AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (22.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Zoledronate-loaded aluminum salt nanovaccines amplify cellular immune response by enhancing cross-presentation

Chunting He§Penghui He§Xue TangShuting BaiMing QinYunting ZhangZhaofei GuoGuangsheng DuXun Sun( )
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China

§ Chunting He and Penghui He contributed equally to this work.

Show Author Information

Graphical Abstract

The text reports that zoledronate (ZOL)-loaded aluminum hydroxide nanovaccines amplify CD8+ T cell responses by enhancing antigen cross-presentation, exhibiting significant anti-tumor efficacy. Besides, the system repurposed FDA-approved drugs including Alum and ZOL, which promising to be an extremely promising approach to addressing cancer treatment needs.

Abstract

Being a Th2 stimulator, classic aluminum salt-based adjuvants only stimulate weak cellular immune responses that are required for vaccination against intracellular viruses or cancerous cells. As a third-generation bisphosphonate, zoledronate (ZOL) can enhance antigen cross-presentation by inhibiting key enzymes of the mevalonate pathway. Here, we developed the subunit antigen ovalbumin (OVA) and ZOL co-loaded aluminum hydroxide nanoparticles (APN-OVA-ZOL) and investigated their capacity for inducing cellular immune responses against the antigen. Our results showed that the developed nanovaccines could successfully encapsulate OVA and ZOL, and enabled efficient lymph node delivery. Benefited by the mevalonate pathway inhibition effect of ZOL, APN-OVA-ZOL significantly promoted cross-presentation. As a result, APN-OVA-ZOL induced robust cellular immunity, including the activation of T and B cells. In a EG7-OVA tumor-bearing murine model, APN-OVA-ZOL significantly inhibited the tumor growth and prolonged mice survival. This work provided a strong empirical foundation indicating that zoledronate-loaded aluminum salt nanovaccines had a strong potency for cancer immunotherapy.

Electronic Supplementary Material

Download File(s)
7010_ESM.pdf (1,015.7 KB)

References

[1]

Shi, S. T.; Zhu, H. R.; Xia, X. Y.; Liang, Z. H.; Ma, X. H.; Sun, B. B. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine 2019, 37, 3167–3178.

[2]
Firdaus, F. Z.; Skwarczynski, M.; Toth, I. Developments in vaccine adjuvants. In Vaccine Design: Methods and Protocols, Volume 3. Resources for Vaccine Development. Thomas, S., Ed.; Springer: New York, 2022; pp 145–178.
[3]

Bonam, S. R.; Partidos, C. D.; Halmuthur, S. K. M.; Muller, S. An overview of novel adjuvants designed for improving vaccine efficacy. Trends Pharmacol. Sci. 2017, 38, 771–793.

[4]

Hollingsworth, R. E.; Jansen, K. Turning the corner on therapeutic cancer vaccines. npj Vaccines 2019, 4, 7.

[5]

Mempel, T. R.; Henrickson, S. E.; Von Andrian, U. H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 2004, 427, 154–159.

[6]

Le Gall, C. M.; Weiden, J.; Eggermont, L. J.; Figdor, C. G. Dendritic cells in cancer immunotherapy. Nat. Mater. 2018, 17, 474–475.

[7]

Jiang, H.; Wang, Q.; Sun, X. Lymph node targeting strategies to improve vaccination efficacy. J. Control. Release 2017, 267, 47–56.

[8]

Chen, Y.; De Koker, S.; De Geest, B. G. Engineering strategies for lymph node targeted immune activation. Acc. Chem. Res. 2020, 53, 2055–2067.

[9]

Joffre, O. P.; Segura, E.; Savina, A.; Amigorena, S. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 2012, 12, 557–569.

[10]

Agallou, M.; Margaroni, M.; Tsanaktsidou, E.; Badounas, F.; Kammona, O.; Kiparissides, C.; Karagouni, E. A liposomal vaccine promotes strong adaptive immune responses via dendritic cell activation in draining lymph nodes. J. Control. Release 2023, 356, 386–401.

