PDF (33.5 MB)
Collect
Submit Manuscript
Research Article | Open Access

Branched module-modified SN38 prodrug nanoassemblies for improved colorectal cancer therapy: Effectively balance efficacy and safety

Qing Wang1,§Shiyi Zuo1,3,§Shufang Zheng1Cuiyun Liu1Yaqiao Li1Jiayu Guo1Danping Wang1Shuo Wang1Wenjing Wang1Bowen Zhang1Minglong Huang1Xianbao Shi4Jin Sun1,2Zhonggui He1,2Bingjun Sun1,2 ()
Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China

§ Qing Wang and Shiyi Zuo contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
SN38-SS-BAlc18 nanoparticles (NPs), constructed based on the modular design strategy, showed unique advantages in self-assembly capacity, redox responsive drug release, cytotoxicity, in vivo fate, antitumor effect, and biological safety, effectively addressing the limitations of the current Irinotecan and SN38 treatments.

Abstract

The clinical utility of irinotecan is restricted by individual variability in carboxylesterase expression. Direct administration of its active metabolite, 7-ethyl-10-hydroxycamptothecin (SN38), presents an appealing alternative due to its potent anti-tumor efficacy. However, the undesirable properties of SN38, such as poor water solubility and non-target toxicity, present significant hurdles to its clinical development. Prodrug nanoassemblies based on modular design strategy show promise in overcoming these challenges by enhancing drug delivery and selective activation. In modular design, the modification module plays a crucial role in improving the self-assembly capability of prodrugs. While current studies mainly focus on using straight aliphatic chains for prodrug design, branched aliphatic chains emerge as superior alternatives warranting further investigation. In this study, we selected 2-heptylundecanol (BAlc18) as modification module to construct an SN38 prodrug. Through exquisite design, SN38-SS-BAlc18 NPs integrated prominent properties in self-assembly capability, specific activation and biocompatibility, resolving the challenges of irinotecan and SN38, ultimately demonstrating excellent anti-tumor efficacy. This exploration enriched the design theory of prodrug nanoassemblies that can effectively balance safety and colorectal anti-tumor efficacy.

Electronic Supplementary Material

Download File(s)
7011_ESM.pdf (6.7 MB)

References

[1]

Mollica, A.; Stefanucci, A.; Feliciani, F.; Cacciatore, I.; Cornacchia, C.; Pinnen, F. Delivery methods of camptothecin and its hydrosoluble analogue irinotecan for treatment of colorectal cancer. Curr. Drug Deliv. 2012, 9, 122–131.

[2]

Bailly, C. Irinotecan: 25 years of cancer treatment. Pharmacol. Res. 2019, 148, 104398.

[3]

Ramesh, M.; Ahlawat, P.; Srinivas, N. R. Irinotecan and its active metabolite, SN-38: Review of bioanalytical methods and recent update from clinical pharmacology perspectives. Biomed. Chromatogr. 2010, 24, 104–23.

[4]

Arthur, D. E.; Uzairu, A. Molecular docking study and structure-based design of novel camptothecin analogues used as topoisomerase I inhibitor. J. Chin. Chem. Soc. 2018, 65, 1160–1178.

[5]

Hatfield, M. J.; Umans, R. A.; Hyatt, J. L.; Edwards, C. C.; Wierdl, M.; Tsurkan, L.; Taylor, M. R.; Potter, P. M. Carboxylesterases: General detoxifying enzymes. Chem.-Biol. Interact. 2016, 259, 327–331.

[6]

de Man, F. M.; Goey, A. K. L.; van Schaik, R. H. N.; Mathijssen, R. H. J.; Bins, S. Individualization of irinotecan treatment: A review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin. Pharmacokinet. 2018, 57, 1229–1254.

[7]

Páez, D. Genetics and adverse events with irinotecan treatment: What do we know. Pharmacogenomics 2019, 20, 393–395.

[8]

Si, J. X.; Zhao, X. B.; Gao, S.; Huang, D. S.; Sui, M. H. Advances in delivery of irinotecan (CPT-11) active metabolite 7-ethyl-10-hydroxycamptothecin. Int. J. Pharm. 2019, 568, 118499.

