AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (19.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Ultralight and superelastic MXene/reduced graphene oxide aerogels for electromagnetic interference shielding

Xinfeng Zhou1,2,§Yang Dai1,,§Guoyao Yue1Yiman Zhang1Lulu Li2,Zhong-Zhen Yu1,2Peng Min1 ( )Hao-Bin Zhang1,2 ( )
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Present address: BOE Technology Innovation Center, BOE Technology Group Co., Ltd., Beijing 100176, China
Present address: Xi’an Modern Chemistry Research Institute, Xi’an 710065, China

§ Xinfeng Zhou and Yang Dai contributed equally to this work.

Show Author Information

Graphical Abstract

The air bubble-ice crystal dual template and annealing strategy endow transition metal carbides/nitrides (MXene) composite aerogel with unique Y-shape joints, robust skeleton, and strong interlayer interactions, which afford a unique integration of ultra-low density and high resilience. The electron bridging effect of the reduced graphene oxide (RGO) sheets confers the aerogel with excellent electromagnetic interference shielding performance.

Abstract

Lightweight aerogels feature multifunctionality and a high porosity, yet accompanied with poor structure recovery under large strain deformations. In this work, we develop an air bubble-ice crystal dual template and annealing strategy to integrate low density and high resilience for the conductive transition metal carbides/nitrides (MXene) composite aerogels. The air bubbles and ice crystals synergistically exclude the nanosheets to the gas-liquid interfaces, thereby constructing unique Y-shaped junctions and robust skeleton. Subsequent annealing process greatly enhances the interlayer interactions. Under external load, the Y-shaped structures prevent the stress concentration at the junctions by transferring the forces to the skeleton for maintaining structural stability. In addition, the wrinkled and thick cell walls, together with the enhanced interlayer interactions, endow the aerogel with exceptional structural stability and resilience. As a result, the MXene/reduced graphene oxide (RGO) composite aerogels exhibit superelasticity with reversible compressive strains of up to 95%. In addition, the electron bridging effect of the RGO sheets affords the aerogel to deliver excellent electromagnetic interference shielding performance, as high as 46.3 dB at 2.5 mm. Furthermore, the remarkable reshapeability of the aerogels allows for precise regulation of structure and performance (33.5–75.1 dB) by a simple wetting compression process. In summary, this work offers helpful inspirations for developing lightweight and superelasticity aerogels for extensive applications.

Electronic Supplementary Material

Download File(s)
7009_ESM.pdf (1,018.9 KB)

References

[1]

Liang, C. B.; Zhang, W.; Liu, C. L.; He, J.; Xiang, Y.; Han, M. J.; Tong, Z. W.; Liu, Y. Q. Multifunctional phase change textiles with electromagnetic interference shielding and multiple thermal response characteristics. Chem. Eng. J. 2023, 471, 144500.

[2]

Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

[3]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[4]

Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNT x (MXene). Science 2020, 369, 446–450.

[5]
Guo, Y. Q.; Wang, S. S.; Zhang, H. T.; Guo, H.; He, M. K.; Ruan, K. P.; Yu, Z.; Wang, G. S.; Qiu, H.; Gu, J. W. Consistent thermal conductivities of spring-like structured polydimethylsiloxane composites under large deformation. Adv. Mater., in press, DOI: 10.1002/adma.202404648.
[6]

Zhou, X. F.; Liu, Y.; Gao, Z. J.; Min, P.; Liu, J.; Yu, Z. Z.; Nicolosi, V.; Zhang, H. B. Biphasic GaIn alloy constructed stable percolation network in polymer composites over ultrabroad temperature region. Adv. Mater. 2024, 36, 2310849.

[7]

Deng, Z. M.; Li, L. L.; Tang, P. P.; Jiao, C. Y.; Yu, Z. Z.; Koo, C. M.; Zhang, H. B. Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano 2022, 16, 16976–16986.

[8]

Wan, H. J.; Liu, N.; Tang, J.; Wen, Q. Y.; Xiao, X. Substrate-independent Ti3C2T x MXene waterborne paint for terahertz absorption and shielding. ACS Nano 2021, 15, 13646–13652.

[9]

Deng, Z. M.; Tang, P. P.; Wu, X. Y.; Zhang, H. B.; Yu, Z. Z. Superelastic, ultralight, and conductive Ti3C2T x MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 20539–20547.

