PDF (19.7 MB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Research Article | Open Access

Engineering of Fe d-band center in Fe3O4/CeO2 hetero-nanoparticles via orbital coupling for high-efficiency oxygen reduction electrocatalysis

Jiayi Liu1Jingwen Yin1Yingzi Lin1Mingxin Pang1Huan Pang3Songtao Zhang4Lin Xu1()Jun Yang2()Yawen Tang1()
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
State Key Laboratory of Multiphase Complex Systems, Center of Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
Testing Center, Yangzhou University, Yangzhou 225009, China
Show Author Information

Graphical Abstract

View original image Download original image
Benefiting from the engineered d-band center and unique structural design, the in-situ immobilization of Fe3O4/CeO2 hetero-nanoparticles onto N-doped carbon nanofibers demonstrates excellent oxygen reduction electrocatalytic activity and stability, and performs robust cycling stability.

Abstract

The deliberate engineering of the d-band center of metal site represents an effective strategy to boost the intrinsic electrocatalytic performance toward the oxygen reduction reaction (ORR). Herein, following a heterointerface-induced orbital coupling rationale, we report a judicious design of an efficient ORR electrocatalyst consisting of Fe3O4/CeO2 hetero-nanoparticles in-situ encased into N-doped carbon nanofibers (abbreviated as Fe3O4/CeO2@N-CNFs hereafter). The theoretic calculations uncover that the Fe3O4/CeO2 heterointerface-triggered orbital coupling can cause the down shift of the d-band center positions of Fe sites, which leads to the weakened chemisorption of oxygenated groups and lowered energy barrier for the potential-determining step, ultimately dramatically boosting the ORR intrinsic activity. As a consequence, the well-designed Fe3O4/CeO2@N-CNFs display admirable ORR activity with a half-wave potential of 0.84 V and outstanding structural/electrochemical stability in an alkaline electrolyte, surpassing the commercial Pt/C benchmark and a majority of recently reported Fe3O4-based electrocatalysts. More encouragingly, the Fe3O4/CeO2@N-CNFs-incorporated Zn-air battery outperforms the Pt/C-assembled counterpart with higher power density, larger energy density, and excellent cycling stability, serving as a competent candidate for ORR-involved renewable energy setups. This study offers an innovative approach for the rational manipulation of the d-band center and interfacial electron behavior of active sites toward the optimization of electrocatalytic performance.

Electronic Supplementary Material

Download File(s)
7016_ESM.pdf (3.7 MB)

References

[1]

Buss, J. A.; Agapie, T. Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site. Nature 2016, 529, 72–75.

[2]

Han, A.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

[3]

Li, Z. J.; Ji, S. Q.; Wang, C.; Liu, H. X.; Leng, L. P.; Du, L.; Gao, J. C.; Qiao, M.; Horton, J. H.; Wang, Y. Geometric and electronic engineering of atomically dispersed copper-cobalt diatomic sites for synergistic promotion of bifunctional oxygen electrocatalysis in zinc-air batteries. Adv. Mater. 2023, 35, 2300905.

[4]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem. Int. Ed. 2022, 61, e202115219.

[5]

Wang, Q. C.; Feng, Q. G.; Lei, Y. P.; Tang, S. H.; Xu, L.; Xiong, Y.; Fang, G. Z.; Wang, Y. C.; Yang, P. Y.; Liu, J. J. et al. Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nat. Commun. 2022, 13, 3689.

[6]

Zeng, R.; Yang, Y.; Feng, X. R.; Li, H. Q.; Gibbs, L. M.; DiSalvo, F. J.; Abruña, H. D. Nonprecious transition metal nitrides as efficient oxygen reduction electrocatalysts for alkaline fuel cells. Sci. Adv. 2022, 8, eabj1584.

[7]

Zhang, Y. F.; Liu, L. S.; Li, Y. X.; Mu, X. Q.; Mu, S. C.; Liu, S. L.; Dai, Z. H. Strong synergy between physical and chemical properties: Insight into optimization of atomically dispersed oxygen reduction catalysts. J. Energy Chem. 2024, 91, 36–49.