[9]

Liu, Y. Q.; Li, W. Q.; Morris-Natschke, S. L.; Qian, K. D.; Yang, L.; Zhu, G. X.; Wu, X. B.; Chen, A. L.; Zhang, S. Y.; Nan, X. et al. Perspectives on biologically active camptothecin derivatives. Med. Res. Rev. 2015, 35, 753–789.

[10]

Sriram, D.; Yogeeswari, P.; Thirumurugan, R.; Bal, T. R. Camptothecin and its analogues: A review on their chemotherapeutic potential. Nat. Prod. Res. 2005, 19, 393–412.

[11]

Beretta, G. L.; Gatti, L.; Perego, P.; Zaffaroni, N. Camptothecin resistance in cancer: Insights into the molecular mechanisms of a DNA-damaging drug. Curr. Med. Chem. 2013, 20, 1541–1565.

[12]

Li, G. T.; Jin, Q. H.; Xia, F. L.; Fu, S. W.; Zhang, X. B.; Xiao, H. Y.; Tian, C. T.; Lv, Q. Z.; Sun, J.; He, Z. G. et al. Smart stimuli-responsive carrier-free nanoassembly of SN38 prodrug as efficient chemotherapeutic nanomedicine. Acta Mater. Med. 2023, 2, 54–63.

[13]

Ding, Y. Y.; Wang, Y. X.; Hu, Q. Y. Recent advances in overcoming barriers to cell-based delivery systems for cancer immunotherapy. Exploration 2022, 2, 20210106.

[14]

Ma, X. Y.; Xing, R. R.; Yuan, C. Q.; Ogino, K.; Yan, X. H. Tumor therapy based on self-assembling peptides nanotechnology. View 2020, 1, 20200020.

[15]
Zhang, B. W.; Liu, W. Y.; Liu, J. R.; Huang, M. L.; Li, Y. Q.; Zhao, E. W.; Zhang, L. R.; Shi, X. B.; Sun, J.; He, Z. G. et al. Rational engineering of cholesterol-modified prodrug nanoassemblies for improving the tumor selectivity and safety of mitoxantrone. Fundam. Res., in press, DOI: 10.1016/j.fmre.2024.06.006.
[16]

Li, G. T.; Sun, B. J.; Zheng, S. Z.; Xu, L.; Tao, W. H.; Zhao, D. Y.; Yu, J.; Fu, S. W.; Zhang, X. B.; Zhang, H. T. et al. Zwitterion-driven shape program of prodrug nanoassemblies with high stability, high tumor accumulation, and high antitumor activity. Adv. Healthc. Mater. 2021, 10, 2101407.

[17]

Bala, V.; Rao, S. S.; Boyd, B. J.; Prestidge, C. A. Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. J. Controlled Release 2013, 172, 48–61.

[18]

Liu, Y.; Piao, H. Y.; Gao, Y.; Xu, C. H.; Tian, Y.; Wang, L. H.; Liu, J. W.; Tang, B.; Zou, M. J.; Cheng, G. Comparison of two self-assembled macromolecular prodrug micelles with different conjugate positions of SN38 for enhancing antitumor activity. Int. J. Nanomedicine 2015, 10, 2295–2311.

[19]

Dai, Y.; Qian, M.; Li, Y. Structural modification endows small-molecular SN38 derivatives with multifaceted functions. Molecules 2023, 28, 4931.

[20]

Guo, X. S.; Cheng, Y.; Zhao, X. T.; Luo, Y. L.; Chen, J. J.; Yuan, W. E. Advances in redox-responsive drug delivery systems of tumor microenvironment. J. Nanobiotechnol. 2018, 16, 74.

[21]

Jiang, J. L.; Cui, X. Y.; Huang, Y. X.; Yan, D. M.; Wang, B. S.; Yang, Z. Y.; Chen, M. R.; Wang, J. H.; Zhang, Y. N.; Liu, G. et al. Advances and prospects in integrated nano-oncology. Nano Biomed. Eng. 2024, 16, 152–187.

