The deliberate engineering of the d-band center of metal site represents an effective strategy to boost the intrinsic electrocatalytic performance toward the oxygen reduction reaction (ORR). Herein, following a heterointerface-induced orbital coupling rationale, we report a judicious design of an efficient ORR electrocatalyst consisting of Fe3O4/CeO2 hetero-nanoparticles in-situ encased into N-doped carbon nanofibers (abbreviated as Fe3O4/CeO2@N-CNFs hereafter). The theoretic calculations uncover that the Fe3O4/CeO2 heterointerface-triggered orbital coupling can cause the down shift of the d-band center positions of Fe sites, which leads to the weakened chemisorption of oxygenated groups and lowered energy barrier for the potential-determining step, ultimately dramatically boosting the ORR intrinsic activity. As a consequence, the well-designed Fe3O4/CeO2@N-CNFs display admirable ORR activity with a half-wave potential of 0.84 V and outstanding structural/electrochemical stability in an alkaline electrolyte, surpassing the commercial Pt/C benchmark and a majority of recently reported Fe3O4-based electrocatalysts. More encouragingly, the Fe3O4/CeO2@N-CNFs-incorporated Zn-air battery outperforms the Pt/C-assembled counterpart with higher power density, larger energy density, and excellent cycling stability, serving as a competent candidate for ORR-involved renewable energy setups. This study offers an innovative approach for the rational manipulation of the d-band center and interfacial electron behavior of active sites toward the optimization of electrocatalytic performance.
Buss, J. A.; Agapie, T. Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site. Nature 2016, 529, 72–75.
Han, A.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.
Li, Z. J.; Ji, S. Q.; Wang, C.; Liu, H. X.; Leng, L. P.; Du, L.; Gao, J. C.; Qiao, M.; Horton, J. H.; Wang, Y. Geometric and electronic engineering of atomically dispersed copper-cobalt diatomic sites for synergistic promotion of bifunctional oxygen electrocatalysis in zinc-air batteries. Adv. Mater. 2023, 35, 2300905.
Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem. Int. Ed. 2022, 61, e202115219.
Wang, Q. C.; Feng, Q. G.; Lei, Y. P.; Tang, S. H.; Xu, L.; Xiong, Y.; Fang, G. Z.; Wang, Y. C.; Yang, P. Y.; Liu, J. J. et al. Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nat. Commun. 2022, 13, 3689.
Zeng, R.; Yang, Y.; Feng, X. R.; Li, H. Q.; Gibbs, L. M.; DiSalvo, F. J.; Abruña, H. D. Nonprecious transition metal nitrides as efficient oxygen reduction electrocatalysts for alkaline fuel cells. Sci. Adv. 2022, 8, eabj1584.
Zhang, Y. F.; Liu, L. S.; Li, Y. X.; Mu, X. Q.; Mu, S. C.; Liu, S. L.; Dai, Z. H. Strong synergy between physical and chemical properties: Insight into optimization of atomically dispersed oxygen reduction catalysts. J. Energy Chem. 2024, 91, 36–49.
Zhang, S. K.; Zhou, Q. X.; Fang, L. Y.; Wang, R.; Lu, T. Y.; Zhao, Q.; Gu, X. F.; Tian, S.; Xu, L.; Pang, H. et al. Gram-scale synthesis and unraveling the activity origin of atomically dispersed Co-N4O sites toward superior electrocatalytic oxygen reduction. Appl. Catal. B: Environ. 2023, 328, 122489.
Xu, X. Q.; Wang, X. Y.; Huo, S. C.; Liu, X. F.; Ma, X. N.; Liu, M. Y.; Zou, J. L. Modulation of phase transition in cobalt selenide with simultaneous construction of heterojunctions for highly-efficient oxygen electrocatalysis in zinc-air battery. Adv. Mater. 2024, 36, 2306844.
Li, T. F.; Hu, Y. J.; Liu, K. H.; Yin, J. W.; Li, Y.; Fu, G. T.; Zhang, Y. W.; Tang, Y. W. Hollow yolk–shell nanoboxes assembled by Fe-doped Mn3O4 nanosheets for high-efficiency electrocatalytic oxygen reduction in Zn-air battery. Chem. Eng. J. 2022, 427, 131992.