[8]

Zhang, S. K.; Zhou, Q. X.; Fang, L. Y.; Wang, R.; Lu, T. Y.; Zhao, Q.; Gu, X. F.; Tian, S.; Xu, L.; Pang, H. et al. Gram-scale synthesis and unraveling the activity origin of atomically dispersed Co-N4O sites toward superior electrocatalytic oxygen reduction. Appl. Catal. B: Environ. 2023, 328, 122489.

[9]
Li, J.; Lu, T. Y.; Fang, Y.; Zhou, G. Y.; Zhang, M. Y.; Pang, H.; Yang, J.; Tang, Y. W.; Xu, L. The manipulation of rectifying contact of Co and nitrogen-doped carbon hierarchical superstructures toward high-performance oxygen reduction reaction. Carbon Energy, in press, https://doi.org/10.1002/cey2.529.
[10]
Quílez-Bermejo, J.; Daouli, A.; Dalí, S. G.; Cui, Y. D.; Zitolo, A.; Castro-Gutiérrez, J.; Emo, M.; Izquierdo, M. T.; Mustain, W.; Badawi, M. et al. Electron transfer from encapsulated Fe3C to the outermost N-doped carbon layer for superior ORR. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202403810.
[11]

Xu, X. Q.; Wang, X. Y.; Huo, S. C.; Liu, X. F.; Ma, X. N.; Liu, M. Y.; Zou, J. L. Modulation of phase transition in cobalt selenide with simultaneous construction of heterojunctions for highly-efficient oxygen electrocatalysis in zinc-air battery. Adv. Mater. 2024, 36, 2306844.

[12]

Li, T. F.; Hu, Y. J.; Liu, K. H.; Yin, J. W.; Li, Y.; Fu, G. T.; Zhang, Y. W.; Tang, Y. W. Hollow yolk–shell nanoboxes assembled by Fe-doped Mn3O4 nanosheets for high-efficiency electrocatalytic oxygen reduction in Zn-air battery. Chem. Eng. J. 2022, 427, 131992.

[13]

Xia, S. W.; Zhou, Q. X.; Sun, R. X.; Chen, L. Z.; Zhang, M. Y.; Pang, H.; Xu, L.; Yang, J.; Tang, Y. W. In-situ immobilization of CoNi nanoparticles into N-doped carbon nanotubes/nanowire-coupled superstructures as an efficient Mott–Schottky electrocatalyst toward electrocatalytic oxygen reduction. Chin. J. Catal. 2023, 54, 278–289.

[14]

Yang, Z. L.; Chen, Y. Z.; Zhang, S. M.; Zhang, J. J. Identification and understanding of active sites of non-noble iron-nitrogen-carbon catalysts for oxygen reduction electrocatalysis. Adv. Funct. Mater. 2023, 33, 2215185.

[15]

Gan, R. H.; Song, Y.; Ma, C.; Shi, J. L. In situ growth of N-doped carbon nanotubes in Fe-N x /Fe2O3/Fe3O4-encapsulated carbon sheets for efficient bifunctional oxygen catalysis. Appl. Catal. B: Environ. 2023, 327, 122443.

[16]

Lu, Z. W.; Chen, J. P.; Wang, W. L.; Li, W. J.; Sun, M. M.; Wang, Y. Y.; Wang, X. X.; Ye, J. S.; Rao, H. B. Electrocatalytic, kinetic, and mechanism insights into the oxygen-reduction catalyzed based on the biomass-derived FeO x @N-doped porous carbon composites. Small 2021, 17, 2007326.

[17]

Wang, B.; Ye, Y. Z.; Xu, L.; Quan, Y.; Wei, W. X.; Zhu, W. S.; Li, H. M.; Xia, J. X. Space-confined yolk–shell construction of Fe3O4 nanoparticles inside N-doped hollow mesoporous carbon spheres as bifunctional electrocatalysts for long-term rechargeable zinc-air batteries. Adv. Funct. Mater. 2020, 30, 2005834.

