Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Amorphous alloys are promising candidates for oxygen evolution reaction (OER) applications due to their unique structural features, including abundant active sites, tunable chemical composition and high structural flexibility. However, there is a main challenge in the improvement of stability due to the short-range order structure of amorphous alloys. In this work, we synthesized C-modified amorphous NiFe alloy (C-NiFe(BP)) via a novel one-step annealing method with the introduction of glucose at room temperature fermentation. The as-prepared C-NiFe(BP) achieves an ultra-low overpotential of 219.7 mV and a Tafel slope of 43.17 mV·dec−1 at the current density of 10 mA·cm−2, which surpass the reported amorphous NiFe (a-NiFe) based alloys in OER. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses reveal that carbon modification widens the spacing between catalyst layers, exposing more active sites and promoting charge transfer between elements, thereby improving OER performance. Moreover, the C-NiFe(BP) exhibits promising stability during durability test for 20 h and cyclic voltammetry test for 1000 cycles. We discussed the influence of fermented glucose and indicated that the room temperature fermentation method can enhance the effect of carbon modification on catalyst activity, which further enhances the performance and stability of C-NiFe(BP) in OER. Combining common fermentation processes in life with scientific research to better enhance the performance of catalysts and improve scientific research methods. This work provides an innovative approach on the synthesis of stable C-modified a-NiFe alloy catalysts and further promotes the development of high-performance OER catalysts.
Cao, Q.; Cheng, Z. Y.; Dai, J. J.; Sun, T. X.; Li, G. X.; Zhao, L. L.; Yu, J. Y.; Zhou, W. J.; Lin, J. J. Enhanced hydrogen evolution reaction over co nanoparticles embedded N-doped carbon nanotubes electrocatalyst with Zn as an accelerant. Small 2022, 18, 2204827.
Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.
You, H. H.; Wu, D. S.; Si, D. H.; Cao, M. N.; Sun, F. F.; Zhang, H.; Wang, H. M.; Liu, T. F.; Cao, R. Monolayer NiIr-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater splitting. J. Am. Chem. Soc. 2022, 144, 9254–9263.
Niu, F. J.; Wang, D. G.; Li, F.; Liu, Y. M.; Shen, S. H.; Meyer, T. J. Hybrid photoelectrochemical water splitting systems: From interface design to system assembly. Adv. Energy Mater. 2020, 10, 1900399.
Son, S.; Koo, B.; Chai, H.; Tran, H. V. H.; Pandit, S.; Jung, S. P. Comparison of hydrogen production and system performance in a microbial electrolysis cell containing cathodes made of non-platinum catalysts and binders. J. Water Process Eng. 2021, 40, 101844.
Liu, H.; Shen, W.; Jin, H. Y.; Xu, J.; Xi, P. X.; Dong, J. C.; Zheng, Y.; Qiao, S. Z. High-performance alkaline seawater electrolysis with anomalous chloride promoted oxygen evolution reaction. Angew. Chem., Int. Ed. 2023, 62, e202311674.
Gao, C.; Kong, L. H.; Pan, L.; Li, D. X.; Lin, J. J. A novel sacrificial solvent method to synthesize self-supporting Co9S8/Ni3S2 heterostructure catalyst for efficient oxygen evolution reaction. J. Colloid Interface Sci. 2023, 652, 1756–1763.
Kumar, A.; Purkayastha, S. K.; Guha, A. K.; Das, M. R.; Deka, S. Designing nanoarchitecture of nicu dealloyed nanoparticles on hierarchical Co nanosheets for alkaline overall water splitting at low cell voltage. ACS Catal. 2023, 13, 10615–10626.
Li, M.; Zhu, H. Y.; Yuan, Q.; Li, T. Y.; Wang, M. M.; Zhang, P.; Zhao, Y. L.; Qin, D. L.; Guo, W. Y.; Liu, B. et al. Proximity electronic effect of Ni/Co diatomic sites for synergistic promotion of electrocatalytic oxygen reduction and hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2210867.
Gong, Z. C.; Liu, R.; Gong, H. S.; Ye, G. L.; Liu, J. J.; Dong, J. C.; Liao, J. W.; Yan, M. M.; Liu, J. B.; Huang, K. et al. Constructing a graphene-encapsulated amorphous/crystalline heterophase NiFe alloy by microwave thermal shock for boosting the oxygen evolution reaction. ACS Catal. 2021, 11, 12284–12292.