Xia, S. W.; Zhou, Q. X.; Sun, R. X.; Chen, L. Z.; Zhang, M. Y.; Pang, H.; Xu, L.; Yang, J.; Tang, Y. W. In-situ immobilization of CoNi nanoparticles into N-doped carbon nanotubes/nanowire-coupled superstructures as an efficient Mott–Schottky electrocatalyst toward electrocatalytic oxygen reduction. Chin. J. Catal. 2023, 54, 278–289.
Yang, Z. L.; Chen, Y. Z.; Zhang, S. M.; Zhang, J. J. Identification and understanding of active sites of non-noble iron-nitrogen-carbon catalysts for oxygen reduction electrocatalysis. Adv. Funct. Mater. 2023, 33, 2215185.
Gan, R. H.; Song, Y.; Ma, C.; Shi, J. L. In situ growth of N-doped carbon nanotubes in Fe-N x /Fe2O3/Fe3O4-encapsulated carbon sheets for efficient bifunctional oxygen catalysis. Appl. Catal. B: Environ. 2023, 327, 122443.
Lu, Z. W.; Chen, J. P.; Wang, W. L.; Li, W. J.; Sun, M. M.; Wang, Y. Y.; Wang, X. X.; Ye, J. S.; Rao, H. B. Electrocatalytic, kinetic, and mechanism insights into the oxygen-reduction catalyzed based on the biomass-derived FeO x @N-doped porous carbon composites. Small 2021, 17, 2007326.
Wang, B.; Ye, Y. Z.; Xu, L.; Quan, Y.; Wei, W. X.; Zhu, W. S.; Li, H. M.; Xia, J. X. Space-confined yolk–shell construction of Fe3O4 nanoparticles inside N-doped hollow mesoporous carbon spheres as bifunctional electrocatalysts for long-term rechargeable zinc-air batteries. Adv. Funct. Mater. 2020, 30, 2005834.
Ajmal, S.; Kumar, A.; Yasin, G.; Alam, M. M.; Selvaraj, M.; Tabish, M.; Mushtaq, M. A.; Gupta, R. K.; Zhao, W. A microwave-assisted decoration of carbon nanotubes with Fe3O4 nanoparticles for efficient electrocatalytic oxygen reduction reaction. J. Alloys Compd. 2023, 943, 169067.
Li, T. F.; Zhang, L. P.; Zhang, L.; Ke, J. W.; Du, T. H.; Zhang, L. F.; Cao, Y. F.; Yan, C. L.; Qian, T. Tailoring the chemisorption manner of Fe d-band center with La2O3 for enhanced oxygen reduction in anion exchange membrane fuel cells. Adv. Funct. Mater. 2024, 34, 2309886.
Wang, Y. B.; Meng, P. Y.; Yang, Z. H.; Jiang, M.; Yang, J.; Li, H. X.; Zhang, J.; Sun, B. D.; Fu, C. P. Regulation of atomic Fe-spin state by crystal field and magnetic field for enhanced oxygen electrocatalysis in rechargeable zinc-air batteries. Angew. Chem., Int. Ed. 2023, 62, e202304229.
Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.
Wang, S. C.; Zhang, M. Y.; Mu, X. Q.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Atomically dispersed multi-site catalysts: Bifunctional oxygen electrocatalysts boost flexible zinc-air battery performance. Energy Environ. Sci. 2024, 17, 4847–4870.
Chen, C.; Long, J. L.; Shen, K.; Liu, X. H.; Zhang, W. Monodispersed Eu2O3-modified Fe3O4@NCG composites as highly efficient and ultra-stable catalysts for rechargeable Zn-air batteries. Acs Appl. Mater. Interfaces 2022, 14, 38677–38688.
Zhang, G. Y.; Liu, X.; Zhang, X. X.; Liang, Z. J.; Xing, G. Y.; Cai, B.; Shen, D.; Wang, L.; Fu, H. G. Phosphate-decorated Fe-N-C to promote electrocatalytic oxygen reaction activities for highly stable zinc-air batteries. Chin. J. Catal. 2023, 49, 141–151.
Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.