[18]

Ajmal, S.; Kumar, A.; Yasin, G.; Alam, M. M.; Selvaraj, M.; Tabish, M.; Mushtaq, M. A.; Gupta, R. K.; Zhao, W. A microwave-assisted decoration of carbon nanotubes with Fe3O4 nanoparticles for efficient electrocatalytic oxygen reduction reaction. J. Alloys Compd. 2023, 943, 169067.

[19]

Li, T. F.; Zhang, L. P.; Zhang, L.; Ke, J. W.; Du, T. H.; Zhang, L. F.; Cao, Y. F.; Yan, C. L.; Qian, T. Tailoring the chemisorption manner of Fe d-band center with La2O3 for enhanced oxygen reduction in anion exchange membrane fuel cells. Adv. Funct. Mater. 2024, 34, 2309886.

[20]

Wang, Y. B.; Meng, P. Y.; Yang, Z. H.; Jiang, M.; Yang, J.; Li, H. X.; Zhang, J.; Sun, B. D.; Fu, C. P. Regulation of atomic Fe-spin state by crystal field and magnetic field for enhanced oxygen electrocatalysis in rechargeable zinc-air batteries. Angew. Chem., Int. Ed. 2023, 62, e202304229.

[21]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[22]

Wang, S. C.; Zhang, M. Y.; Mu, X. Q.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Atomically dispersed multi-site catalysts: Bifunctional oxygen electrocatalysts boost flexible zinc-air battery performance. Energy Environ. Sci. 2024, 17, 4847–4870.

[23]

Chen, C.; Long, J. L.; Shen, K.; Liu, X. H.; Zhang, W. Monodispersed Eu2O3-modified Fe3O4@NCG composites as highly efficient and ultra-stable catalysts for rechargeable Zn-air batteries. Acs Appl. Mater. Interfaces 2022, 14, 38677–38688.

[24]

Zhang, G. Y.; Liu, X.; Zhang, X. X.; Liang, Z. J.; Xing, G. Y.; Cai, B.; Shen, D.; Wang, L.; Fu, H. G. Phosphate-decorated Fe-N-C to promote electrocatalytic oxygen reaction activities for highly stable zinc-air batteries. Chin. J. Catal. 2023, 49, 141–151.

[25]

Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.

[26]

Zhang, B. B.; Li, T. F.; Huang, L. Z.; Ren, Y. P.; Sun, D. M.; Pang, H.; Yang, J.; Xu, L.; Tang, Y. W. In situ immobilization of Fe/Fe3C/Fe2O3 hollow hetero-nanoparticles onto nitrogen-doped carbon nanotubes towards high-efficiency electrocatalytic oxygen reduction. Nanoscale 2021, 13, 5400–5409.

[27]

Chen, F. J.; Mu, X. Q.; Zhou, J. L.; Wang, S. C.; Liu, Z. Y.; Zhou, D. Y.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Engineering the active sites of MOF-derived catalysts: From oxygen activation to activate metal-air batteries. Chin. J. Chem. 2024, 42, 2520–2535.

[28]

Zhang, H. M.; Zhao, Y.; Zhang, Y. J.; Zhang, M. H.; Cheng, M. S.; Yu, J. L.; Liu, H. C.; Ji, M. W.; Zhu, C. Z.; Xu, J. Fe3O4 encapsulated in porous carbon nanobowls as efficient oxygen reduction reaction catalyst for Zn-air batteries. Chem. Eng. J. 2019, 375, 122058.

[29]

Wang, X. X.; Li, S. Y.; Yuan, Z.; Sun, Y. F.; Tang, Z.; Gao, X. Y.; Zhang, H. Y.; Li, J. X.; Wang, S. Y.; Yang, D. C. et al. Optimizing electrocatalytic nitrogen reduction via interfacial electric field modulation: Elevating d-band center in WS2-WO3 for enhanced intermediate adsorption. Angew. Chem., Int. Ed. 2023, 62, e202303794.