[22]

Liu, T.; Li, L. X.; Wang, S.; Dong, F. D.; Zuo, S. Y.; Song, J. X.; Wang, X.; Lu, Q.; Wang, H. L.; Zhang, H. T. et al. Hybrid chalcogen bonds in prodrug nanoassemblies provides dual redox-responsivity in the tumor microenvironment. Nat. Commun. 2022, 13, 7228.

[23]

Gao, Y. L.; Zuo, S. Y.; Li, L. X.; Liu, T.; Dong, F. D.; Wang, X.; Zhang, X. B.; He, Z. G.; Zhai, Y. L.; Sun, B. J. et al. The length of disulfide bond-containing linkages impacts the oral absorption and antitumor activity of paclitaxel prodrug-loaded nanoemulsions. Nanoscale 2021, 13, 10536–10543.

[24]

Sun, Y. X.; Wang, S. M.; Li, Y. Q.; Wang, D. P.; Zhang, Y.; Zhang, H. T.; Lei, H. R.; Liu, X. H.; Sun, J.; Sun, B. J. et al. Precise engineering of disulfide bond-bridged prodrug nanoassemblies to balance antitumor efficacy and safety. Acta Biomater. 2023, 157, 417–427.

[25]

Yang, Y. X.; Zuo, S. Y.; Zhang, J. X.; Liu, T.; Li, X. M.; Zhang, H. T.; Cheng, M. S.; Wang, S. J.; He, Z. G.; Sun, B. J. et al. Prodrug nanoassemblies bridged by Mono-/Di-/Tri-sulfide bonds: Exploration is for going further. Nano Today 2022, 44, 101480.

[26]
Zang, W. F.; Sun, Y. X.; Zhang, J. Y.; Hao, Y. Z.; Jin, Q. H.; Xiao, H. Y.; Zhang, Z.; Shi, X. B.; Sun, J.; He, Z. G. et al. Two-tailed modification module tuned steric-hindrance effect enabling high therapeutic efficacy of paclitaxel prodrug nanoassemblies. Chin. Chem. Lett., in press, DOI: 10.1016/j.cclet.2024.110230.
[27]

Wang, D. P.; Du, C. Y.; Wang, S.; Li, L. X.; Liu, T.; Song, J. X.; He, Z. G.; Zhai, Y. L.; Sun, B. J.; Sun, J. Probing the role of connecting bonds and modifying chains in the rational design of prodrug nanoassemblies. ACS Appl. Mater. Interfaces 2022, 14, 51200–51211.

[28]

Xu, H. Z.; Zuo, S. Y.; Wang, D. P.; Zhang, Y.; Li, W. X.; Li, L. X.; Liu, T.; Yu, Y. H.; Lv, Q. Z.; He, Z. G. et al. Cabazitaxel prodrug nanoassemblies with branched chain modifications: Narrowing the gap between efficacy and safety. J. Controlled Release 2023, 360, 784–795.

[29]

Li, Y. Q.; Li, L. X.; Jin, Q. H.; Liu, T.; Sun, J.; Wang, Y. J.; Yang, Z. J.; He, Z. G.; Sun, B. J. Impact of the amount of PEG on prodrug nanoassemblies for efficient cancer therapy. Asian J. Pharm. Sci. 2022, 17, 241–252.

[30]

Sánchez-Iglesias, A.; Grzelczak, M.; Altantzis, T.; Goris, B.; Pérez-Juste, J.; Bals, S.; Van Tendeloo, G.; Donaldson, S. H.; Chmelka, B. F.; Israelachvili, J. N. et al. Hydrophobic interactions modulate self-assembly of nanoparticles. ACS Nano 2012, 6, 11059–11065.

[31]

Luo, C.; Sun, B. J.; Wang, C.; Zhang, X. B.; Chen, Y.; Chen, Q.; Yu, H.; Zhao, H. Q.; Sun, M. C.; Li, Z. B. et al. Self-facilitated ROS-responsive nanoassembly of heterotypic dimer for synergistic chemo-photodynamic therapy. J. Controlled Release 2019, 302, 79–89.

