PDF (11.6 MB)
Collect
Submit Manuscript
Show Outline
Figures (4)

Research Article | Open Access

Atomically precise nickel-sulfur clusters for efficient electrochemical 2,5-hydroxymethylfurfural oxidation

Fen Wang1Lu-Yu Liu1Sha-Sha Cui1Ting-Ting Li1Xiao-Meng Yang1Zhijuan Liu1()Yanyong Wang2
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
State Key Laboratory of Chem/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Show Author Information

Graphical Abstract

View original image Download original image
In this work, we have successfully synthesized atomically precise Ni6(PET)12 and Ni4(PET)8 clusters (PET: 2-phenylethanethiol) for 2,5-hydroxymethylfurfural oxidation reaction (HMFOR). The Ni6(PET)12 exhibited better electrocatalytic ability than Ni4(PET)8 with higher current density, lower overpotential and faster reaction kinetics.

Abstract

Nickel sulfide exhibits excellent catalytic activity in the electrochemical 2,5-hydroxymethylfurfural oxidation reaction (HMFOR). However, due to the polydispersity of nanoparticles, it is difficult to establish a clear structure–activity relationship at the atomic level. In this work, we have successfully synthesized atomically precise Ni6(PET)12 and Ni4(PET)8 clusters (PET: 2-phenylethanethiol) for HMFOR. Ni2+ and S2− with atomic ratio of 1:2 was mainly existed in Ni6(PET)12 and Ni4(PET)8 to form Ni–S bond. The electrochemical test results have suggested both Ni6(PET)12 and Ni4(PET)8 displayed outstanding electrocatalytic ability for HMFOR. The Ni6(PET)12 exhibited better electrocatalytic ability than Ni4(PET)8 with higher current density, lower overpotential and faster reaction kinetics. The superior electrochemical ability of Ni6(PET)12 may be due to the enhanced adsorption towards HMF molecule with strong interaction towards hydroxyl group and furan ring. Moreover, it found that the Ni2+ species in Ni6(PET)12 could rapidly oxidized into Ni3+ species, which could spontaneously capture electron and proton from HMF for oxidation. The theoretical calculation demonstrated that the Ni6(PET)12 process lower free energy barrier than Ni4(PET)8 to display excellent electrocatalytic performance. This work is of great significance for designing efficient electrocatalysts for HMFOR.

Electronic Supplementary Material

Download File(s)
7018_ESM.pdf (1.5 MB)

References

[1]

Pan, Y.; Zhang, C.; Lin, Y.; Liu, Z.; Wang, M. M.; Chen, C. Electrocatalyst engineering and structure–activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Sci. China Mater. 2020, 63, 921–948.

[2]

Yang, M.; Yuan, Z. R.; Peng, R. X.; Wang, S. Y.; Zou, Y. Q. Recent progress on electrocatalytic valorization of biomass-derived organics. Energy Environ. Mater. 2022, 5, 1117–1138.

[3]

Li, Y. W.; Huang, H. T.; Jiang, M. K.; Xi, W. L.; Duan, J. Y.; Ratova, M.; Wu, D. Advancements in transition bimetal catalysts for electrochemical 5-hydroxymethylfurfural (HMF) oxidation. J. Energy Chem. 2024, 98, 24–46.

[4]

Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Y. B.; Li, Y. Y.; Zhang, N. N.; Chen, W.; Zhou, L.; Lin, H. Z. et al. Hierarchically nanostructured NiO-CO3O4 with rich interface defects for the electro-oxidation of 5-hydroxymethylfurfural. Sci. China Chem. 2020, 63, 980–986.

[5]

Zhou, S. H.; Dai, F. L.; Xiang, Z. Y.; Song, T.; Liu, D. T.; Lu, F. C.; Qi, H. S. Zirconium-lignosulfonate polyphenolic polymer for highly efficient hydrogen transfer of biomass-derived oxygenates under mild conditions. Appl. Catal. B: Environ. 2019, 248, 31–43.

[6]

Chen, C. L.; Wang, L. C.; Zhu, B.; Zhou, Z. Q.; El-Hout, S. I.; Yang, J.; Zhang, J. 2,5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural: Catalysts, processes and reaction mechanism. J. Energy Chem. 2021, 54, 528–554.

[7]

Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem., Int. Ed. 2021, 60, 19572–19590.

[8]

Jin, J.; Fang, Y. Y.; Zhang, T. Y.; Han, A. J.; Wang, B. Q.; Liu, J. F. Ultrasmall Ag nanoclusters anchored on NiCo-layered double hydroxide nanoarray for efficient electrooxidation of 5-hydroxymethylfurfural. Sci. China Mater. 2022, 65, 2704–2710.

