AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (58.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Multiphase reaction spinning of high-temperature resistant weavable SiO2-Kevlar hybrid aerogel fibers

Yunna Chen1,2Wenlu Zhang2Qingyang Li2Wenbin Li1,2 ( )Chong He1,2 ( )
School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
Show Author Information

Graphical Abstract

A facile reaction spun strategy was adopted for synthesis of SiO2-Kevlar aerogel fibers with core–shell structure and superb high temperature resistance, which provide a promising strategy for thermal management in extreme environments.

Abstract

Advanced aerogel fibers possess numerous advantages amalgamating the attributes of aerogels and fiber materials, rendering them invaluable in the realm of thermal management and regulation. However, the achievement of robust mechanical properties and increased temperature stability is still a major challenge for the majority of aerogel fibers. Herein, SiO2-Kevlar hybrid aerogel fibers with bionic core–shell structure were prepared by reaction spinning and weaved into fabric. Kevlar nanowires dispersion is pumped into a bath comprising a self-synthesized silica sol, which facilitates the hybridization of biphasic aerogels through the gel reaction. Precise control over the diameter (200–800 μm) and structure of the wet gel fibers was achieved through meticulous adjustment of the spinning solution composition and spinning parameters. Subsequent freeze-drying process facilitates the formation of a core–shell hybrid structure, in which the SiO2 aerogel layer effectively encapsulate the Kevlar aerogel core fiber. Taking full advantage of the mechanical properties of the Kevlar core fiber, the resulting SiO2-Kevlar aerogel fibers exhibit commendable weaving characteristics (51.8 MPa). Furthermore, SiO2-Kevlar aerogel fabrics exhibit enhanced thermal insulation characteristics with a thermal conductivity of 0.037 W/(m·K). As a result of the presence of external SiO2 aerogel layer, the overall temperature resistance performance of the SiO2-Kevlar fabric reach up to 700 °C.

References

[1]

Wang, S.; Liu, C.; Wang, F.; Yin, X.; Yu, J. Y.; Zhang, S. C.; Ding, B. Recent advances in ultrafine fibrous materials for effective warmth retention. Adv. Fiber Mater. 2023, 5, 847–867.

[2]

Wu, F.; Qiang, S. Y.; Zhang, X. H.; Wang, F.; Yin, X.; Liu, L. F.; Yu, J. Y.; Liu, Y. T.; Ding, B. The rising of flexible and elastic ceramic fiber materials: Fundamental concept, design principle, and toughening mechanism. Adv. Funct. Mater. 2022, 32, 2207130.

[3]

Chen, H. Y.; Chen, Z. Y.; Mao, M.; Wu, Y. Y.; Yang, F.; Gong, L. X.; Zhao, L.; Cao, C. F.; Song, P. G.; Gao, J. F. et al. Self-adhesive polydimethylsiloxane foam materials decorated with mxene/cellulose nanofiber interconnected network for versatile functionalities. Adv. Funct. Mater. 2023, 33, 2304927.

[4]

He, H. L.; Liu, J. R.; Wang, Y. S.; Zhao, Y. H.; Qin, Y.; Zhu, Z. Y.; Yu, Z. C.; Wang, J. F. An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 2022, 16, 2953–2967.

[5]

Zhang, F.; Si, Y.; Yu, J. Y.; Ding, B. Electrospun porous engineered nanofiber materials: A versatile medium for energy and environmental applications. Chem. Eng. J. 2023, 456, 140989.

[6]

Xue, T. T.; Zhu, C. Y.; Yu, D. Y.; Zhang, X.; Lai, F. L.; Zhang, L. S.; Zhang, C.; Fan, W.; Liu, T. X. Fast and scalable production of crosslinked polyimide aerogel fibers for ultrathin thermoregulating clothes. Nat. Commun. 2023, 14, 8378.

[7]

Sheng, Z. Z.; Liu, Z. W.; Hou, Y. L.; Jiang, H. T.; Li, Y. Z.; Li, G. Y.; Zhang, X. T. The rising aerogel fibers: Status, challenges, and opportunities. Adv. Sci. 2023, 10, 2205762.

[8]

Shi, Q. W.; Sun, J. Q.; Hou, C. Y.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Advanced functional fiber and smart textile. Adv. Fiber Mater. 2019, 1, 3–31.

[9]

Qi, Y. X.; Xia, Y. X.; Li, P.; Wang, Z. Q.; Ming, X.; Wang, B.; Shen, K.; Cai, G. F.; Li, K. W.; Gao, Y. et al. Plastic-swelling preparation of functional graphene aerogel fiber textiles. Adv. Fiber Mater. 2023, 5, 2016–2027.

[10]

Wu, B.; Qi, Q. J.; Liu, L.; Liu, Y. J.; Wang, J. Wearable aerogels for personal thermal management and smart devices. ACS Nano 2024, 18, 9798–9822.

[11]

Schiavoni, S.; D'Alessandro, F.; Bianchi, F.; Asdrubali, F. Insulation materials for the building sector: A review and comparative analysis. Renew. Sustain. Energy Rev. 2016, 62, 988–1011.

