AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (42.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Protein-based functional hydrogel improves cutaneous nerve repair and diabetic wound healing

Hanzhi Lu1,§Mingrui Cui2,§Yi Wang1,§Xinran Du1Xinyi Zhou1Yuhan Fang1Xiaoyan Gao1Ying Peng3Jianyong Zhu3Guang Yang2 ( )Fulun Li1 ( )
Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China

§ Hanzhi Lu, Mingrui Cui, and Yi Wang contributed equally to this work.

Show Author Information

Graphical Abstract

This work addresses the challenge of impaired nerve regeneration in diabetic ulcers through the development of a novel dynamic cross-linked hydrogel based on natural proteins. The hydrogel displays injectability, skin adhesion, and antimicrobial capacity, and demonstrates accelerated cutaneous nerve regeneration and angiogenic processes in full-thickness diabetic ulcers.

Abstract

Cutaneous nerve regeneration in diabetic wounds remains a challenge for current clinical treatment. Herein, a natural protein-based functional hydrogel is developed using keratin as the sole matrix, and protocatechuic aldehyde (PA) and zinc ions as the building blocks through dual-dynamic crosslinking reactions of thiol-aldehyde addition and catechol-zinc ions coordination. The unique structural design endows the hydrogel with excellent injectability, skin adhesion, self-healing and antibacterial ability, and biocompatibility. In addition, this hydrogel acts as a drug carrier for the loading and sustained release of phellopterin (PP), a natural compound extracted from traditional Chinese medicine Angelica dahurica. Our findings demonstrate that the PP-loaded hydrogel promotes cutaneous nerve regeneration, angiogenesis and tissue remodeling in the full-thickness wounds in both db/db and streptozotocin-induced C57BL/6 diabetic mice, notably by the synergistic effect of zinc ions and PP, showing a great potential in diabetic wound therapy.

Electronic Supplementary Material

Download File(s)
7012_ESM.pdf (486.5 KB)

References

[1]

McDermott, K.; Fang, M.; Boulton, A. J. M.; Selvin, E.; Hicks, C. W. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers. Diabetes Care 2023, 46, 209–221.

[2]

Reiber, G. E.; Pecoraro, R. E.; Koepsell, T. D. Risk factors for amputation in patients with diabetes mellitus: A case-control study. Ann. Intern. Me. 1992, 117, 97–105.

[3]

McNeely, M. J.; Boyko, E. J.; Ahroni, J. H.; Stensel, V. L.; Reiber, G. E.; Smith, D. G.; Pecoraro, R. F. The independent contributions of diabetic neuropathy and vasculopathy in foot ulceration: How great are the risks. Diabetes Care 1995, 18, 216–219.

[4]

Reiber, G. E.; Vileikyte, L.; Boyko, E. J.; del Aguila, M.; Smith, D. G.; Lavery, L. A.; Boulton, A. J. Causal pathways for incident lower-extremity ulcers in patients with diabetes from two settings. Diabetes Care 1999, 22, 157–162.

[5]

Ahmed, E. M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121.

[6]

Liang, Y. P.; He, J. H.; Guo, B. L. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 2021, 15, 12687–12722.

[7]

Ma, X. Y.; Liu, B. B.; Fan, L. M.; Liu, Y. Q.; Zhao, Y. G.; Ren, T. B.; Li, Y.; Li, Y. Y. Native and engineered exosomes for inflammatory disease. Nano Res. 2023, 16, 6991–7006.

[8]

Xu, Z. J.; Liu, G. T.; Li, Q.; Wu, J. A novel hydrogel with glucose-responsive hyperglycemia regulation and antioxidant activity for enhanced diabetic wound repair. Nano Res. 2022, 15, 5305–5315.

[9]

Ji, Z. X.; Wei, T.; Zhu, J. F.; Hu, J. Y.; Xiao, Z. S.; Bai, B. X.; Lv, X. Y.; Miao, Y.; Chen, M. C.; Wang, C. et al. Actively contractible and antibacterial hydrogel for accelerated wound healing. Nano Res. 2024, 17, 7394–7403.