Zhang, B. B.; Li, T. F.; Huang, L. Z.; Ren, Y. P.; Sun, D. M.; Pang, H.; Yang, J.; Xu, L.; Tang, Y. W. In situ immobilization of Fe/Fe3C/Fe2O3 hollow hetero-nanoparticles onto nitrogen-doped carbon nanotubes towards high-efficiency electrocatalytic oxygen reduction. Nanoscale 2021, 13, 5400–5409.
Chen, F. J.; Mu, X. Q.; Zhou, J. L.; Wang, S. C.; Liu, Z. Y.; Zhou, D. Y.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Engineering the active sites of MOF-derived catalysts: From oxygen activation to activate metal-air batteries. Chin. J. Chem. 2024, 42, 2520–2535.
Zhang, H. M.; Zhao, Y.; Zhang, Y. J.; Zhang, M. H.; Cheng, M. S.; Yu, J. L.; Liu, H. C.; Ji, M. W.; Zhu, C. Z.; Xu, J. Fe3O4 encapsulated in porous carbon nanobowls as efficient oxygen reduction reaction catalyst for Zn-air batteries. Chem. Eng. J. 2019, 375, 122058.
Wang, X. X.; Li, S. Y.; Yuan, Z.; Sun, Y. F.; Tang, Z.; Gao, X. Y.; Zhang, H. Y.; Li, J. X.; Wang, S. Y.; Yang, D. C. et al. Optimizing electrocatalytic nitrogen reduction via interfacial electric field modulation: Elevating d-band center in WS2-WO3 for enhanced intermediate adsorption. Angew. Chem., Int. Ed. 2023, 62, e202303794.
Jiao, S. L.; Fu, X. W.; Huang, H. W. Descriptors for the evaluation of electrocatalytic reactions: d-band theory and beyond. Adv. Funct. Mater. 2022, 32, 2107651.
Meng, N.; Feng, Y.; Zhao, Z. R.; Lian, F. Boosting the ORR/OER activity of cobalt-based nano-catalysts by Co 3d orbital regulation. Small 2024, 20, 2400855.
Song, L.; Guo, L. L.; Mao, J. Y.; Li, Z. P.; Zhu, J. W.; Lai, J. P.; Chi, J. Q.; Wang, L. Boosting hydrogen adsorption via manipulating the d-band center of ferroferric oxide for anion exchange membrane-based seawater electrolysis. ACS Catal. 2024, 14, 6981–6991.
Zhao, J.; Zhang, Y. X.; Zhuang, Z. C.; Deng, Y. T.; Gao, G.; Li, J. Y.; Meng, A. L.; Li, G. C.; Wang, L.; Li, Z. J. et al. Tailoring d–p orbital hybridization to decipher the essential effects of heteroatom substitution on redox kinetics. Angew. Chem., Int. Ed. 2024, 63, e202404968.
Li, F.; Yao, C. L.; Jeon, J. P.; Han, G. F.; Shin, T. J.; Han, A. L.; Fu, Z. P.; Lu, Y. L.; Baek, J. B. Rhodium and carbon sites with strong d–p orbital interaction for efficient bifunctional catalysis. ACS Nano 2023, 17, 24282–24289.
Mao, H. M.; Liu, X. B.; Wu, S. Q.; Sun, G. R.; Zhou, G. Z.; Chi, J. Q.; Wang, L. Built-in electric fields and interfacial electron modulation: Enhancement of oxygen reduction reaction in alkaline seawater. Adv. Energy Mater. 2023, 13, 2302251.
Zhou, X.; Li, J.; Zhou, G. Y.; Huang, W. R.; Zhang, Y. C.; Yang, J.; Pang, H.; Zhang, M. Y.; Sun, D. M.; Tang, Y. W. et al. Manipulating d–d orbital hybridization induced by Mo-doped Co9S8 nanorod arrays for high-efficiency water electrolysis. J. Energy Chem. 2024, 93, 592–600.
Li, M.; Wang, X.; Liu, K.; Sun, H. M.; Sun, D. M.; Huang, K.; Tang, Y. W.; Xing, W.; Li, H.; Fu, G. T. Reinforcing Co-O covalency via Ce(4f)-O(2p)-Co(3d) gradient orbital coupling for high-efficiency oxygen evolution. Adv. Mater. 2023, 35, 2302462.