[10]

Yang, J. M.; Wang, H.; Zhang, Y. L.; Zhang, H. X.; Gu, J. W. Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 2024, 16, 31.

[11]

Pan, F.; Shi, Y. Y.; Yang, Y.; Guo, H. T.; Li, L. X.; Jiang, H. J.; Wang, X.; Zeng, Z. H.; Lu, W. Porifera-inspired lightweight, thin, wrinkle-resistance, and multifunctional MXene foam. Adv. Mater. 2024, 36, 2311135.

[12]

Yun, G. L.; Tang, S. Y.; Sun, S. S.; Yuan, D.; Zhao, Q. B.; Deng, L.; Yan, S.; Du, H. P.; Dickey, M. D.; Li, W. H. Liquid metal-filled magnetorheological elastomer with positive piezoconductivity. Nat. Commun. 2019, 10, 1300.

[13]

Wang, L.; Zhang, M. Y.; Yang, B.; Tan, J. J.; Ding, X. Y. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 2020, 14, 10633–10647.

[14]

Yang, X.; Yao, Y. W.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G. L.; Cao, D. X.; Yan, J. 3D macroporous oxidation-resistant Ti3C2T x MXene hybrid hydrogels for enhanced supercapacitive performances with ultralong cycle life. Adv. Funct. Mater. 2022, 32, 2109479.

[15]

Schmitz, D. P.; Ecco, L. G.; Dul, S.; Pereira, E. C. L.; Soares, B. G.; Barra, G. M. O.; Pegoretti, A. Electromagnetic interference shielding effectiveness of ABS carbon-based composites manufactured via fused deposition modelling. Mater. Today Commun. 2018, 15, 70–80.

[16]

Chen, Y.; Xie, X. Q.; Xin, X.; Tang, Z. R.; Xu, Y. J. Ti3C2T x -based three-dimensional hydrogel by a graphene oxide-assisted self-convergence process for enhanced photoredox catalysis. ACS Nano 2019, 13, 295–304.

[17]

Du, Y. Q.; Xu, J.; Fang, J. Y.; Zhang, Y. T.; Liu, X. Y.; Zuo, P. Y.; Zhuang, Q. X. Ultralight, highly compressible, thermally stable MXene/aramid nanofiber anisotropic aerogels for electromagnetic interference shielding. J. Mater. Chem. A 2022, 10, 6690–6700.

[18]

Wang, Y.; Fan, Z. W.; Zhang, H.; Guo, J.; Yan, D. X.; Wang, S. F.; Dai, K.; Li, Z. M. 3D-printing of segregated carbon nanotube/polylactic acid composite with enhanced electromagnetic interference shielding and mechanical performance. Mater. Des. 2021, 197, 109222.

[19]

Deng, Y. Q.; Shang, T. X.; Wu, Z. T.; Tao, Y.; Luo, C.; Liang, J. C.; Han, D. L.; Lyu, R. Y.; Qi, C. S.; Lv, W. et al. Fast Gelation of Ti3C2T x MXene initiated by metal ions. Adv. Mater. 2019, 31, 1902432.

[20]

Chizari, K.; Arjmand, M.; Liu, Z.; Sundararaj, U.; Therriault, D. Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications. Mater. Today Commun. 2017, 11, 112–118.

[21]

Bian, R. J.; He, G. L.; Zhi, W. Q.; Xiang, S. L.; Wang, T. W.; Cai, D. Y. Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J. Mater. Chem. C 2019, 7, 474–478.

[22]

Zhao, S.; Li, L. L.; Zhang, H. B.; Qian, B. Q.; Luo, J. Q.; Deng, Z. M.; Shi, S. W.; Russell, T. P.; Yu, Z. Z. Janus MXene nanosheets for macroscopic assemblies. Mater. Chem. Front. 2020, 4, 910–917.

[23]

Lv, L. X.; Zhang, P. P.; Cheng, H. H.; Zhao, Y.; Zhang, Z. P.; Shi, G. Q.; Qu, L. T. Solution-processed ultraelastic and strong air-bubbled graphene foams. Small 2016, 12, 3229–3234.

[24]

Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681.

[25]

Zeng, Z. H.; Wang, C. X.; Siqueira, G.; Han, D. X.; Huch, A.; Abdolhosseinzadeh, S.; Heier, J.; Nüesch, F.; Zhang, C. F.; Nyström, G. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 2020, 7, 2000979.