[10]

Yang, Z. X.; Zhang, Z. R.; Li, L. Y.; Jing, Z. Y.; Ma, Y. M.; Lan, T. Y.; Li, Y.; Lin, Z. D.; Fang, W. L.; Zhang, J. X. et al. Bioengineered artificial extracellular vesicles presenting PD-L1 and Gal-9 ameliorate new-onset type 1 diabetes. Diabetes 2024, 73, 1325–1335.

[11]

Zheng, D. D.; Ruan, H. T.; Chen, W.; Zhang, Y. H.; Cui, W. G.; Chen, H.; Shen, H. X. Advances in extracellular vesicle functionalization strategies for tissue regeneration. Bioact. Mater. 2023, 25, 500–526.

[12]

Jeffcoate, W. J.; Vileikyte, L.; Boyko, E. J.; Armstrong, D. G.; Boulton, A. J. M. Current challenges and opportunities in the prevention and management of diabetic foot ulcers. Diabetes Care 2018, 41, 645–652.

[13]

Sloan, G.; Selvarajah, D.; Tesfaye, S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat. Rev. Endocrinol. 2021, 17, 400–420.

[14]

Yoo, M. C.; Chon, J.; Jung, J.; Kim, S. S.; Bae, S.; Kim, S. H.; Yeo, S. G. Potential therapeutic strategies and substances for facial nerve regeneration based on preclinical studies. Int. J. Mol. Sci. 2021, 22, 4926.

[15]

Ye, W. J.; Qin, M.; Qiu, R. M.; Li, J. S. Keratin-based wound dressings: From waste to wealth. Int. J. Biol. Macromol. 2022, 211, 183–197.

[16]

Chen, Y. S.; Li, Y.; Yang, X. X.; Cao, Z. J.; Nie, H. L.;Bian, Y. G.; Yang, G. Glucose-triggered in situ forming keratin hydrogel for the treatment of diabetic wounds. Acta Biomate. 2021, 125, 208–218.

[17]

Zhang, H. J.; Ma, W. P.; Ma, H. S.; Qin, C.; Chen, J. J.; Wu, C. T. Spindle-like zinc silicate nanoparticles accelerating innervated and vascularized skin burn wound healing. Adv. Healthc. Mater. 2022, 11, 2102359.

[18]

Gan, D. L.; Xing, W. S.; Jiang, L. L.; Fang, J.; Zhao, C. C.; Ren, F. Z.; Fang, L. M.; Wang, K. F.; Lu, X. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat. Commun. 2019, 10, 1487.

[19]

Geng, H. M.; Zhong, Q. Z.; Li, J. H.; Lin, Z. X.; Cui, J. W.; Caruso, F.; Hao, J. C. Metal ion-directed functional metal-phenolic materials. Chem. Rev. 2022, 122, 11432–11473.

[20]

Zhang, Q. Y.; Huang, K.; Tan, J.; Lei, X. X.; Huang, L. P.; Song, Y. T.; Li, Q. J.; Zou, C. Y.; Xie, H. Q. Metal-phenolic networks modified polyurethane as periosteum for bone regeneration. Chin. Chem. Lett. 2022, 33, 1623–1626.

[21]

Sun, C. Y.; Li, W. J.; Ma, P.; Li, Y.; Zhu, Y.; Zhang, H. Y.; Adu-Frimpong, M.; Deng, W. W.; Yu, J. N.; Xu, X. M. Development of TPGS/F127/F68 mixed polymeric micelles: Enhanced oral bioavailability and hepatoprotection of syringic acid against carbon tetrachloride-induced hepatotoxicity. Food Chem. Toxicol. 2020, 137, 111126.