[32]

Wang, X.; Li, L. X.; Wang, D. P.; Zuo, S. Y.; Liu, T.; Dong, F. D.; Zhang, X. B.; He, Z. G.; Sun, B. J.; Sun, J. Minor change in the length of carbon chain has a great influence on the antitumor effect of paclitaxel-fatty alcohol prodrug nanoassemblies: Small roles, big impacts. Nano Res. 2022, 15, 3367–3375.

[33]

Wang, X.; Liu, T.; Huang, Y. T.; Dong, F. D.; Li, L. X.; Song, J. X.; Zuo, S. Y.; Zhu, Z. Y.; Kamei, K. I.; He, Z. G. et al. Critical roles of linker length in determining the chemical and self-assembly stability of SN38 homodimeric nanoprodrugs. Nanoscale Horiz. 2023, 8, 235–244.

[34]

Rivory, L. P.; Bowles, M. R.; Robert, J.; Pond, S. M. Conversion of irinotecan (CPT-11) to its active metabolite, 7-ethyl-10-hydroxycamptothecin (SN-38), by human liver carboxylesterase. Biochem. Pharmacol. 1996, 52, 1103–1111.

[35]

Smith, D. J.; Leal, L. G.; Mitragotri, S.; Shell, M. S. Nanoparticle transport across model cellular membranes: When do solubility-diffusion models break down. J. Phys. D: Appl. Phys. 2018, 51, 294004.

[36]

Müller, B.; Kreuter, J. Enhanced transport of nanoparticle associated drugs through natural and artificial membranes—a general phenomenon. Int. J. Pharm. 1999, 178, 23–32.

[37]

Pei, X. Y.; Luo, F. F.; Zhang, J.; Chen, W. L.; Jiang, C.; Liu, J. Dehydroascorbic acids-modified polymer micelles target cancer cells to enhance anti-tumor efficacy of paclitaxel. Sci. Rep. 2017, 7, 975.

[38]

Parvez, M. M.; Basit, A.; Jariwala, P. B.; Gáborik, Z.; Kis, E.; Heyward, S.; Redinbo, M. R.; Prasad, B. Quantitative investigation of irinotecan metabolism, transport, and gut microbiome activation. Drug. Metab. Dispos. 2021, 49, 683–693.

[39]

Liu, T.; Choi, H.; Zhou, R.; Chen, I. W. RES blockade: A strategy for boosting efficiency of nanoparticle drug. Nano Today 2015, 10, 11–21.

[40]

Paulík, A.; Nekvindová, J.; Filip, S. Irinotecan toxicity during treatment of metastatic colorectal cancer: Focus on pharmacogenomics and personalized medicine. Tumori J. 2020, 106, 87–94.

[41]

Boeing, T.; Gois, M. B.; de Souza, P.; Somensi, L. B.; de Mello Gonçales Sant'Ana, D.; da Silva, L. M. Irinotecan-induced intestinal mucositis in mice: A histopathological study. Cancer Chemother Pharmacol. 2021, 87, 327–336.

[42]

Kong, L. T.; Rong, L.; Wang, M. H. UGT1A1 genetic testing for irinotecan should be done before starting the treatment, rather than after the development of serious adverse drug reactions. J. Coll. Phys. Surg. Pak. 2022, 32, 1651–1652.

[43]

Burke, T. G.; Bom, D. Campthotecin design and delivery approaches for elevating anti-topoisomerase I activities in vivo. Ann. N. Y. Acad. Sci. 2000, 922, 36–45.

[44]

Al-kasspooles, M. F.; Williamson, S. K.; Henry, D.; Howell, J.; Niu, F. G.; Decedue, C. J.; Roby, K. F. Preclinical antitumor activity of a nanoparticulate SN38. Invest New Drugs 2013, 49, 871–880.

Nano Research
Article number: 94907011
Cite this article:
Wang Q, Zuo S, Zheng S, et al. Branched module-modified SN38 prodrug nanoassemblies for improved colorectal cancer therapy: Effectively balance efficacy and safety. Nano Research, 2025, 18(1): 94907011. https://doi.org/10.26599/NR.2025.94907011
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return