[26]

Zhao, S.; Zhang, H. B.; Luo, J. Q.; Wang, Q. W.; Xu, B.; Hong, S.; Yu, Z. Z. Highly electrically conductive three-dimensional Ti3C2T x MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 2018, 12, 11193–11202.

[27]

Ma, Z.; Deng, Z. M.; Zhou, X. F.; Li, L. L.; Jiao, C. Y.; Ma, H. L.; Yu, Z. Z.; Zhang, H. B. Multifunctional and magnetic MXene composite aerogels for electromagnetic interference shielding with low reflectivity. Carbon 2023, 213, 118260.

[28]

Wu, X. Y.; Han, B. Y.; Zhang, H. B.; Xie, X.; Tu, T. X.; Zhang, Y.; Dai, Y.; Yang, R.; Yu, Z. Z. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122622.

[29]

Yuan, F. Y.; Zhang, H. B.; Li, X. F.; Ma, H. L.; Li, X. Z.; Yu, Z. Z. In situ chemical reduction and functionalization of graphene oxide for electrically conductive phenol formaldehyde composites. Carbon 2014, 68, 653–661.

[30]

Qiu, L.; Huang, B.; He, Z. J.; Wang, Y. Y.; Tian, Z. M.; Liu, J. Z.; Wang, K.; Song, J. C.; Gengenbach, T. R.; Li, D. Extremely low density and super-compressible graphene cellular materials. Adv. Mater. 2017, 29, 1701553.

[31]

Jiang, D. G.; Zhang, J. Z.; Qin, S.; Wang, Z. Y.; Usman, K. A. S.; Hegh, D.; Liu, J. Q.; Lei, W. W.; Razal, J. M. Superelastic Ti3C2T x MXene-based hybrid aerogels for compression-resilient devices. ACS Nano 2021, 15, 5000–5010.

[32]

Yang, J. M.; Chen, Y. J.; Yan, X.; Liao, X.; Wang, H.; Liu, C.; Wu, H.; Zhou, Y. Y.; Gao, H.; Xia, Y. Y. et al. Construction of in-situ grid conductor skeleton and magnet core in biodegradable poly (butyleneadipate-co-terephthalate) for efficient electromagnetic interference shielding and low reflection. Compos. Sci. Technol. 2023, 240, 110093.

[33]

Zhang, Y. L.; Gu, J. W. A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022, 14, 89.

[34]

Yang, J. M.; Wang, H.; Zhang, H. X.; Lin, P.; Gao, H.; Xia, Y. Y.; Liao, X. Multistage microcellular waterborne polyurethane composite with optionally low-reflection behavior for ultra-efficient electromagnetic interference shielding. J. Mater. Sci. Technol. 2025, 208, 132–140.

[35]

Wang, N. N.; Wang, H.; Wang, Y. Y.; Wei, Y. H.; Si, J. Y.; Yuen, A. C. Y.; Xie, J. S.; Yu, B.; Zhu, S. E.; Lu, H. D. et al. Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation. ACS Appl. Mater. Interfaces 2019, 11, 40512–40523.

[36]

Yang, H. S.; Jin, X. T.; Sun, G. Q.; Li, Z. L.; Gao, J.; Lu, B.; Shao, C. X.; Zhang, X. Q.; Dai, C. L.; Zhang, Z. P. et al. Retarding Ostwald ripening to directly cast 3D porous graphene oxide bulks at open ambient conditions. ACS Nano 2020, 14, 6249–6257.

[37]

Yang, H. S.; Li, Z. L.; Lu, B.; Gao, J.; Jin, X. T.; Sun, G. Q.; Zhang, G. F.; Zhang, P. P.; Qu, L. T. Reconstruction of inherent graphene oxide liquid crystals for large-scale fabrication of structure-intact graphene aerogel bulk toward practical applications. ACS Nano 2018, 12, 11407–11416.

[38]

Zhang, X. F.; Zhang, T. P.; Wang, Z.; Ren, Z. J.; Yan, S. K.; Duan, Y. X.; Zhang, J. M. Ultralight, superelastic, and fatigue-resistant graphene aerogel templated by graphene oxide liquid crystal stabilized air bubbles. ACS Appl. Mater. Interfaces 2019, 11, 1303–1310.