[22]
Li, H. Y.; Wen, H. Y.; Zhang, H.; Li, J.; Cao, X.; Zhang, J. Q.; Zheng, Y. T.; Huang, S. P.; Xue, W. M.; Cai, X. J. Polymeric micelle-hydrogel composites design for biomedical applications. Chin. Chem. Lett. 2024 , in press, DOI: 10.1016/j.cclet.2024.110072.
[23]

Huang, Y.; Gao, Q.; Li, C.; Chen, X. H.; Li, X.; He, Y.; Jin, Q.; Ji, J. Facile synthesis of Zn2+-based hybrid nanoparticles as a new paradigm for the treatment of internal bacterial infections. Adv. Funct. Mater. 2022, 32, 2109011.

[24]

Hua, Y. J.; Gan, Y. B.; Zhang, Y. Q.; Ouyang, B.; Tu, B.; Zhang, C. M.; Zhong, X. P.; Bao, C. Y.; Yang, Y.; Lin, Q. N. et al. Adaptable to mechanically stable hydrogels based on the dynamic covalent cross-linking of thiol-aldehyde addition. ACS Macro Lett. 2019, 8, 310–314.

[25]

Cheng, C.; Singh, V.; Krishnan, A.; Kan, M.; Martinez, J. A.; Zochodne, D. W. Loss of innervation and axon plasticity accompanies impaired diabetic wound healing. PLoS One 2013, 8, e75877.

[26]

Li, Q. Q.; Jiao, L.; Shao, Y. C.; Li, M. M.; Gong, M. Y.; Zhang, Y. Y.; Tan, Z. Y.; Wang, Y. Y.; Yang, X. W.; Wang, Z. G. et al. Topical GDF11 accelerates skin wound healing in both type 1 and 2 diabetic mouse models. Biochem. Biophys. Res. Commun. 2020, 529, 7–14.

[27]

Theocharidis, G.; Veves, A. Autonomic nerve dysfunction and impaired diabetic wound healing: The role of neuropeptides. Auton. Neurosci. 2020, 223, 102610.

[28]

Nodari, A.; Zambroni, D.; Quattrini, A.; Court, F. A.; D’Urso, A.; Recchia, A.; Tybulewicz, V. L. J.; Wrabetz, L.; Feltri, M. L. β1 integrin activates Rac1 in Schwann cells to generate radial lamellae during axonal sorting and myelination. J. Cell Biol. 2007, 177, 1063–1075.

[29]

Colombelli, C.; Zambroni, D.; Occhi, S.; Wrabetz, L.; Feltri, M. L. Role of schwann cell dystroglycan in the architecture of nodes of ranvier. J. Peripher. Nerv. Syst. 2009, 14, 36.

[30]

Jin, F. Z.; Dong, B. X.; Georgiou, J.; Jiang, Q. H.; Zhang, J. Y.; Bharioke, A.; Qiu, F.; Lommel, S.; Feltri, M. L.; Wrabetz, L. et al. N-WASp is required for Schwann cell cytoskeletal dynamics, normal myelin gene expression and peripheral nerve myelination. Development 2011, 138, 1329–1337.

[31]

Tello Velasquez, J.; Nazareth, L.; Quinn, R. J.; Ekberg, J. A. K.; St John, J. A. Stimulating the proliferation, migration and lamellipodia of Schwann cells using low-dose curcumin. Neuroscience 2016, 324, 140–150.

[32]

Ness, J. K.; Snyder, K. M.; Tapinos, N. Lck tyrosine kinase mediates β1-integrin signalling to regulate Schwann cell migration and myelination. Nat. Commun. 2013, 4, 1912.

[33]

Taveggia, C.; Feltri, M. L. Beyond wrapping: Canonical and noncanonical functions of Schwann cells. Annu. Rev. Neurosci. 2022, 45, 561–580.

[34]

Zimmer, D. B.; Cornwall, E. H.; Landar, A.; Song, W. The S100 protein family: History, function, and expression. Brain Res. Bull. 1995, 37, 417–429.

[35]

Tian, T.; Yu, Z. H.; Zhang, N. L.; Chang, Y. W.; Zhang, Y. Q.; Zhang, L. P.; Zhou, S.; Zhang, C. L.; Feng, G. Y.; Huang, F. Modified acellular nerve-delivering PMSCs improve functional recovery in rats after complete spinal cord transection. Biomater. Sci. 2017, 5, 2480–2492.