[30]

Jiao, S. L.; Fu, X. W.; Huang, H. W. Descriptors for the evaluation of electrocatalytic reactions: d-band theory and beyond. Adv. Funct. Mater. 2022, 32, 2107651.

[31]

Meng, N.; Feng, Y.; Zhao, Z. R.; Lian, F. Boosting the ORR/OER activity of cobalt-based nano-catalysts by Co 3d orbital regulation. Small 2024, 20, 2400855.

[32]

Song, L.; Guo, L. L.; Mao, J. Y.; Li, Z. P.; Zhu, J. W.; Lai, J. P.; Chi, J. Q.; Wang, L. Boosting hydrogen adsorption via manipulating the d-band center of ferroferric oxide for anion exchange membrane-based seawater electrolysis. ACS Catal. 2024, 14, 6981–6991.

[33]

Zhao, J.; Zhang, Y. X.; Zhuang, Z. C.; Deng, Y. T.; Gao, G.; Li, J. Y.; Meng, A. L.; Li, G. C.; Wang, L.; Li, Z. J. et al. Tailoring d–p orbital hybridization to decipher the essential effects of heteroatom substitution on redox kinetics. Angew. Chem., Int. Ed. 2024, 63, e202404968.

[34]

Li, F.; Yao, C. L.; Jeon, J. P.; Han, G. F.; Shin, T. J.; Han, A. L.; Fu, Z. P.; Lu, Y. L.; Baek, J. B. Rhodium and carbon sites with strong d–p orbital interaction for efficient bifunctional catalysis. ACS Nano 2023, 17, 24282–24289.

[35]

Mao, H. M.; Liu, X. B.; Wu, S. Q.; Sun, G. R.; Zhou, G. Z.; Chi, J. Q.; Wang, L. Built-in electric fields and interfacial electron modulation: Enhancement of oxygen reduction reaction in alkaline seawater. Adv. Energy Mater. 2023, 13, 2302251.

[36]

Zhou, X.; Li, J.; Zhou, G. Y.; Huang, W. R.; Zhang, Y. C.; Yang, J.; Pang, H.; Zhang, M. Y.; Sun, D. M.; Tang, Y. W. et al. Manipulating d–d orbital hybridization induced by Mo-doped Co9S8 nanorod arrays for high-efficiency water electrolysis. J. Energy Chem. 2024, 93, 592–600.

[37]

Li, M.; Wang, X.; Liu, K.; Sun, H. M.; Sun, D. M.; Huang, K.; Tang, Y. W.; Xing, W.; Li, H.; Fu, G. T. Reinforcing Co-O covalency via Ce(4f)-O(2p)-Co(3d) gradient orbital coupling for high-efficiency oxygen evolution. Adv. Mater. 2023, 35, 2302462.

[38]

Majid, A.; Azmat, M.; Rana, U. A.; Khan, S. U. D.; Alzahrani, E. A computational study of magnetic exchange interactions of 3d and 4f electrons in Ti-Ce co-doped AlN. Mater. Chem. Phys. 2016, 179, 316–321.

[39]

Ogada, J. J.; Ipadeola, A. K.; Mwonga, P. V.; Haruna, A. B.; Nichols, F.; Chen, S. W.; Miller, H. A.; Pagliaro, M. V.; Vizza, F.; Varcoe, J. R. et al. CeO2 modulates the electronic states of a palladium onion-like carbon interface into a highly active and durable electrocatalyst for hydrogen oxidation in anion-exchange-membrane fuel cells. ACS Catal. 2022, 12, 7014–7029.

[40]

Wang, X.; Tang, Y. W.; Lee, J. M.; Fu, G. T. Recent advances in rare-earth-based materials for electrocatalysis. Chem Catal. 2022, 2, 967–1008.