[11]

K. M.; MacParland, S. A.; Ma, X. Z.; Spetzler, V. N.; Echeverri, J.; Ouyang, B.; Fadel, S. M.; Sykes, E. A.; Goldaracena, N.; Kaths, J. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 2016, 15, 1212–1221.

[12]

Yang, Y. S. S.; Atukorale, P. U.; Moynihan, K. D.; Bekdemir, A.; Rakhra, K.; Tang, L.; Stellacci, F.; Irvine, D. J. High-throughput quantitation of inorganic nanoparticle biodistribution at the single-cell level using mass cytometry. Nat. Commun. 2017, 8, 14069.

[13]

Tseng, Y. C.; Xu, Z. H.; Guley, K.; Yuan, H.; Huang, L. Lipid-calcium phosphate nanoparticles for delivery to the lymphatic system and SPECT/CT imaging of lymph node metastases. Biomaterials 2014, 35, 4688–4698.

[14]

Bai, S. T.; Jiang, H.; Song, Y. S.; Zhu, Y. N.; Qin, M.; He, C. T.; Du, G. S.; Sun, X. Aluminum nanoparticles deliver a dual-epitope peptide for enhanced anti-tumor immunotherapy. J. Control. Release 2022, 344, 134–146.

[15]

Jiang, H.; Wang, Q.; Li, L.; Zeng, Q.; Li, H. M.; Gong, T.; Zhang, Z. R.; Sun, X. Turning the old adjuvant from gel to nanoparticles to amplify CD8+ T cell responses. Adv. Sci. 2018, 5, 1700426.

[16]

Bode, C.; Zhao, G.; Steinhagen, F.; Kinjo, T.; Klinman, D. M. CpG DNA as a vaccine adjuvant. Expert Rev. Vac. 2011, 10, 499–511.

[17]

Zhang, Z. K.; Kuo, J. C. T.; Yao, S. Y.; Zhang, C.; Khan, H.; Lee, R. J. CpG oligodeoxynucleotides for anticancer monotherapy from preclinical stages to clinical trials. Pharmaceutics 2022, 14, 73.

[18]

Prashar, A.; Schnettger, L.; Bernard, E. M.; Gutierrez, M. G. Rab GTPases in immunity and inflammation. Front. Cell. Infect. Microbiol. 2017, 7, 435.

[19]

Xia, Y.; Xie, Y. H.; Yu, Z. S.; Xiao, H. Y.; Jiang, G. M.; Zhou, X. Y.; Yang, Y. Y.; Li, X.; Zhao, M.; Li, L. P. et al. The mevalonate pathway is a druggable target for vaccine adjuvant discovery. Cell 2018, 175, 1059–1073.e21.

[20]

Zhang, Y. T.; Jiang, M.; Du, G. S.; Zhong, X. F.; He, C. T.; Qin, M.; Hou, Y. Y.; Liu, R.; Sun, X. An antigen self-assembled and dendritic cell-targeted nanovaccine for enhanced immunity against cancer. Acta Pharm. Sin. B 2023, 13, 3518–3534.

[21]

Inaba, K.; Inaba, M.; Romani, N.; Aya, H.; Deguchi, M.; Ikehara, S.; Muramatsu, S.; Steinman, R. M. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 1992, 176, 1693–1702.

[22]

Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 2009, 10, 513–525.

[23]

A.; Kotsias, F.; Pauwels, A. M.; Carpier, J. M.; Jouve, M.; Timmerman, E.; Pace, L.; Vargas, P.; Maurin, M.; Gehrmann, U. et al. Toll-like receptor 4 engagement on dendritic cells restrains phago-lysosome fusion and promotes cross-presentation of antigens. Immunity 2015, 43, 1087–1100.