[36]

Li, X.; He, N.; Li, X. J.; Wang, X.; Zhan, L.; Yuan, W. E.; Song, J. L.; Ouyang, Y. M. Graphdiyne-loaded polycaprolactone nanofiber scaffold for peripheral nerve regeneration. J. Colloid Interface Sci. 2023, 646, 399–412.

[37]

Wang, C. G.; Wang, Q. Q.; Gao, W. D.; Zhang, Z. J.; Lou, Y. T.; Jin, H. M.; Chen, X. F.; Lei, B.; Xu, H. Z.; Mao, C. Highly efficient local delivery of endothelial progenitor cells significantly potentiates angiogenesis and full-thickness wound healing. Acta Biomater. 2018, 69, 156–169.

[38]

Zhang, Z. W. B.; Li, W. B.; Chang, D.; Wei, Z. Q.; Wang, E. D.; Yu, J.; Xu, Y. Z.; Que, Y. M.; Chen, Y. M.; Fan, C.; et al. A combination therapy for androgenic alopecia based on quercetin and zinc/copper dual-doped mesoporous silica nanocomposite microneedle patch. Bioact. Mater. 2023, 24, 81–95.

[39]

Hu, S. Q.; Li, Z. H.; Lutz, H.; Huang, K.; Su, T.; Cores, J.; Dinh, P. U. C.; Cheng, K. Dermal exosomes containing miR-218-5p promote hair regeneration by regulating β-catenin signaling. Sci. Adv. 2020, 6, eaba1685.

[40]

Feliú, A.; del Río, I. B.; Carrillo-Salinas, F. J.; Hernández-Torres, G.; Mestre, L.; Puente, N.; Ortega-Gutiérrez, S.; Lopez-Rodríguez, M. L.; Grandes, P.; Mecha, M. et al. 2-arachidonoylglycerol reduces proteoglycans and enhances remyelination in a progressive model of demyelination. J. Neurosci. 2017, 37, 8385–8398.

[41]

Fantini, F.; Johansson, O. Expression of growth-associated protein 43 and nerve growth factor receptor in human skin: A comparative immunohistochemical investigation. J. Invest. Dermatol. 1992, 99, 734–742.

[42]

Pradhan, L.; Nabzdyk, C.; Andersen, N. D.; LoGerfo, F. W.; Veves, A. Inflammation and neuropeptides: The connection in diabetic wound healing. Expert Rev. Mol. Med. 2009, 11, e2.

[43]

Boyette-Davis, J.; Xin, W.; Zhang, H.; Dougherty, P. M. Intraepidermal nerve fiber loss corresponds to the development of taxol-induced hyperalgesia and can be prevented by treatment with minocycline. Pain 2011, 152, 308–313.

[44]

Xuan, Y. W.; Li, L.; Yin, X. L.; He, D. M.; Li, S. Y.; Zhang, C. P.; Yin, Y.; Xu, W. L.; Zhang, Z. Bredigite-based bioactive nerve guidance conduit for pro-healing macrophage polarization and peripheral nerve regeneration. Adv. Healthc. Mater. 2024, 13, 2302994.

[45]

Okonkwo, U. A.; DiPietro, L. A. Diabetes and wound angiogenesis. Int. J. Mol. Sci. 2017, 18, 1419.

[46]

Nowak, N. C.; Menichella, D. M.; Miller, R.; Paller, A. S. Cutaneous innervation in impaired diabetic wound healing. Transl. Res. 2021, 236, 87–108.

Nano Research
Article number: 94907012
Cite this article:
Lu H, Cui M, Wang Y, et al. Protein-based functional hydrogel improves cutaneous nerve repair and diabetic wound healing. Nano Research, 2025, 18(1): 94907012. https://doi.org/10.26599/NR.2025.94907012
Topics:

291

Views

101

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 05 July 2024
Revised: 22 August 2024
Accepted: 28 August 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return