[12]

Du, Y.; Zhang, X. H.; Wang, J.; Liu, Z. W.; Zhang, K.; Ji, X. F.; You, Y. Z.; Zhang, X. T. Reaction-spun transparent silica aerogel fibers. ACS Nano 2020, 14, 11919–11928.

[13]

Severini, L.; De France, K. J.; Sivaraman, D.; Kummer, N.; Nyström, G. Biohybrid nanocellulose-lysozyme amyloid aerogels via electrostatic complexation. ACS Omega 2022, 7, 578–586.

[14]

Chen, Y. A.; Zhang, C. Z.; Tao, S. M.; Chai, H. T.; Xu, D. F.; Li, X. X.; Qi, H. S. High-performance smart cellulose nanohybrid aerogel fibers as a platform toward multifunctional textiles. Chem. Eng. J. 2023, 466, 143153.

[15]

Liu, Z. W.; Lyu, J.; Fang, D.; Zhang, X. T. Nanofibrous Kevlar aerogel threads for thermal insulation in harsh environments. ACS Nano 2019, 13, 5703–5711.

[16]

Tian, J.; Yang, Y.; Xue, T. T.; Chao, G. J.; Fan, W.; Liu, T. X. Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy. J. Mater. Sci. Technol. 2022, 105, 194–202.

[17]

Ahmed, E. M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121.

[18]

Niu, H. H.; Jiang, X. W.; Xia, Y. D.; Wang, H. L.; Zhang, R.; Li, H. X.; Fan, B. B.; Zhou, Y. C. Construction of hydrangea-like core–shell SiO2@Ti3C2T x @CoNi microspheres for tunable electromagnetic wave absorbers. J. Adv. Ceram. 2023, 12, 711–723.

[19]

Peng, P.; Deng, Y. J.; Niu, J. P.; Shi, L. Y.; Mei, Y. Z.; Du, S. M.; Liu, J.; Xu, D. Fabrication and electrical characteristics of flash-sintered SiO2-doped ZnO-Bi2O3-MnO2 varistors. J. Adv. Ceram. 2020, 9, 683–692.

[20]

Yang, N.; Cai, G. S.; Wan, Y. G.; Zhang, R. Y.; Li, J. C.; Zhang, J. F.; Zhang, H. J.; Liu, H. L.; Yu, X. L.; Wang, M. C. High anti-ablative epoxy resin-based flame retardant and thermal insulation coating based on spontaneous ceramization and vitrification. Ceram. Int. 2024, 50, 24233–24251.

[21]

Hu, D. W.; Jiang, P. K.; Huang, X. Y. Mixed-dimensional engineering of 3D Mxene ultralight hybrid aerogel for anticorrosive and microwave absorption applications. Compos. Part A: Appl. Sci. Manuf. 2022, 156, 106865.

[22]

Feng, L.; Wei, P.; Ding, S. Y.; Song, Q.; Zhang, J. X.; Wang, C. H.; Guo, L. Y.; Xu, D. F.; Song, H. J. Superelastic and thermal insulating multilayer organic–inorganic hybrid aerogel built from boron nitride nanoribbons and aramid nanofibers. Compos. Sci. Technol. 2023, 244, 110277.

[23]

Zhang, Q. R.; Ma, L.; Xue, T. T.; Tian, J.; Fan, W.; Liu, T. X. Flame-retardant and thermal-protective polyimide-hydroxyapatite aerogel fiber-based composite textile for firefighting clothing. Compos. Part B: Eng. 2023, 248, 110377.

[24]

Cai, G. S.; Wan, Y. G.; Liu, J. X.; Yang, N.; Guo, J. Y.; Li, J. C.; Zhou, Y. L.; Zhang, J. F.; Zhang, H. J.; Wang, M. C. Preparation and performance analysis of methyl-silicone resin-modified epoxy resin-based intumescent flame retardant thermal insulation coating. J. Micromech. Mol. Phys. 2023, 8, 61–82.

[25]

Nyström, G.; Roder, L.; Fernández-Ronco, M. P.; Mezzenga, R. Amyloid templated organic–inorganic hybrid aerogels. Adv. Funct. Mater. 2018, 28, 1703609.

[26]

Cui, Y.; Gong, H. X.; Wang, Y. J.; Li, D. W.; Bai, H. A thermally insulating textile inspired by polar bear hair. Adv. Mater. 2018, 30, 1706807.

[27]

Wu, M. R.; Shao, Z. Y.; Zhao, N. F.; Zhang, R. Z.; Yuan, G. D.; Tian, L. L.; Zhang, Z. B.; Gao, W. W.; Bai, H. Biomimetic, knittable aerogel fiber for thermal insulation textile. Science 2023, 382, 1379–1383.

[28]

Wang, Y. J.; Cui, Y.; Shao, Z. Y.; Gao, W. W.; Fan, W.; Liu, T. X.; Bai, H. Multifunctional polyimide aerogel textile inspired by polar bear hair for thermoregulation in extreme environments. Chem. Eng. J. 2020, 390, 124623.