Zhuang, L. Z.; Jia, Y.; Liu, H. L.; Li, Z. H.; Li, M. R.; Zhang, L. Z.; Wang, X.; Yang, D. J.; Zhu, Z. H.; Yao, X. D. Sulfur-modified oxygen vacancies in iron-cobalt oxide nanosheets: Enabling extremely high activity of the oxygen evolution reaction to achieve the industrial water splitting benchmark. Angew. Chem., Int. Ed. 2020, 59, 14664–14670.
Sun, J.; Xue, H.; Guo, N. K.; Song, T. S.; Hao, Y. R.; Sun, J. W.; Zhang, J. W.; Wang, Q. Synergetic metal defect and surface chemical reconstruction into NiCo2S4/ZnS heterojunction to achieve outstanding oxygen evolution performance. Angew. Chem., Int. Ed. 2021, 60, 19435–19441.
Wang, X. L.; Ma, R. G.; Li, S. L.; Xu, M. M.; Liu, L. J.; Feng, Y. H.; Thomas, T.; Yang, M. H.; Wang, J. C. In situ electrochemical oxyanion steering of water oxidation electrocatalysts for optimized activity and stability. Adv. Energy Mater. 2023, 13, 2300765.
Cheng, Z. Y.; Qu, C.; Gao, C.; Kong, L. H.; Yin, P. G.; Lin, J. J. Promoting surface reconstruction of low-cost stainless steel catalyst for efficient oxygen evolution reaction. Chem.—Eur. J. 2023, 29, e202300741.
Ko, Y. J.; Han, M. H.; Kim, H.; Kim, J. Y.; Lee, W. H.; Kim, J.; Kwak, J. Y.; Kim, C. H.; Park, T. E.; Yu, S. H. et al. Unraveling Ni-Fe 2D nanostructure with enhanced oxygen evolution via in situ and operando spectroscopies. Chem Catal. 2022, 2, 2312–2327.
Liu, C. C.; Han, Y.; Yao, L. B.; Liang, L. M.; He, J. Y.; Hao, Q. Y.; Zhang, J.; Li, Y.; Liu, H. Engineering bimetallic NiFe-based hydroxides/selenides heterostructure nanosheet arrays for highly-efficient oxygen evolution reaction. Small 2021, 17, 2007334.
Fan, K.; Chen, H.; Ji, Y. F.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F. S.; Luo, Y. et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 2016, 7, 11981.
Jing, Z. X.; Zhao, Q. Y.; Zheng, D. H.; Xu, H. Z.; Sun, L.; Geng, J. H.; Zhou, Q. N.; Lin, J. J. Engineering unique Fe(Se x S1− x )2 nanorod bundles for boosting oxygen evolution reaction. Chem. Eng. J. 2021, 418, 129426.
Magnier, L.; Cossard, G.; Martin, V.; Pascal, C.; Roche, V.; Sibert, E.; Shchedrina, I.; Bousquet, R.; Parry, V.; Chatenet, M. Fe-Ni-based alloys as highly active and low-cost oxygen evolution reaction catalyst in alkaline media. Nat. Mater. 2024, 23, 252–261.
Wang, K. X.; Wang, X. Y.; Li, Z. J.; Yang, B.; Ling, M.; Gao, X.; Lu, J. G.; Shi, Q. R.; Lei, L. C.; Wu, G. et al. Designing 3d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: Beyond oxides. Nano Energy 2020, 77, 105162.
Cai, J. S.; Jin, J.; Fan, Z. D.; Li, C.; Shi, Z. X.; Sun, J. Y.; Liu, Z. F. 3D printing of a V8C7-Vo2 bifunctional scaffold as an effective polysulfide immobilizer and lithium stabilizer for Li-S batteries. Adv. Mater. 2020, 32, 2005967.
Yang, X.; Chen, Q. Q.; Wang, C. J.; Hou, C. C.; Chen, Y. Substrate participation ultrafast synthesis of amorphous NiFe nanosheets on iron foam at room temperature toward highly efficient oxygen evolution reaction. J. Energy Chem. 2019, 35, 197–203.
Viswanathan, P.; Kim, K. In situ surface restructuring of amorphous Ni-doped CoMo phosphate-based three-dimensional networked nanosheets: Highly efficient and durable electrocatalyst for overall alkaline water splitting. ACS Appl. Mater. Interfaces 2023, 15, 16571–16583.