[41]

Ding, X. D.; Yu, J.; Huang, W. Q.; Chen, D. Y.; Lin, W.; Xie, Z. L. Modulation of the interfacial charge density on Fe2P-CoP by coupling CeO2 for accelerating alkaline electrocatalytic hydrogen evolution reaction and overall water splitting. Chem. Eng. J. 2023, 451, 138550.

[42]

Li, T. F.; Yin, J. W.; Sun, D. M.; Zhang, M. Y.; Pang, H.; Xu, L.; Zhang, Y. W.; Yang, J.; Tang, Y. W.; Xue, J. M. Manipulation of Mott–Schottky Ni/CeO2 heterojunctions into N-doped carbon nanofibers for high-efficiency electrochemical water splitting. Small 2022, 18, 2106592.

[43]

Liu, K.; Huang, X. B.; Wang, H. Y.; Li, F. Z.; Tang, Y. G.; Li, J. S.; Shao, M. H. Co3O4-CeO2/C as a highly active electrocatalyst for oxygen reduction reaction in Al-air batteries. ACS Appl. Mater. Interfaces 2016, 8, 34422–34430.

[44]

Lu, G. L.; Zheng, H. Y.; Lv, J. J.; Wang, G.; Huang, X. B. Review of recent research work on CeO2-based electrocatalysts in liquid-phase electrolytes. J. Power Sources 2020, 480, 229091.

[45]

Minasian, S. G.; Batista, E. R.; Booth, C. H.; Clark, D. L.; Keith, J. M.; Kozimor, S. A.; Lukens, W. W.; Martin, R. L.; Shuh, D. K.; Stieber, S. C. E. et al. Quantitative evidence for lanthanide-oxygen orbital mixing in CeO2, PrO2, and TbO2. J. Am. Chem. Soc. 2017, 139, 18052–18064.

[46]

Li, T. F.; Lu, T. Y.; Li, X.; Xu, L.; Zhang, Y. W.; Tian, Z. Q.; Yang, J.; Pang, H.; Tang, Y. W.; Xue, J. M. Atomically dispersed Mo sites anchored on multichannel carbon nanofibers toward superior electrocatalytic hydrogen evolution. ACS Nano 2021, 15, 20032–20041.

[47]

Zhou, Q. X.; Zhang, S. K.; Zhou, G. Y.; Pang, H.; Zhang, M. Y.; Xu, L.; Sun, K.; Tang, Y. W.; Huang, K. Interfacial engineering of CoN/Co3O4 heterostructured hollow nanoparticles embedded in N-doped carbon nanowires as a bifunctional oxygen electrocatalyst for rechargeable liquid and flexible all-solid-state Zn-air batteries. Small 2023, 19, 2301324.

[48]

Yu, J.; Dai, Y. W.; Zhang, Z. B.; Liu, T.; Zhao, S. Y.; Cheng, C.; Tan, P.; Shao, Z. P.; Ni, M. Tailoring structural properties of carbon via implanting optimal Co nanoparticles in N-rich carbon cages toward high-efficiency oxygen electrocatalysis for rechargeable Zn-air batteries. Carbon Energy 2022, 4, 576–585.

[49]

Chen, K.; Kim, G. C.; Kim, C.; Yadav, S.; Lee, I. H. Engineering core–shell hollow-sphere Fe3O4@FeP@nitrogen-doped-carbon as an advanced bi-functional electrocatalyst for highly-efficient water splitting. J. Colloid Interface Sci. 2024, 657, 684–694.

[50]

Guo, S. Q.; Wang, J. N.; Sun, Y. X.; Peng, L. C.; Li, C. J. Interface engineering of Co3O4/CeO2 heterostructure in-situ embedded in Co/N-doped carbon nanofibers integrating oxygen vacancies as effective oxygen cathode catalyst for Li-O2 battery. Chem. Eng. J. 2023, 452, 139317.

