Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Cutaneous nerve regeneration in diabetic wounds remains a challenge for current clinical treatment. Herein, a natural protein-based functional hydrogel is developed using keratin as the sole matrix, and protocatechuic aldehyde (PA) and zinc ions as the building blocks through dual-dynamic crosslinking reactions of thiol-aldehyde addition and catechol-zinc ions coordination. The unique structural design endows the hydrogel with excellent injectability, skin adhesion, self-healing and antibacterial ability, and biocompatibility. In addition, this hydrogel acts as a drug carrier for the loading and sustained release of phellopterin (PP), a natural compound extracted from traditional Chinese medicine Angelica dahurica. Our findings demonstrate that the PP-loaded hydrogel promotes cutaneous nerve regeneration, angiogenesis and tissue remodeling in the full-thickness wounds in both db/db and streptozotocin-induced C57BL/6 diabetic mice, notably by the synergistic effect of zinc ions and PP, showing a great potential in diabetic wound therapy.
McDermott, K.; Fang, M.; Boulton, A. J. M.; Selvin, E.; Hicks, C. W. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers. Diabetes Care 2023, 46, 209–221.
Reiber, G. E.; Pecoraro, R. E.; Koepsell, T. D. Risk factors for amputation in patients with diabetes mellitus: A case-control study. Ann. Intern. Me. 1992, 117, 97–105.
McNeely, M. J.; Boyko, E. J.; Ahroni, J. H.; Stensel, V. L.; Reiber, G. E.; Smith, D. G.; Pecoraro, R. F. The independent contributions of diabetic neuropathy and vasculopathy in foot ulceration: How great are the risks. Diabetes Care 1995, 18, 216–219.
Reiber, G. E.; Vileikyte, L.; Boyko, E. J.; del Aguila, M.; Smith, D. G.; Lavery, L. A.; Boulton, A. J. Causal pathways for incident lower-extremity ulcers in patients with diabetes from two settings. Diabetes Care 1999, 22, 157–162.
Ahmed, E. M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121.
Liang, Y. P.; He, J. H.; Guo, B. L. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 2021, 15, 12687–12722.
Ma, X. Y.; Liu, B. B.; Fan, L. M.; Liu, Y. Q.; Zhao, Y. G.; Ren, T. B.; Li, Y.; Li, Y. Y. Native and engineered exosomes for inflammatory disease. Nano Res. 2023, 16, 6991–7006.
Xu, Z. J.; Liu, G. T.; Li, Q.; Wu, J. A novel hydrogel with glucose-responsive hyperglycemia regulation and antioxidant activity for enhanced diabetic wound repair. Nano Res. 2022, 15, 5305–5315.
Ji, Z. X.; Wei, T.; Zhu, J. F.; Hu, J. Y.; Xiao, Z. S.; Bai, B. X.; Lv, X. Y.; Miao, Y.; Chen, M. C.; Wang, C. et al. Actively contractible and antibacterial hydrogel for accelerated wound healing. Nano Res. 2024, 17, 7394–7403.
Yang, Z. X.; Zhang, Z. R.; Li, L. Y.; Jing, Z. Y.; Ma, Y. M.; Lan, T. Y.; Li, Y.; Lin, Z. D.; Fang, W. L.; Zhang, J. X. et al. Bioengineered artificial extracellular vesicles presenting PD-L1 and Gal-9 ameliorate new-onset type 1 diabetes. Diabetes 2024, 73, 1325–1335.
Zheng, D. D.; Ruan, H. T.; Chen, W.; Zhang, Y. H.; Cui, W. G.; Chen, H.; Shen, H. X. Advances in extracellular vesicle functionalization strategies for tissue regeneration. Bioact. Mater. 2023, 25, 500–526.
Jeffcoate, W. J.; Vileikyte, L.; Boyko, E. J.; Armstrong, D. G.; Boulton, A. J. M. Current challenges and opportunities in the prevention and management of diabetic foot ulcers. Diabetes Care 2018, 41, 645–652.
Sloan, G.; Selvarajah, D.; Tesfaye, S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat. Rev. Endocrinol. 2021, 17, 400–420.
Yoo, M. C.; Chon, J.; Jung, J.; Kim, S. S.; Bae, S.; Kim, S. H.; Yeo, S. G. Potential therapeutic strategies and substances for facial nerve regeneration based on preclinical studies. Int. J. Mol. Sci. 2021, 22, 4926.
Ye, W. J.; Qin, M.; Qiu, R. M.; Li, J. S. Keratin-based wound dressings: From waste to wealth. Int. J. Biol. Macromol. 2022, 211, 183–197.
