The monitoring of vehicle motion states is a key factor to ensure smooth, safe, and efficient management of traffic in intelligent transportation systems. However, employing multiple sensors for vehicle motion states monitoring not only increases system costs but also complicates the wiring. Here, we propose an integrated magnetic-assisted self-powered vehicle motion sensor (MSVMS) based on a triboelectric nanogenerator for real-time monitoring of vehicle motion states, including acceleration, angular speed, and inclination angle. By introducing a magnetic repulsion adjustment system, the sensor can achieve automatic resetting and effectively monitor the vehicle’s motion state during normal driving. Experimental results indicate that the electromagnetic generator (EMG) unit can achieve a maximum peak power of 4.5 mW at an optimal load resistance of 1 kΩ. Meanwhile, the triboelectric nanogenerator (TENG) unit demonstrated good sensing performance for acceleration, angular speed, and inclination angle, with fitting coefficients of 0.99, 0.979, and 0.978, respectively. Finally, the feasibility of the MSVMS in monitoring acceleration magnitude and direction is verified in a vehicle motion sensing system and actual vehicle test scenarios. This work further validates the potential application prospects of MSVMS in intelligent transportation systems.
Singh, K. B.; Arat, M. A.; Taheri, S. Literature review and fundamental approaches for vehicle and tire state estimation. Vehicle Syst. Dyn. 2019, 57, 1643–1665.
Jiang, F. H.; Dong, M. Y.; Fan, Y. Z.; Wang, Q. C. Research on motor speed control method based on the prevention of vehicle rollover. Energies 2022, 15, 3609.
Du, Z. J.; Deng, M.; Lyu, N.; Wang, Y. G. A review of road safety evaluation methods based on driving behavior. J. Traffic Transp. Eng. (Eng. Ed.) 2023, 10, 743–761.
Rodrigo Marco, V.; Kalkkuhl, J.; Raisch, J.; Scholte, W. J.; Nijmeijer, H.; Seel, T. Multi-modal sensor fusion for highly accurate vehicle motion state estimation. Control Eng. Pract. 2020, 100, 104409.
Zhao, W.; Yin, J. T.; Wang, X. H.; Hu, J.; Qi, B. Z.; Runge, T. Real-time vehicle motion detection and motion altering for connected vehicle: Algorithm design and practical applications. Sensors 2019, 19, 4108.
Guerrero-Ibáñez, J.; Zeadally, S.; Contreras-Castillo, J. Sensor technologies for intelligent transportation systems. Sensors 2018, 18, 1212.
Zhang, R.; Zhang, Z. C.; Guan, Z. W.; Li, Y. F.; Li, Z. X. Autonomous lane changing control for intelligent vehicles. Cluster Comput. 2019, 22, 8657–8667.
Pang, Y. F.; Zhu, X. Y.; Lee, C.; Liu, S. N. Triboelectric nanogenerator as next-generation self-powered sensor for cooperative vehicle-infrastructure system. Nano Energy 2022, 97, 107219.
Corbrion, C.; Ditchi, T.; Holé, S.; Carreel, E.; Lewiner, J. A broad beam Doppler speed sensor for automotive applications. Sens. Rev. 2001, 21, 28–32.
Jin, L.; Ma, S. Y.; Deng, W. L.; Yan, C.; Yang, T.; Chu, X.; Tian, G.; Xiong, D.; Lu, J.; Yang, W. Q. Polarization-free high-crystallization β-PVDF piezoelectric nanogenerator toward self-powered 3D acceleration sensor. Nano Energy 2018, 50, 632–638.
Ramakrishnan, J.; Gaurav, P. T. R.; Chandar, N. S.; Sudharsan, N. M. Structural design, analysis and DOE of MEMS-based capacitive accelerometer for automotive airbag application. Microsyst. Technol. 2021, 27, 763–777.
Woo, S. T.; Park, Y. B.; Lee, J. H.; Han, C. S.; Na, S.; Kim, J. Y. Angle sensor module for vehicle steering device based on multi-track impulse ring. Sensors 2019, 19, 526.
Gao, J. C.; Petovello, M.; Cannon, M. E. Integration of steering angle sensor with global positioning system and micro-electro-mechanical systems inertial measurement unit for vehicular positioning. J. Intell. Transp. Syst. 2008, 12, 159–167.