[51]

Liu, S. H.; Zheng, W. R.; Xie, W. H.; Cui, H.; Li, Y.; Zhang, C.; Ji, Z. C.; Liu, F. W.; Chen, R.; Sun, H. B. et al. Synthesis of three-dimensional honeycomb-like Fe3N@NC composites with enhanced lithium storage properties. Carbon 2022, 192, 162–169.

[52]

Wang, S. J.; Wang, H. Y.; Huang, C. Q.; Ye, P. C.; Luo, X. T.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Trifunctional electrocatalyst of N-doped graphitic carbon nanosheets encapsulated with CoFe alloy nanocrystals: The key roles of bimetal components and high-content graphitic-N. Appl. Catal. B: Environ. 2021, 298, 120512.

[53]

Xiao, J.; Chen, J. W.; Ou, Z. Q.; Lai, J. H.; Yu, T. W.; Wang, Y. N-doped carbon-coated Fe3N composite as heterogeneous electro-Fenton catalyst for efficient degradation of organics. Chin. J. Catal. 2021, 42, 953–962.

[54]

Huo, G.; Wang, X. W.; Zhang, Z. B.; Song, Z. X.; Kang, X. M.; Chen, M. X.; Wang, Q.; Fu, X. Z.; Luo, J. L. γ-MnO2 nanorod-assembled hierarchical micro-spheres with oxygen vacancies to enhance electrocatalytic performance toward the oxygen reduction reaction for aluminum-air batteries. J. Energy Chem. 2020, 51, 81–89.

[55]

Sun, H. M.; Tian, C. Y.; Fan, G. L.; Qi, J. N.; Liu, Z. T.; Yan, Z. H.; Cheng, F. Y.; Chen, J.; Li, C. P.; Du, M. Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall water splitting at high current densities. Adv. Funct. Mater. 2020, 30, 1910596.

[56]

Yang, M.; Hu, W. H.; Li, M. X.; Cao, Y. N.; Dong, B.; Ma, Y.; Zhao, H. Y.; Wang, F. G.; Huang, J.; Chai, Y. M. Controlled high-density interface engineering of Fe3O4-FeS nanoarray for efficient hydrogen evolution. J. Energy Chem. 2022, 68, 96–103.

[57]

Lu, T. Y.; Zhang, S. K.; Zhou, Q. X.; Wang, R.; Pang, H.; Yang, J.; Zhang, M. Y.; Xu, L.; Xi, S. B.; Sun, D. M. et al. A versatile extended Stöber approach to monodisperse sub-40 nm carbon nanospheres for stabilizing atomically dispersed Fe-N4 sites toward efficient oxygen reduction electrocatalysis. Small 2023, 19, 2303329.

[58]

Wang, X.; Wang, J. W.; Wang, P.; Li, L. C.; Zhang, X. Y.; Sun, D. M.; Li, Y. F.; Tang, Y. W.; Wang, Y.; Fu, G. T. Engineering 3d–2p–4f gradient orbital coupling to enhance electrocatalytic oxygen reduction. Adv. Mater. 2022, 34, 2206540.

[59]

Zhang, J.; Dong, X. R.; Wang, G.; Chen, J. W.; Wang, R. L. Interfacial engineering-induced Janus heterostructures with enhanced electronic regulation for efficient oxygen electrocatalysis in rechargeable Zn-air batteries. Appl. Catal. B: Environ. 2024, 342, 123459.

[60]

Ye, C. L.; Zheng, M.; Li, Z. M.; Fan, Q. K.; Ma, H. Q.; Fu, X. Z.; Wang, D. S.; Wang, J.; Li, Y. D. Electrical pulse induced one-step formation of atomically dispersed Pt on oxide clusters for ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202213366.

Nano Research
Article number: 94907016
Cite this article:
Liu J, Yin J, Lin Y, et al. Engineering of Fe d-band center in Fe3O4/CeO2 hetero-nanoparticles via orbital coupling for high-efficiency oxygen reduction electrocatalysis. Nano Research, 2025, 18(1): 94907016. https://doi.org/10.26599/NR.2025.94907016
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return