Sun, L.; Gao, M.Y.; Jing, Z. X.; Cheng, Z. Y.; Zheng, D. H.; Xu, H. Z.; Zhou, Q. N.; Lin, J. J. 1 T-phase enriched P doped WS2 nanosphere for highly efficient electrochemical hydrogen evolution reaction. Chem. Eng. J. 2022, 429, 132187.
Wu, G.; Zheng, X. S.; Cui, P. X.; Jiang, H. Y.; Wang, X. Q.; Qu, Y. T.; Chen, W. X.; Lin, Y.; Li, H.; Han, X. et al. A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 2019, 10, 4855.
Yoon, Y.; Yan, B.; Surendranath, Y. Suppressing ion transfer enables versatile measurements of electrochemical surface area for intrinsic activity comparisons. J. Am. Chem. Soc. 2018, 140, 2397–2400.
Chen, G.; Zhu, Y. P.; Chen, H. M.; Hu, Z. W.; Hung, S. F.; Ma, N. N.; Dai, J.; Lin, H. J.; Chen, C. T.; Zhou, W. et al. An amorphous nickel-iron-based electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction. Adv. Mater. 2019, 31, 1900883.
Sun, R. B.; Gao, J. Y.; Wu, G.; Liu, P. G.; Guo, W. X.; Zhou, H.; Ge, J. J.; Hu, Y. M.; Xue, Z. G.; Li, H. et al. Amorphous metal oxide nanosheets featuring reversible structure transformations as sodium-ion battery anodes. Cell Rep. Phys. Sci. 2020, 1, 100118.
Wu, D. L.; Liu, B.; Li, R. D.; Chen, D.; Zeng, W. H.; Zhao, H. Y.; Yao, Y. T.; Qin, R.; Yu, J.; Chen, L. et al. Fe-regulated amorphous-crystal Ni(Fe)P2 nanosheets coupled with Ru powerfully drive seawater splitting at large current density. Small 2023, 19, 2300030.
Hou, X. B.; Han, Z. K.; Xu, X. J.; Sarker, D.; Zhou, J.; Wu, M.; Liu, Z. C.; Huang, M. H.; Jiang, H. Q. Controllable amorphization engineering on bimetallic metal-organic frameworks for ultrafast oxygen evolution reaction. Chem. Eng. J. 2021, 418, 129330.
Li, X. J.; Zhang, H. K.; Hu, Q.; Zhou, W. L.; Shao, J. X.; Jiang, X. X.; Feng, C.; Yang, H. P.; He, C. X. Amorphous NiFe oxide-based nanoreactors for efficient electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2023, 62, e202300478.
Wang, H. T.; Sun, J. K.; Wang, J. L.; Jiang, L. P.; Liu, H. F. Green synthesis of nitrogen and fluorine co-doped porous carbons from sustainable coconut shells as an advanced synergistic electrocatalyst for oxygen reduction. J. Mater. Res. Technol. 2021, 13, 962–970.
Yang, C. M.; Zhang, L.; Lu, Y. X.; Zou, Y. Q.; Wang, S. Y. Designing efficient catalysts for electrocatalytic organic synthesis: From electronic structure to adsorption behavior. Matter 2024, 7, 456–474.
Zhao, Y. Y.; Zhang, Y. L.; Wang, Y.; Cao, D. X.; Sun, X.; Zhu, H. L. Versatile zero- to three-dimensional carbon for electrochemical energy storage. Carbon Energy 2021, 3, 895–915.
Sun, Y. W.; Wang, H. L.; Wei, W. R.; Zheng, Y. L.; Tao, L.; Wang, Y. X.; Huang, M. H.; Shi, J.; Shi, Z. C.; Mitlin, D. Sulfur-rich graphene nanoboxes with ultra-high potassiation capacity at fast charge: Storage mechanisms and device performance. ACS Nano 2021, 15, 1652–1665.
Zhang, M. T.; Li, H.; Chen, J. X.; Ma, F. X.; Zhen, L.; Wen, Z. H.; Xu, C. Y. Transition metal (Co, Ni, Fe, Cu) single-atom catalysts anchored on 3D nitrogen-doped porous carbon nanosheets as efficient oxygen reduction electrocatalysts for Zn-Air battery. Small 2022, 18, 2202476.
Song, Y.; Liu, T. Y.; Li, M. Y.; Yao, B.; Kou, T. Y.; Feng, D. Y.; Wang, F. X.; Tong, Y. X.; Liu, X. X.; Li, Y. Engineering of mesoscale pores in balancing mass loading and rate capability of hematite films for electrochemical capacitors. Adv. Energy Mater. 2018, 8, 1801784.