Chen, Y. S.; Li, Y.; Yang, X. X.; Cao, Z. J.; Nie, H. L.;Bian, Y. G.; Yang, G. Glucose-triggered in situ forming keratin hydrogel for the treatment of diabetic wounds. Acta Biomate. 2021, 125, 208–218.
Zhang, H. J.; Ma, W. P.; Ma, H. S.; Qin, C.; Chen, J. J.; Wu, C. T. Spindle-like zinc silicate nanoparticles accelerating innervated and vascularized skin burn wound healing. Adv. Healthc. Mater. 2022, 11, 2102359.
Gan, D. L.; Xing, W. S.; Jiang, L. L.; Fang, J.; Zhao, C. C.; Ren, F. Z.; Fang, L. M.; Wang, K. F.; Lu, X. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat. Commun. 2019, 10, 1487.
Geng, H. M.; Zhong, Q. Z.; Li, J. H.; Lin, Z. X.; Cui, J. W.; Caruso, F.; Hao, J. C. Metal ion-directed functional metal-phenolic materials. Chem. Rev. 2022, 122, 11432–11473.
Zhang, Q. Y.; Huang, K.; Tan, J.; Lei, X. X.; Huang, L. P.; Song, Y. T.; Li, Q. J.; Zou, C. Y.; Xie, H. Q. Metal-phenolic networks modified polyurethane as periosteum for bone regeneration. Chin. Chem. Lett. 2022, 33, 1623–1626.
Sun, C. Y.; Li, W. J.; Ma, P.; Li, Y.; Zhu, Y.; Zhang, H. Y.; Adu-Frimpong, M.; Deng, W. W.; Yu, J. N.; Xu, X. M. Development of TPGS/F127/F68 mixed polymeric micelles: Enhanced oral bioavailability and hepatoprotection of syringic acid against carbon tetrachloride-induced hepatotoxicity. Food Chem. Toxicol. 2020, 137, 111126.
Huang, Y.; Gao, Q.; Li, C.; Chen, X. H.; Li, X.; He, Y.; Jin, Q.; Ji, J. Facile synthesis of Zn2+-based hybrid nanoparticles as a new paradigm for the treatment of internal bacterial infections. Adv. Funct. Mater. 2022, 32, 2109011.
Hua, Y. J.; Gan, Y. B.; Zhang, Y. Q.; Ouyang, B.; Tu, B.; Zhang, C. M.; Zhong, X. P.; Bao, C. Y.; Yang, Y.; Lin, Q. N. et al. Adaptable to mechanically stable hydrogels based on the dynamic covalent cross-linking of thiol-aldehyde addition. ACS Macro Lett. 2019, 8, 310–314.
Cheng, C.; Singh, V.; Krishnan, A.; Kan, M.; Martinez, J. A.; Zochodne, D. W. Loss of innervation and axon plasticity accompanies impaired diabetic wound healing. PLoS One 2013, 8, e75877.
Li, Q. Q.; Jiao, L.; Shao, Y. C.; Li, M. M.; Gong, M. Y.; Zhang, Y. Y.; Tan, Z. Y.; Wang, Y. Y.; Yang, X. W.; Wang, Z. G. et al. Topical GDF11 accelerates skin wound healing in both type 1 and 2 diabetic mouse models. Biochem. Biophys. Res. Commun. 2020, 529, 7–14.
Theocharidis, G.; Veves, A. Autonomic nerve dysfunction and impaired diabetic wound healing: The role of neuropeptides. Auton. Neurosci. 2020, 223, 102610.
Nodari, A.; Zambroni, D.; Quattrini, A.; Court, F. A.; D’Urso, A.; Recchia, A.; Tybulewicz, V. L. J.; Wrabetz, L.; Feltri, M. L. β1 integrin activates Rac1 in Schwann cells to generate radial lamellae during axonal sorting and myelination. J. Cell Biol. 2007, 177, 1063–1075.
Colombelli, C.; Zambroni, D.; Occhi, S.; Wrabetz, L.; Feltri, M. L. Role of schwann cell dystroglycan in the architecture of nodes of ranvier. J. Peripher. Nerv. Syst. 2009, 14, 36.
Jin, F. Z.; Dong, B. X.; Georgiou, J.; Jiang, Q. H.; Zhang, J. Y.; Bharioke, A.; Qiu, F.; Lommel, S.; Feltri, M. L.; Wrabetz, L. et al. N-WASp is required for Schwann cell cytoskeletal dynamics, normal myelin gene expression and peripheral nerve myelination. Development 2011, 138, 1329–1337.
