zhou, C.; Zhao, Y. F.; Zhang, S.; Wu, F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H. et al. Ammonia detection methods in photocatalytic and electrocatalytic experiments: How to improve the reliability of NH3 production rates. Adv. Sci. 2019, 6, 1802109.

[38]

Comer, B. M.; Liu, Y. H.; Dixit, M. B.; Hatzell, K. B.; Ye, Y. F.; Crumlin, E. J.; Hatzell, M. C.; Medford, A. J. The role of adventitious carbon in photo-catalytic nitrogen fixation by titania. J. Am. Chem. Soc. 2018, 140, 15157–15160.

[39]

Zhang, X. R.; Shi, R.; Li, Z. H.; Zhao, J. Q.; Huang, H. N.; Zhou, C.; Zhang, T. R. Photothermal-assisted photocatalytic nitrogen oxidation to nitric acid on palladium-decorated titanium oxide. Adv. Energy Mater. 2022, 12, 2103740.

[40]

Nambu, J. C.; Ueda, T.; Guo, S. X.; Boas, J. F.; Bond, A. M. Detailed voltammetric and EPR study of protonation reactions accompanying the one-electron reduction of Keggin-type polyoxometalates, [XVVM11O40]4– (X = P, As; M = Mo, W) in acetonitrile. Dalton Trans. 2010, 39, 7364–7373.

[41]

Bo, Y. N.; Wang, H. Y.; Lin, Y. X.; Yang, T.; Ye, R.; Li, Y.; Hu, C. Y.; Du, P. Y.; Hu, Y. G.; Liu, Z. et al. Altering hydrogenation pathways in photocatalytic nitrogen fixation by tuning local electronic structure of oxygen vacancy with dopant. Angew. Chem., Int. Ed. 2021, 60, 16085–16092.

[42]

Yuan, J.; Feng, W. H.; Zhang, Y. F.; Xiao, J. Y.; Zhang, X. Y.; Wu, Y. T.; Ni, W. K.; Huang, H. W.; Dai, W. X. Unraveling synergistic effect of defects and piezoelectric field in breakthrough piezo-photocatalytic N2 reduction. Adv. Mater. 2024, 36, 2303845.

[43]

Mao, C. L.; Wang, J. X.; Zou, Y. J.; Shi, Y. B.; Viasus, C. J.; Loh, J. Y. Y.; Xia, M. K.; Ji, S. F.; Li, M. Q.; Shang, H. et al. Photochemical acceleration of ammonia production by Pt1–Pt n –TiN reduction and N2 activation. J. Am. Chem. Soc. 2023, 145, 13134–13146.

Nano Research
Article number: 94907006
Cite this article:
Chen X, Wu L, Bai F. NIR photothermal enhancement to achieve high-efficiency nitrogen reduction to ammonia by polyoxometalates@Fe-polydopamine. Nano Research, 2025, 18(1): 94907006. https://doi.org/10.26599/NR.2025.94907006
Topics:

272

Views

67

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 31 July 2024
Revised: 23 August 2024
Accepted: 25 August 2024
Published: 24 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return