Xiao, M.; Qi, W. Q.; Jia, S. H.; Pang, M. T.; Shi, F. C.; Mao, H. High-performance removal of tetracycline enabled by Fe0 nanoparticles supported on carbon@ZIF-8. Chem. Res. Chin. Univ. 2022, 38, 1349–1355.
Li, R. L.; Rao, D. W.; Zhou, J. B.; Wu, G.; Wang, G. Z.; Zhu, Z. X.; Han, X.; Sun, R. B.; Li, H.; Wang, C. et al. Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries. Nat. Commun. 2021, 12, 3102.
Wang, W. C.; He, T. O.; Yang, X. L.; Liu, Y. M.; Wang, C. Q.; Li, J.; Xiao, A. D.; Zhang, K.; Shi, X. T.; Jin, M. S. General synthesis of amorphous PdM (M = Cu, Fe, Co, Ni) alloy nanowires for boosting HCOOH dehydrogenation. Nano Lett. 2021, 21, 3458–3464.
Bai, Y. K.; Wu, Y.; Zhou, X. C.; Ye, Y. F.; Nie, K. Q.; Wang, J. O.; Xie, M.; Zhang, Z. X.; Liu, Z. J.; Cheng, T. et al. Promoting nickel oxidation state transitions in single-layer NiFeB hydroxide nanosheets for efficient oxygen evolution. Nat. Commun. 2022, 13, 6094.
Jing, Z. X.; Zhao, Q. Y.; Zheng, D. H.; Sun, L.; Geng, J. H.; Zhou, Q. N.; Lin, J. J. Nickel-doped pyrrhotite iron sulfide nanosheets as a highly efficient electrocatalyst for water splitting. J. Mater. Chem. A 2020, 8, 20323–20330.
Jiang, S. S.; Zhu, L.; Yang, Z. Z.; Wang, Y. G. Morphological-modulated FeNi-based amorphous alloys as efficient alkaline water splitting electrocatalysts. Electrochim. Acta 2021, 389, 138756.
Lin, Y. P.; Wang, H.; Peng, C. K.; Bu, L. M.; Chiang, C. L.; Tian, K.; Zhao, Y.; Zhao, J. Q.; Lin, Y. G.; Lee, J. M. et al. Co-induced electronic optimization of hierarchical NiFe LDH for oxygen evolution. Small 2020, 16, 2002426.
Wilhelm, M.; Bastos, A.; Neves, C.; Martins, R.; Tedim, J. Ni-Fe layered double hydroxides for oxygen evolution reaction: Impact of Ni/Fe ratio and crystallinity. Mater. Des. 2021, 212, 110188.
Cheng, Z. Y.; Gao, M. Y.; Sun, L.; Zheng, D. H.; Xu, H. Z.; Kong, L. H.; Gao, C.; Yu, H. Z.; Lin, J. J. FeSe/FeSe2 heterostructure as a low-cost and high-performance electrocatalyst for oxygen evolution reaction. ChemElectroChem 2022, 9, e202200399.
Ehsan, M. A.; Khan, A.; Hakeem, A. S. Binary CoNi and ternary FeCoNi alloy thin films as high-performance and stable electrocatalysts for oxygen evolution reaction. ACS Appl. Energy Mater. 2023, 6, 9556–9567.
Zhou, F. L.; Gan, M. X.; Yan, D. F.; Chen, X. L.; Peng, X. Hydrogen-rich pyrolysis from Ni-Fe heterometallic Schiff base centrosymmetric cluster facilitates NiFe alloy for efficient OER electrocatalysts. Small 2023, 19, 2208276.
Yu, L.; Zhou, H. Q.; Sun, J. Y.; Qin, F.; Yu, F.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 2017, 10, 1820–1827.
Singha Roy, S.; Madhu, R.; Karmakar, A.; Kundu, S. From theory to practice: A critical and comparative assessment of tafel slope analysis techniques in electrocatalytic water splitting. ACS Mater. Lett. 2024, 6, 3112–3123.
Marshall, A. T.; Vaisson-Béthune, L. Avoid the quasi-equilibrium assumption when evaluating the electrocatalytic oxygen evolution reaction mechanism by Tafel slope analysis. Electrochem. Commun. 2015, 61, 23–26.
334
Views
71
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).