[9]

Yang, Y. C.; Mu, T. C. Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): Pathway, mechanism, catalysts and coupling reactions. Green Chem. 2021, 23, 4228–4254.

[10]

Zhang, R.; Gao, F.; Yang, C.; Bian, Y.; Wang, G.; Xue, K.; Zhang, J.; Wang, C.; Gao, X. Boosting hydrogen evolution via anodic oxidation of 5-hydroxymethylfurfural in anion exchange membrane electrolyzer over a metallic heterostructure. Mater. Today Nano 2023, 23, 100373.

[11]

Li, S. Q.; Wang, S. B.; Wang, Y. H.; He, J. H.; Li, K.; Xu, Y. J.; Wang, M. X.; Zhao, S. Y.; Li, X. N.; Zhong, X. et al. Doped Mn enhanced NiS electrooxidation performance of HMF into FDCA at industrial-level current density. Adv. Funct. Mater. 2023, 33, 2214488.

[12]

Wu, Z. K.; Jin, R. C. Stability of the two Au–S binding modes in Au25(SG)18 nanoclusters probed by NMR and optical spectroscopy. ACS Nano 2009, 3, 2036–2042.

[13]

Galchenko, M.; Black, A.; Heymann, L.; Klinke, C. Field effect and photoconduction in Au25 nanoclusters films. Adv. Mater. 2019, 31, 1900684.

[14]

Antonello, S.; Perera, N. V.; Ruzzi, M.; Gascón, J. A.; Maran, F. Interplay of charge state, lability, and magnetism in the molecule-like Au25(SR)18 cluster. J. Am. Chem. Soc. 2013, 135, 15585–15594.

[15]

Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.

[16]

Jia, T. T.; Yang, G.; Mo, S. J.; Wang, Z. Y.; Li, B. J.; Ma, W.; Guo, Y. X.; Chen, X. Y.; Zhao, X. L.; Liu, J. Q. et al. Atomically precise gold-levonorgestrel nanocluster as a radiosensitizer for enhanced cancer therapy. ACS Nano 2019, 13, 8320–8328.

[17]

Song, X. R.; Goswami, N.; Yang, H. H.; Xie, J. P. Functionalization of metal nanoclusters for biomedical applications. Analyst 2016, 141, 3126–3140.

[18]

Yao, Q. F.; Chen, T. K.; Yuan, X.; Xie, J. P. Toward total synthesis of thiolate-protected metal nanoclusters. Acc. Chem. Res. 2018, 51, 1338–1348.

[19]

Li, S.; Li, N. N.; Dong, X. Y.; Zang, S. Q.; Mak, T. C. W. Chemical flexibility of atomically precise metal clusters. Chem. Rev. 2024, 124, 7262–7378.

[20]

Kauffman, D. R.; Alfonso, D.; Tafen, D. N.; Lekse, J.; Wang, C. J.; Deng, X. Y.; Lee, J.; Jang, H.; Lee, J. S.; Kumar, S. et al. Electrocatalytic oxygen evolution with an atomically precise nickel catalyst. ACS Catal. 2016, 6, 1225–1234.

[21]

Joya, K. S.; Sinatra, L.; AbdulHalim, L. G.; Joshi, C. P.; Hedhili, M. N.; Bakr, O. M.; Hussain, I. Atomically monodisperse nickel nanoclusters as highly active electrocatalysts for water oxidation. Nanoscale 2016, 8, 9695–9703.

[22]

Kagalwala, H. N.; Gottlieb, E.; Li, G.; Li, T.; Jin, R. C.; Bernhard, S. Photocatalytic hydrogen generation system using a nickel-thiolate hexameric cluster. Inorg. Chem. 2013, 52, 9094–9101.

[23]

Qian, H. F.; Zhu, Y.; Jin, R. C. Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. ACS Nano 2009, 3, 3795–3803.

[24]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.

[25]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[26]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[27]

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

[28]

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

[29]

Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658.

[30]

Hu, W. G.; Sun, Y. N.; Li, S. H.; Cheng, X. L.; Cai, X.; Chen, M. Y.; Zhu, Y. Visible-light-driven methane conversion with oxygen enabled by atomically precise nickel catalyst. CCS Chem. 2021, 3, 2509–2519.

[31]

Cheng, X. L.; Chai, X. Q.; Hu, W. G.; Li, S. G.; Zhu, Y. The on-and-off dynamics of thiophene on a nickel cluster enables efficient hydrodesulfurization and excellent stability at high temperatures. Nanoscale 2019, 11, 4369–4375.

[32]

Billo, T.; Fu, F. Y.; Raghunath, P.; Shown, I.; Chen, W. F.; Lien, H. T.; Shen, T. H.; Lee, J. F.; Chan, T. S.; Huang, K. Y. et al. Ni-nanocluster modified black TiO2 with dual active sites for selective photocatalytic CO2 reduction. Small 2018, 14, 1702928.