[29]

Liu, F. Q.; Jiang, Y. G.; Peng, F.; Feng, J. Z.; Li, L. J.; Feng, J. Fiber-reinforced alumina-carbon core–shell aerogel composite with heat-induced gradient structure for thermal protection up to 1800 °C. Chem. Eng. J. 2023, 461, 141721.

[30]

Ren, B.; Liu, J. J.; Rong, Y. D.; Wang, L.; Lu, Y. J.; Xi, X. Q.; Yang, J. L. Nanofibrous aerogel bulk assembled by cross-linked SiC/SiO x core–shell nanofibers with multifunctionality and temperature-invariant hyperelasticity. ACS Nano 2019, 13, 11603–11612.

[31]

Yue, C. X.; Hu, Y. H.; Di, Y. B.; Wu, J. C.; Wang, X. Y.; Xia, L.; Zhuang, X. P. Strong, tough, shell-cross-linked aramid nanofibrous aerogel fibers for thermally-protective textiles. ACS Appl. Nano Mater. 2024, 7, 10886–10894.

[32]

Liu, J. X.; Wan, Y. G.; Xiao, B.; Li, J. C.; Hu, Z. M.; Zhang, R. Y.; Hu, X. X.; Liu, J. C.; Cai, G. S.; Liu, H. L. et al. The preparation and performance analysis of zirconium-modified aluminum phosphate-based high-temperature (RT-1500 °C) resistant adhesive for joining alumina in extreme environment. J. Adv. Ceram. 2024, 13, 911–932.

[33]

Lai, H. J.; Peng, Y.; Wang, M. F.; Shi, R. Z.; Chen, J. L.; Liu, C. Y.; Wang, Y. F.; Miao, L.; Wei, H. Q. Thermoelectric enhancement of p-type Si80Ge20 alloy via co-compositing of dual oxides: Respective regulation for power factor and thermal conductivity by β-Ga2O3 and SiO2 aerogel powders. J. Adv. Ceram. 2023, 12, 228–241.

[34]

Zhang, J. Y.; Cheng, Y. H.; Xu, C. J.; Gao, M. Y.; Zhu, M. F.; Jiang, L. Hierarchical interface engineering for advanced nanocellulosic hybrid aerogels with high compressibility and multifunctionality. Adv. Funct. Mater. 2021, 31, 2009349.

[35]

Yang, B.; Wang, L.; Zhang, M. Y.; Luo, J. J.; Ding, X. Y. Timesaving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano 2019, 13, 7886–7897.

[36]

Zhao, L. Y.; Xu, T.; Wang, B. J.; Mao, Z. P.; Sui, X.; Feng, X. L. Continuous fabrication of robust ionogel fibers for ultrastable sensors via dynamic reactive spinning. Chem. Eng. J. 2023, 455, 140796.

[37]

Yang, B.; Wang, L.; Zhang, M. Y.; Luo, J. J.; Lu, Z. Q.; Ding, X. Y. Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 2020, 30, 2000186.

[38]

Lin, D. C.; Yuen, P. Y.; Liu, Y. Y.; Liu, W.; Liu, N.; Dauskardt, R. H.; Cui, Y. A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv. Mater. 2018, 30, 1802661.

[39]

Hu, P. Y.; Wang, J.; Zhang, P. G.; Wu, F. S.; Cheng, Y. Y.; Wang, J.; Sun, Z. M. Hyperelastic kevlar nanofiber aerogels as robust thermal switches for smart thermal management. Adv. Mater. 2023, 35, 2207638.

[40]

Lyu, J.; Liu, Z. W.; Wu, X. H.; Li, G. Y.; Fang, D.; Zhang, X. T. Nanofibrous Kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 2019, 13, 2236–2245.

[41]

Hu, P. Y.; Lyu, J.; Fu, C.; Gong, W. B.; Liao, J. H.; Lu, W. B.; Chen, Y. P.; Zhang, X. T. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 2020, 14, 688–697.

[42]

Sun, H.; Yang, B.; Zhang, M. Y. Functional-structural integrated aramid nanofiber-based honeycomb materials with ultrahigh strength and multi-functionalities. Adv. Fiber Mater. 2024, 6, 1122–1137.

[43]

Li, L. S.; Lyu, J.; Cheng, Q. Q.; Fu, C.; Zhang, X. T. Versatile recyclable Kevlar nanofibrous aerogels enabled by destabilizing dynamic balance strategy. Adv. Fiber Mater. 2023, 5, 1050–1062.

Nano Research
Article number: 94907013
Cite this article:
Chen Y, Zhang W, Li Q, et al. Multiphase reaction spinning of high-temperature resistant weavable SiO2-Kevlar hybrid aerogel fibers. Nano Research, 2025, 18(1): 94907013. https://doi.org/10.26599/NR.2025.94907013
Topics:

505

Views

84

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 23 June 2024
Revised: 18 August 2024
Accepted: 29 August 2024
Published: 24 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return