Benz, D.; Botzelmann, T.; Kück, H.; Warkentin, D. On low cost inclination sensors made from selectively metallized polymer. Sens. Actuators A: Phys. 2005, 123–124, 18–22.
Leen, G.; Heffernan, D. Expanding automotive electronic systems. Computer 2002, 35, 88–93.
Zhao, C.; Wang, Z. Y.; Wang, Y. W.; Qian, Z. A.; Tan, Z.; Chen, Q. Y.; Pan, X. X.; Xu, M. Y.; Lai, Y. C. MXene-composite-enabled ultra-long-distance detection and highly sensitive self-powered noncontact triboelectric sensors and their applications in intelligent vehicle perception. Adv. Funct. Mater. 2023, 33, 2306381.
Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.
Wang, Z. L.; Wang, A. C. On the origin of contact-electrification. Mater. Today 2019, 30, 34–51.
Zhang, C.; Tang, W.; Han, C. B.; Fan, F. R.; Wang, Z. L. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 2014, 26, 3580–3591.
Yang, W. Q.; Chen, J.; Jing, Q. S.; Yang, J.; Wen, X. N.; Su, Y. J.; Zhu, G.; Bai, P.; Wang, Z. L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 2014, 24, 4090–4096.
Zhang, L.; Jin, L.; Zhang, B. B.; Deng, W. L.; Pan, H.; Tang, J. F.; Zhu, M. H.; Yang, W. Q. Multifunctional triboelectric nanogenerator based on porous micro-nickel foam to harvest mechanical energy. Nano Energy 2015, 16, 516–523.
Ding, M. R.; Wang, J. L.; Zhao, D.; Li, H. Y.; Cheng, X. J.; Wen, J. M.; Wang, Z. L.; Cheng, T. H. Magnetic-field-assisted triboelectric nanogenerator for harvesting multi-directional wave energy. Nano Res. 2024, 17, 7144–7152.
Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.
Askari, H.; Hashemi, E.; Khajepour, A.; Khamesee, M. B.; Wang, Z. L. Towards self-powered sensing using nanogenerators for automotive systems. Nano Energy 2018, 53, 1003–1019.
Wang, B. C.; Zhai, X. Y.; Wei, X. L.; Shi, Y. P.; Huo, X. Q.; Li, R. N.; Wu, Z. Y.; Wang, Z. L. A self-powered and concealed sensor based on triboelectric nanogenerators for cultural-relic anti-theft systems. Nano Res. 2022, 15, 8435–8441.
Pang, Y. F.; Zhu, X. Y.; Yu, Y.; Liu, S. N.; Chen, Y.; Feng, Y. Waterbomb-origami inspired triboelectric nanogenerator for smart pavement-integrated traffic monitoring. Nano Res. 2022, 15, 5450–5460.
Zhang, B. B.; Wu, Z. Y.; Lin, Z. M.; Guo, H. Y.; Chun, F.; Yang, W. Q.; Wang, Z. L. All-in-one 3D acceleration sensor based on coded liquid-metal triboelectric nanogenerator for vehicle restraint system. Mater. Today 2021, 43, 37–44.
Dai, K. R.; Wang, X. F.; Yi, F.; Jiang, C.; Li, R.; You, Z. Triboelectric nanogenerators as self-powered acceleration sensor under high- g impact. Nano Energy 2018, 45, 84–93.
Kim, B.; Song, J. Y.; Kim, D. Y.; Cho, M. W.; Park, J. G.; Choi, D.; Lee, C.; Park, S. M. Environmentally robust triboelectric tire monitoring system for self-powered driving information recognition via hybrid deep learning in time-frequency representation. Small 2024, 20, 2400484.
Liu, Y. F.; Li, D.; Hou, Y.; Wang, Z. L. Grating-structured freestanding triboelectric nanogenerator for self-powered acceleration sensing in real time. Adv. Mater. Technol. 2023, 8, 2200746.
Pang, Y. K.; Li, X. H.; Chen, M. X.; Han, C. B.; Zhang, C.; Wang, Z. L. Triboelectric nanogenerators as a self-powered 3D acceleration sensor. ACS Appl. Mater. Interfaces 2015, 7, 19076–19082.
Le, C. D.; Nguyen, T. H.; Vu, D. L.; Vo, C. P.; Ahn, K. K. A rotational switched-mode water-based triboelectric nanogenerator for mechanical energy harvesting and vehicle monitoring. Mater. Today Sustain. 2022, 19, 100158.