[33]

Qian, L.; Gu, L.; Yang, L.; Yuan, H. Y.; Xiao, D. Direct growth of NiCO2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation. Nanoscale 2013, 5, 7388–7396.

[34]

Wei, J. D.; Zhao, R. Q.; Luo, D.; Lu, X. Y.; Dong, W. X.; Huang, Y. C.; Cheng, X. M.; Ni, Y. H. Atomically precise Ni6(SC2H4Ph)12 nanoclusters on graphitic carbon nitride nanosheets for boosting photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2023, 631, 212–221.

[35]

Liu, C. F.; Shi, X. R.; Yue, K. H.; Wang, P. J.; Zhan, K.; Wang, X. Y.; Xia, B. Y.; Yan, Y. S-species-evoked high-valence Ni2+ δ of the evolved β-Ni(OH)2 electrode for selective oxidation of 5-hydroxymethylfurfural. Adv. Mater. 2023, 35, 2211177.

[36]

Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.

[37]

Zhou, B.; Li, Y. Y.; Zou, Y. Q.; Chen, W.; Zhou, W.; Song, M. L.; Wu, Y. J.; Lu, Y. X.; Liu, J. L.; Wang, Y. Y. et al. Platinum modulates redox properties and 5-hydroxymethylfurfural adsorption kinetics of Ni(OH)2 for biomass upgrading. Angew. Chem., Int. Ed. 2021, 60, 22908–22914.

[38]

Taitt, B. J.; Nam, D. H.; Choi, K. S. A comparative study of nickel, cobalt, and iron oxyhydroxide anodes for the electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. ACS Catal. 2019, 9, 660–670.

[39]

Zhou, P.; Lv, X. S.; Tao, S. S.; Wu, J. C.; Wang, H. F.; Wei, X. X.; Wang, T. H.; Zhou, B.; Lu, Y. X.; Frauenheim, T. et al. Heterogeneous-interface-enhanced adsorption of organic and hydroxyl for biomass electrooxidation. Adv. Mater. 2022, 34, 2204089.

[40]

Heidary, N.; Kornienko, N. Electrochemical biomass valorization on gold-metal oxide nanoscale heterojunctions enables investigation of both catalyst and reaction dynamics with operando surface-enhanced Raman spectroscopy. Chem. Sci. 2020, 11, 1798–1806.

[41]

Zhang, N. N.; Zou, Y. Q.; Tao, L.; Chen, W.; Zhou, L.; Liu, Z. J.; Zhou, B.; Huang, G.; Lin, H. Z.; Wang, S. Y. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: Reaction pathway determined by in situ sum frequency generation vibrational spectroscopy. Angew. Chem., Int. Ed. 2019, 58, 15895–15903.

[42]

Lin, R.; Salehi, M.; Guo, J. X.; Seifitokaldani, A. High oxidation state enabled by plated Ni-P achieves superior electrocatalytic performance for 5-hydroxymethylfurfural oxidation reaction. iScience 2022, 25, 104744.

[43]

Lu, Y. X.; Liu, T. Y.; Dong, C. L.; Yang, C. M.; Zhou, L.; Huang, Y. C.; Li, Y. F.; Zhou, B.; Zou, Y. Q.; Wang, S. Y. Tailoring competitive adsorption sites by oxygen-vacancy on cobalt oxides to enhance the electrooxidation of biomass. Adv. Mater. 2022, 34, 2107185.

[44]

You, B.; Liu, X.; Jiang, N.; Sun, Y. J. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 2016, 138, 13639–13646.

[45]

Bredar, A. R. C.; Chown, A. L.; Burton, A. R.; Farnum, B. H. Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications. ACS Appl. Energy Mater. 2020, 3, 66–98.

[46]

Chen, W.; Xu, L. T.; Zhu, X. R.; Huang, Y. C.; Zhou, W.; Wang, D. D.; Zhou, Y. Y.; Du, S. Q.; Li, Q. L.; Xie, C. et al. Unveiling the electrooxidation of urea: Intramolecular coupling of the N–N bond. Angew. Chem., Int. Ed. 2021, 60, 7297–7307.

[47]

Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Z. J.; Liu, Y. B.; Li, Y. Y.; He, N. H.; Shi, J. Q.; Wang, S. Y. Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem., Int. Ed. 2020, 59, 19215–19221.

[48]

Chen, W.; Xie, C.; Wang, Y. Y.; Zou, Y. Q.; Dong, C. L.; Huang, Y. C.; Xiao, Z. H.; Wei, Z. X.; Du, S. Q.; Chen, C. et al. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem 2020, 6, 2974–2993.