[39]

Zhu, C.; Han, T. Y. J.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 6962.

[40]

He, H. M.; Wei, X.; Yang, B.; Liu, H. Z.; Sun, M. Z.; Li, Y. R.; Yan, A. X.; Tang, C. Y.; Lin, Y.; Xu, L. Z. Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric nanofibers. Nat. Commun. 2022, 13, 4242.

[41]

Li, J.; Sheng, J.; Xing, C. S.; Liu, B.; Wu, Y. Z.; Zhang, T.; Shuang, J. X.; Yang, Z. Y.; Wang, L. D.; Fei, W. D. Ultra-high-performance graphene-based bulk materials strengthened by Y-type connection structure. Chem. Eng. J. 2024, 485, 149974.

[42]

Lee, G.; Zarei, M.; Wei, Q. S.; Zhu, Y.; Lee, S. G. Surface wrinkling for flexible and stretchable sensors. Small 2022, 18, 2203491.

[43]

Dong, G. H.; Li, S. Z.; Li, T.; Wu, H. J.; Nan, T. X.; Wang, X. H.; Liu, H. X.; Cheng, Y. X.; Zhou, Y. Q.; Qu, W. B. et al. Periodic wrinkle-patterned single-crystalline ferroelectric oxide membranes with enhanced piezoelectricity. Adv. Mater. 2020, 32, 2004477.

[44]
Yin, G.; Wu, J.; Ye, L.; Liu, L. X.; Yu, Y. X.; Min, P.; Yu, Z. Z.; Zhang, H. B. Dynamic adaptive wrinkle-structured silk fibroin/MXene composite fibers for switchable electromagnetic interference shielding. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202314425.
[45]

Zhang, Y.; Wang, S. J.; Tang, P. P.; Zhao, Z. F.; Xu, Z. P.; Yu, Z. Z.; Zhang, H. B. Realizing spontaneously regular stacking of pristine graphene oxide by a chemical-structure-engineering strategy for mechanically strong macroscopic films. ACS Nano 2022, 16, 8869–8880.

[46]

He, P.; Zhang, Y.; Wang, Z. G.; Min, P.; Deng, Z. M.; Li, L. L.; Ye, L.; Yu, Z. Z.; Zhang, H. B. An energy-saving structural optimization strategy for high-performance multifunctional graphene films. Carbon 2024, 222, 118932.

[47]

Liu, Y.; Zhou, X. F.; Jia, Z. R.; Wu, H. J.; Wu, G. L. Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 2022, 32, 2204499.

[48]
Jia, Z. R.; Liu, J. K.; Gao, Z. G.; Zhang, C. H.; Wu, G. L. Molecular intercalation-induced two-phase evolution engineering of 1T and 2H-MS2 (M = Mo, V, W) for interface-polarization-enhanced electromagnetic absorbers. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202405523.
[49]

Zhang, F.; Li, N.; Shi, J. F.; Wang, Y. Y.; Yan, D. X.; Li, Z. M. Cation bimetallic MOF anchored carbon fiber for highly efficient microwave absorption. Small 2024, 20, 2312135.

[50]

Hou, T. Q.; Wang, J. W.; Zheng, T. T.; Liu, Y.; Wu, G. L.; Yin, P. F. Anion exchange of metal particles on carbon-based skeletons for promoting dielectric equilibrium and high-efficiency electromagnetic wave absorption. Small 2023, 19, 2303463.

[51]

Yang, H. S.; Li, Z. L.; Sun, G. Q.; Jin, X. T.; Lu, B.; Zhang, P. P.; Lin, T. Y.; Qu, L. T. Superplastic air-dryable graphene hydrogels for wet-press assembly of ultrastrong superelastic aerogels with infinite macroscale. Adv. Funct. Mater. 2019, 29, 1901917.

Nano Research
Article number: 94907009
Cite this article:
Zhou X, Dai Y, Yue G, et al. Ultralight and superelastic MXene/reduced graphene oxide aerogels for electromagnetic interference shielding. Nano Research, 2025, 18(1): 94907009. https://doi.org/10.26599/NR.2025.94907009
Topics:

401

Views

117

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 20 July 2024
Revised: 26 August 2024
Accepted: 27 August 2024
Published: 23 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return