Majid, A.; Azmat, M.; Rana, U. A.; Khan, S. U. D.; Alzahrani, E. A computational study of magnetic exchange interactions of 3d and 4f electrons in Ti-Ce co-doped AlN. Mater. Chem. Phys. 2016, 179, 316–321.
Ogada, J. J.; Ipadeola, A. K.; Mwonga, P. V.; Haruna, A. B.; Nichols, F.; Chen, S. W.; Miller, H. A.; Pagliaro, M. V.; Vizza, F.; Varcoe, J. R. et al. CeO2 modulates the electronic states of a palladium onion-like carbon interface into a highly active and durable electrocatalyst for hydrogen oxidation in anion-exchange-membrane fuel cells. ACS Catal. 2022, 12, 7014–7029.
Wang, X.; Tang, Y. W.; Lee, J. M.; Fu, G. T. Recent advances in rare-earth-based materials for electrocatalysis. Chem Catal. 2022, 2, 967–1008.
Ding, X. D.; Yu, J.; Huang, W. Q.; Chen, D. Y.; Lin, W.; Xie, Z. L. Modulation of the interfacial charge density on Fe2P-CoP by coupling CeO2 for accelerating alkaline electrocatalytic hydrogen evolution reaction and overall water splitting. Chem. Eng. J. 2023, 451, 138550.
Li, T. F.; Yin, J. W.; Sun, D. M.; Zhang, M. Y.; Pang, H.; Xu, L.; Zhang, Y. W.; Yang, J.; Tang, Y. W.; Xue, J. M. Manipulation of Mott–Schottky Ni/CeO2 heterojunctions into N-doped carbon nanofibers for high-efficiency electrochemical water splitting. Small 2022, 18, 2106592.
Liu, K.; Huang, X. B.; Wang, H. Y.; Li, F. Z.; Tang, Y. G.; Li, J. S.; Shao, M. H. Co3O4-CeO2/C as a highly active electrocatalyst for oxygen reduction reaction in Al-air batteries. ACS Appl. Mater. Interfaces 2016, 8, 34422–34430.
Lu, G. L.; Zheng, H. Y.; Lv, J. J.; Wang, G.; Huang, X. B. Review of recent research work on CeO2-based electrocatalysts in liquid-phase electrolytes. J. Power Sources 2020, 480, 229091.
Minasian, S. G.; Batista, E. R.; Booth, C. H.; Clark, D. L.; Keith, J. M.; Kozimor, S. A.; Lukens, W. W.; Martin, R. L.; Shuh, D. K.; Stieber, S. C. E. et al. Quantitative evidence for lanthanide-oxygen orbital mixing in CeO2, PrO2, and TbO2. J. Am. Chem. Soc. 2017, 139, 18052–18064.
Li, T. F.; Lu, T. Y.; Li, X.; Xu, L.; Zhang, Y. W.; Tian, Z. Q.; Yang, J.; Pang, H.; Tang, Y. W.; Xue, J. M. Atomically dispersed Mo sites anchored on multichannel carbon nanofibers toward superior electrocatalytic hydrogen evolution. ACS Nano 2021, 15, 20032–20041.
Zhou, Q. X.; Zhang, S. K.; Zhou, G. Y.; Pang, H.; Zhang, M. Y.; Xu, L.; Sun, K.; Tang, Y. W.; Huang, K. Interfacial engineering of CoN/Co3O4 heterostructured hollow nanoparticles embedded in N-doped carbon nanowires as a bifunctional oxygen electrocatalyst for rechargeable liquid and flexible all-solid-state Zn-air batteries. Small 2023, 19, 2301324.
Yu, J.; Dai, Y. W.; Zhang, Z. B.; Liu, T.; Zhao, S. Y.; Cheng, C.; Tan, P.; Shao, Z. P.; Ni, M. Tailoring structural properties of carbon via implanting optimal Co nanoparticles in N-rich carbon cages toward high-efficiency oxygen electrocatalysis for rechargeable Zn-air batteries. Carbon Energy 2022, 4, 576–585.