[24]

Mettlen, M.; Chen, P. H.; Srinivasan, S.; Danuser, G.; Schmid, S. L. Regulation of clathrin-mediated endocytosis. Annu. Rev. Biochem. 2018, 87, 871–896.

[25]

Tsubamotoa, Y.; Yamada, N.; Watanabe, Y.; Inaba, T.; Shiomi, M.; Shimano, H.; Gotoda, T.; Harada, K.; Shimada, M.; Ohsuga, J. I. et al. Dextran sulfate, a competitive inhibitor for scavenger receptor, prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbits. Atherosclerosis 1994, 106, 43–50.

[26]

Eguchi, S.; Takefuji, M.; Sakaguchi, T.; Ishihama, S.; Mori, Y.; Tsuda, T.; Takikawa, T.; Yoshida, T.; Ohashi, K.; Shimizu, Y. et al. Cardiomyocytes capture stem cell-derived, anti-apoptotic microRNA-214 via clathrin-mediated endocytosis in acute myocardial infarction. J. Biol. Chem. 2019, 294, 11665–11674.

[27]

Jurczyluk, J.; Munoz, M. A.; Skinner, O. P.; Chai, R. C.; Ali, N.; Palendira, U.; Quinn, J. M. W.; Preston, A.; Tangye, S. G.; Brown, A. J. et al. Mevalonate kinase deficiency leads to decreased prenylation of Rab GTPases. Immunol. Cell Biol. 2016, 94, 994–999.

[28]

Flannagan, R. S.; Jaumouillé, V.; Grinstein, S. The cell biology of phagocytosis. Annu. Rev. Pathol.: Mech. Dis. 2012, 7, 61–98.

[29]

Granados, D. P.; Tanguay, P. L.; Hardy, M. P.; Caron, É.; De Verteuil, D.; Meloche, S.; Perreault, C. ER stress affects processing of MHC class I-associated peptides. BMC Immunol. 2009, 10, 10.

[30]

Miura, N.; Akita, H.; Tateshita, N.; Nakamura, T.; Harashima, H. Modifying antigen-encapsulating liposomes with KALA facilitates MHC class I antigen presentation and enhances anti-tumor effects. Mol. Ther. 2017, 25, 1003–1013.

[31]

Wingren, A. G.; Parra, E.; Varga, M.; Kalland, T.; Sjogren, H. O.; Hedlund, G.; Dohlsten, M. T cell activation pathways: B7, LFA-3, and ICAM-1 shape unique T cell profiles. Crit. Rev. Immunol. 2017, 37, 463–481.

[32]

Schmitt, N.; Ueno, H. Regulation of human helper T cell subset differentiation by cytokines. Curr. Opin. Immunol. 2015, 34, 130–136.

[33]

Tsai, L. M.; Yu, D. Follicular helper T-cell memory: Establishing new frontiers during antibody response. Immunol. Cell Biol. 2014, 92, 57–63.

[34]
, T.; Sester, M. Detection of antigen-specific T cells based on intracellular cytokine staining using flow-cytometry. In Virus-Host Interactions: Methods and Protocols. Bailer, S. M.; Lieber, D., Eds.; Humana Press: Totowa, 2013; pp 267–274.
[35]

Mosmann, T. R.; Coffman, R. L. TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 1989, 7, 145–173.

[36]

Reina-Campos, M.; Scharping, N. E.; Goldrath, A. W. CD8+ T cell metabolism in infection and cancer. Nat. Rev. Immunol. 2021, 21, 718–738.

Nano Research
Article number: 94907010
Cite this article:
He C, He P, Tang X, et al. Zoledronate-loaded aluminum salt nanovaccines amplify cellular immune response by enhancing cross-presentation. Nano Research, 2025, 18(1): 94907010. https://doi.org/10.26599/NR.2025.94907010
Topics:

491

Views

111

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 18 June 2024
Revised: 22 August 2024
Accepted: 28 August 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return