Tello Velasquez, J.; Nazareth, L.; Quinn, R. J.; Ekberg, J. A. K.; St John, J. A. Stimulating the proliferation, migration and lamellipodia of Schwann cells using low-dose curcumin. Neuroscience 2016, 324, 140–150.
Ness, J. K.; Snyder, K. M.; Tapinos, N. Lck tyrosine kinase mediates β1-integrin signalling to regulate Schwann cell migration and myelination. Nat. Commun. 2013, 4, 1912.
Taveggia, C.; Feltri, M. L. Beyond wrapping: Canonical and noncanonical functions of Schwann cells. Annu. Rev. Neurosci. 2022, 45, 561–580.
Zimmer, D. B.; Cornwall, E. H.; Landar, A.; Song, W. The S100 protein family: History, function, and expression. Brain Res. Bull. 1995, 37, 417–429.
Tian, T.; Yu, Z. H.; Zhang, N. L.; Chang, Y. W.; Zhang, Y. Q.; Zhang, L. P.; Zhou, S.; Zhang, C. L.; Feng, G. Y.; Huang, F. Modified acellular nerve-delivering PMSCs improve functional recovery in rats after complete spinal cord transection. Biomater. Sci. 2017, 5, 2480–2492.
Li, X.; He, N.; Li, X. J.; Wang, X.; Zhan, L.; Yuan, W. E.; Song, J. L.; Ouyang, Y. M. Graphdiyne-loaded polycaprolactone nanofiber scaffold for peripheral nerve regeneration. J. Colloid Interface Sci. 2023, 646, 399–412.
Wang, C. G.; Wang, Q. Q.; Gao, W. D.; Zhang, Z. J.; Lou, Y. T.; Jin, H. M.; Chen, X. F.; Lei, B.; Xu, H. Z.; Mao, C. Highly efficient local delivery of endothelial progenitor cells significantly potentiates angiogenesis and full-thickness wound healing. Acta Biomater. 2018, 69, 156–169.
Zhang, Z. W. B.; Li, W. B.; Chang, D.; Wei, Z. Q.; Wang, E. D.; Yu, J.; Xu, Y. Z.; Que, Y. M.; Chen, Y. M.; Fan, C.; et al. A combination therapy for androgenic alopecia based on quercetin and zinc/copper dual-doped mesoporous silica nanocomposite microneedle patch. Bioact. Mater. 2023, 24, 81–95.
Hu, S. Q.; Li, Z. H.; Lutz, H.; Huang, K.; Su, T.; Cores, J.; Dinh, P. U. C.; Cheng, K. Dermal exosomes containing miR-218-5p promote hair regeneration by regulating β-catenin signaling. Sci. Adv. 2020, 6, eaba1685.
Feliú, A.; del Río, I. B.; Carrillo-Salinas, F. J.; Hernández-Torres, G.; Mestre, L.; Puente, N.; Ortega-Gutiérrez, S.; Lopez-Rodríguez, M. L.; Grandes, P.; Mecha, M. et al. 2-arachidonoylglycerol reduces proteoglycans and enhances remyelination in a progressive model of demyelination. J. Neurosci. 2017, 37, 8385–8398.
Fantini, F.; Johansson, O. Expression of growth-associated protein 43 and nerve growth factor receptor in human skin: A comparative immunohistochemical investigation. J. Invest. Dermatol. 1992, 99, 734–742.
Pradhan, L.; Nabzdyk, C.; Andersen, N. D.; LoGerfo, F. W.; Veves, A. Inflammation and neuropeptides: The connection in diabetic wound healing. Expert Rev. Mol. Med. 2009, 11, e2.
Boyette-Davis, J.; Xin, W.; Zhang, H.; Dougherty, P. M. Intraepidermal nerve fiber loss corresponds to the development of taxol-induced hyperalgesia and can be prevented by treatment with minocycline. Pain 2011, 152, 308–313.
Xuan, Y. W.; Li, L.; Yin, X. L.; He, D. M.; Li, S. Y.; Zhang, C. P.; Yin, Y.; Xu, W. L.; Zhang, Z. Bredigite-based bioactive nerve guidance conduit for pro-healing macrophage polarization and peripheral nerve regeneration. Adv. Healthc. Mater. 2024, 13, 2302994.
Okonkwo, U. A.; DiPietro, L. A. Diabetes and wound angiogenesis. Int. J. Mol. Sci. 2017, 18, 1419.
Nowak, N. C.; Menichella, D. M.; Miller, R.; Paller, A. S. Cutaneous innervation in impaired diabetic wound healing. Transl. Res. 2021, 236, 87–108.
291
Views
101
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).