Chen, K.; Kim, G. C.; Kim, C.; Yadav, S.; Lee, I. H. Engineering core–shell hollow-sphere Fe3O4@FeP@nitrogen-doped-carbon as an advanced bi-functional electrocatalyst for highly-efficient water splitting. J. Colloid Interface Sci. 2024, 657, 684–694.
Guo, S. Q.; Wang, J. N.; Sun, Y. X.; Peng, L. C.; Li, C. J. Interface engineering of Co3O4/CeO2 heterostructure in-situ embedded in Co/N-doped carbon nanofibers integrating oxygen vacancies as effective oxygen cathode catalyst for Li-O2 battery. Chem. Eng. J. 2023, 452, 139317.
Liu, S. H.; Zheng, W. R.; Xie, W. H.; Cui, H.; Li, Y.; Zhang, C.; Ji, Z. C.; Liu, F. W.; Chen, R.; Sun, H. B. et al. Synthesis of three-dimensional honeycomb-like Fe3N@NC composites with enhanced lithium storage properties. Carbon 2022, 192, 162–169.
Wang, S. J.; Wang, H. Y.; Huang, C. Q.; Ye, P. C.; Luo, X. T.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Trifunctional electrocatalyst of N-doped graphitic carbon nanosheets encapsulated with CoFe alloy nanocrystals: The key roles of bimetal components and high-content graphitic-N. Appl. Catal. B: Environ. 2021, 298, 120512.
Xiao, J.; Chen, J. W.; Ou, Z. Q.; Lai, J. H.; Yu, T. W.; Wang, Y. N-doped carbon-coated Fe3N composite as heterogeneous electro-Fenton catalyst for efficient degradation of organics. Chin. J. Catal. 2021, 42, 953–962.
Huo, G.; Wang, X. W.; Zhang, Z. B.; Song, Z. X.; Kang, X. M.; Chen, M. X.; Wang, Q.; Fu, X. Z.; Luo, J. L. γ-MnO2 nanorod-assembled hierarchical micro-spheres with oxygen vacancies to enhance electrocatalytic performance toward the oxygen reduction reaction for aluminum-air batteries. J. Energy Chem. 2020, 51, 81–89.
Sun, H. M.; Tian, C. Y.; Fan, G. L.; Qi, J. N.; Liu, Z. T.; Yan, Z. H.; Cheng, F. Y.; Chen, J.; Li, C. P.; Du, M. Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall water splitting at high current densities. Adv. Funct. Mater. 2020, 30, 1910596.
Yang, M.; Hu, W. H.; Li, M. X.; Cao, Y. N.; Dong, B.; Ma, Y.; Zhao, H. Y.; Wang, F. G.; Huang, J.; Chai, Y. M. Controlled high-density interface engineering of Fe3O4-FeS nanoarray for efficient hydrogen evolution. J. Energy Chem. 2022, 68, 96–103.
Lu, T. Y.; Zhang, S. K.; Zhou, Q. X.; Wang, R.; Pang, H.; Yang, J.; Zhang, M. Y.; Xu, L.; Xi, S. B.; Sun, D. M. et al. A versatile extended Stöber approach to monodisperse sub-40 nm carbon nanospheres for stabilizing atomically dispersed Fe-N4 sites toward efficient oxygen reduction electrocatalysis. Small 2023, 19, 2303329.
Wang, X.; Wang, J. W.; Wang, P.; Li, L. C.; Zhang, X. Y.; Sun, D. M.; Li, Y. F.; Tang, Y. W.; Wang, Y.; Fu, G. T. Engineering 3d–2p–4f gradient orbital coupling to enhance electrocatalytic oxygen reduction. Adv. Mater. 2022, 34, 2206540.
Zhang, J.; Dong, X. R.; Wang, G.; Chen, J. W.; Wang, R. L. Interfacial engineering-induced Janus heterostructures with enhanced electronic regulation for efficient oxygen electrocatalysis in rechargeable Zn-air batteries. Appl. Catal. B: Environ. 2024, 342, 123459.
Ye, C. L.; Zheng, M.; Li, Z. M.; Fan, Q. K.; Ma, H. Q.; Fu, X. Z.; Wang, D. S.; Wang, J.; Li, Y. D. Electrical pulse induced one-step formation of atomically dispersed Pt on oxide clusters for ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202213366.