[49]

Lu, Y. X.; Liu, T. Y.; Huang, Y. C.; Zhou, L.; Li, Y. Y.; Chen, W.; Yang, L.; Zhou, B.; Wu, Y. D.; Kong, Z. J. et al. Integrated catalytic sites for highly efficient electrochemical oxidation of the aldehyde and hydroxyl groups in 5-hydroxymethylfurfural. ACS Catal. 2022, 12, 4242–4251.

[50]

Xiao, D. F.; Bao, X. L.; Dai, D. J.; Gao, Y. G.; Si, S. H.; Wang, Z. Y.; Liu, Y. Y.; Wang, P.; Zheng, Z. K.; Cheng, H. F. et al. Boosting the electrochemical 5-hydroxymethylfurfural oxidation by balancing the competitive adsorption of organic and OH over controllable reconstructed Ni3S2/NiO x . Adv. Mater. 2023, 35, 2304133.

[51]

Zhang, P. L.; Sheng, X.; Chen, X. Y.; Fang, Z. Y.; Jiang, J.; Wang, M.; Li, F. S.; Fan, L. Z.; Ren, Y. S.; Zhang, B. B. et al. Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source. Angew. Chem., Int. Ed. 2019, 58, 9155–9159.

[52]

Huang, C. Q.; Huang, Y.; Liu, C. B.; Yu, Y. F.; Zhang, B. Integrating hydrogen production with aqueous selective semi-dehydrogenation of tetrahydroisoquinolines over a Ni2P bifunctional electrode. Angew. Chem., Int. Ed. 2019, 58, 12014–12017.

[53]

Deng, X. H.; Li, M.; Fan, Y.; Wang, L.; Fu, X. Z.; Luo, J. L. Constructing multifunctional “nanoplatelet-on-nanoarray” electrocatalyst with unprecedented activity towards novel selective organic oxidation reactions to boost hydrogen production. Appl. Catal. B: Environ. 2020, 278, 119339.

[54]

Liu, X. P.; Wang, R.; Wei, M. Y.; Wang, X. H.; Qiu, J. Y.; Zhang, J. R.; Li, S. L.; Chen, Y. Cross-linked α-Ni(OH)2 nanosheets with a Ni3+-rich structure for accelerating electrochemical oxidation of 5-hydroxymethylfurfural. J. Colloid Interface Sci. 2024, 657, 438–448.

[55]

Zhang, X.; Su, H.; Cui, P. X.; Cao, Y. Y.; Teng, Z. Y.; Zhang, Q. T.; Wang, Y.; Feng, Y. B.; Feng, R.; Hou, J. X. et al. Developing Ni single-atom sites in carbon nitride for efficient photocatalytic H2O2 production. Nat. Commun. 2023, 14, 7115.

[56]

Zhou, Z. Y.; Xie, Y. N.; Sun, L. Z.; Wang, Z. M.; Wang, W. K.; Jiang, L. Z.; Tao, X.; Li, L. N.; Li, X. H.; Zhao, G. H. Strain-induced in situ formation of NiOOH species on Co–Co bond for selective electrooxidation of 5-hydroxymethylfurfural and efficient hydrogen production. Appl. Catal. B: Environ. 2022, 305, 121072.

[57]

Zeng, L. Y.; Chen, Y. J.; Sun, M. Z.; Huang, Q. Z.; Sun, K. A.; Ma, J. Y.; Li, J.; Tan, H.; Li, M. G.; Pan, Y. et al. Cooperative Rh-O5/Ni(Fe) site for efficient biomass upgrading coupled with H2 production. J. Am. Chem. Soc. 2023, 145, 17577–17587.

[58]

Wu, J. C.; Kong, Z. J.; Li, Y. Y.; Lu, Y. X.; Zhou, P.; Wang, H. F.; Xu, L. T.; Wang, S. Y.; Zou, Y. Q. Unveiling the adsorption behavior and redox properties of PtNi nanowire for biomass-derived molecules electrooxidation. ACS Nano 2022, 16, 21518–21526.

[59]

Lu, L. Y.; Wen, C. Y.; Wang, H. Y.; Li, Y. H.; Wu, J. C.; Wang, C. G. Tailoring the electron structure and substrate adsorption energy of Ni hydroxide via Co doping to enhance the electrooxidation of biomass-derived chemicals. J. Catal. 2023, 424, 1–8.

Nano Research
Article number: 94907018
Cite this article:
Wang F, Liu L-Y, Cui S-S, et al. Atomically precise nickel-sulfur clusters for efficient electrochemical 2,5-hydroxymethylfurfural oxidation. Nano Research, 2025, 18(1): 94907018. https://doi.org/10.26599/NR.2025.94907018
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return