Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The identification and clarification of active sites of MoS2 have long been the focus of research efforts in hydrogen evolution reaction (HER). In this study, we constructed phase transition-induced 1T-2H MoS2 heterojunction via lithium intercalation and evaluated the HER activity using on-chip electrocatalytic microdevices (OCEMs). The heterojunction achieved an overpotential of only 226 mV at a cathodic current density of 10 mA/cm2, outperforming the basal planes of 1T and 2H MoS2. Furthermore, density functional theory (DFT) calculations demonstrated that the charge redistribution occurs at the 1T-2H MoS2 interface with electrons transferring from 1T to 2H MoS2, and the interfacial S atom at the top site of 1T MoS2 presents the smallest overpotential of 0.37 V. Moreover, the interference from highly active edge sites was avoided by precisely exposing specific active areas, quantitatively revealing the catalytic activity order of different types of in-plane MoS2 active sites. This work enables a systematic investigation of the HER activity of various active sites in MoS2, laying the foundation for quantitative analysis of activity in other low-dimensional materials.
Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917–1933.
Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.
Chaturvedi, A.; Chen, B.; Zhang, K. K.; He, Q. Y.; Nam, G. H.; You, L.; Lai, Z. C.; Tan, C. L.; Tran, T. H.; Liu, G. G. et al. A universal method for rapid and large-scale growth of layered crystals. SmartMat 2020, 1, e1011.
Venkateshwaran, S.; Devi, P.; Murugan, P.; Senthil Kumar, S. M. Simple immersion in polar solvents induces targeted 1T phase conversion of MoS2 for HER: A greener approach. ACS Appl. Energy Mater. 2024, 7, 1037–1050.
Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.
Li, G. Q.; Zhang, D.; Qiao, Q.; Yu, Y. F.; Peterson, D.; Zafar, A.; Kumar, R.; Curtarolo, S.; Hunte, F.; Shannon, S. et al. All the catalytic active sites of MoS2 for hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 16632–16638.
Chen, B.; Hu, P.; Yang, F.; Hua, X. J.; Yang, F. F.; Zhu, F.; Sun, R. Y.; Hao, K.; Wang, K. S.; Yin, Z. Y. Porousized MoS2 nano islands enhance HER/OER bifunctional electrocatalysis. Small 2023, 19, 2207177
Xiong, J. J.; Cai, Y. C.; Dong, W. L.; Luo, X. Y.; Yu, Z. L.; Liu, B. W.; Liu, L. Q.; Liang, T.; Wang, Z. X.; Gao, Y. et al. Strain derived from bubbles at monolayer MoS2/hBN interfaces for enhanced hydrogen evolution reaction activity. Chem Catal. 2024, 4, 100951.
Wang, D. G.; Wu, J. X.; Jiao, L. Y.; Xie, L. M. In situ identification of active sites during electrocatalytic hydrogen evolution. Nano Res. 2023, 16, 12910–12918.
Wang, F.; Hao, M.; Liu, W.; Yan, P. J.; Fang, B. Z.; Li, S. J.; Liang, J. S.; Zhu, M. M.; Cui, L. Low-cost fabrication of highly dispersed atomically-thin MoS2 nanosheets with abundant active Mo-terminated edges. Nano Mater. Sci. 2021, 3, 205–212.
Zavala, L. A.; Kumar, K.; Martin, V.; Maillard, F.; Maugé, F.; Portier, X.; Oliviero, L.; Dubau, L. Direct evidence of the role of Co or Pt, Co single-atom promoters on the performance of MoS2 nanoclusters for the hydrogen evolution reaction. ACS Catal. 2023, 13, 1221–1229.
Chen, J. M.; Lin, Y. P.; Wang, H.; Li, J. M.; Liu, S. J.; Lee, J. M.; Zhao, Q. 2D molybdenum compounds for electrocatalytic energy conversion. Adv. Funct. Mater. 2022, 33, 2210236.
Tsai, C.; Li, H.; Park, S.; Park, J.; Han, H. S.; Nørskov, J. K.; Zheng, X. L.; Abild-Pedersen, F. Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat. Commun. 2017, 8, 15113.
Gan, X. R.; Lee, L. Y. S.; Wong, K. Y.; Lo, T. W.; Ho, K. H.; Lei, D. Y.; Zhao, H. M. 2H/1T phase transition of multilayer MoS2 by electrochemical incorporation of S vacancies. ACS Appl. Energy Mater. 2018, 1, 4754–4765
Zhu, Y. R.; Lim, J.; Zhang, Z. P.; Wang, Y.; Sarkar, S.; Ramsden, H.; Li, Y.; Yan, H.; Phuyal, D.; Gauriot, N. et al. Room-temperature photoluminescence mediated by sulfur vacancies in 2D molybdenum disulfide. ACS Nano 2023, 17, 13545–13553.
Zhou, Y.; Li, C.; Zhang, Y.; Wang, L.; Fan, X. L.; Zou, L. W.; Cai, Z.; Jiang, J. M.; Zhou, S.; Zhang, B. et al. Controllable thermochemical generation of active defects in the horizontal/vertical MoS2 for enhanced hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2304302.
Karvonen, L.; Säynätjoki, A.; Huttunen, M. J.; Autere, A.; Amirsolaimani, B.; Li, S. S.; Norwood, R. A.; Peyghambarian, N.; Lipsanen, H.; Eda, G. et al. Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy. Nat. Commun. 2017, 8, 15714.
He, Y. M.; Tang, P. Y.; Hu, Z. L.; He, Q. Y.; Zhu, C.; Wang, L. Q.; Zeng, Q. S.; Golani, P.; Gao, G. H.; Fu, W. et al. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 2020, 11, 57.
Peng, R.; Liang, L. B.; Hood, Z. D.; Boulesbaa, A.; Puretzky, A.; Ievlev, A. V.; Come, J.; Ovchinnikova, O. S.; Wang, H.; Ma, C. et al. In-plane heterojunctions enable multiphasic two-dimensional (2D) MoS2 nanosheets as efficient photocatalysts for hydrogen evolution from water reduction. ACS Catal. 2016, 6, 6723–6729.
Nam, G. H.; He, Q. Y.; Wang, X. Z.; Yu, Y. F.; Chen, J. Z.; Zhang, K.; Yang, Z. Z.; Hu, D. Y.; Lai, Z. C.; Li, B. et al. In-plane anisotropic properties of 1T'-MoS2 layers. Adv. Mater. 2019, 31, 1807764.
Niu, H.; Zou, Z. G.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G. L.; Cao, D. X.; Yan, J. Structurally stable ultrathin 1T-2H MoS2 heterostructures coaxially aligned on carbon nanofibers toward superhigh-energy-density supercapacitor and enhanced electrocatalysis. Chem. Eng. J. 2020, 399, 125672.
Sun, C.; Wang, L. L.; Zhao, W. W.; Xie, L. B.; Wang, J.; Li, J. M.; Li, B. X.; Liu, S. J.; Zhuang, Z. C.; Zhao, Q. Atomic-level design of active site on two-dimensional MoS2 toward efficient hydrogen evolution: Experiment, theory, and artificial intelligence modelling. Adv. Funct. Mater. 2022, 32, 2206163.
Wang, W. B.; Qi, J. L.; Wu, Z. X.; Zhai, W.; Pan, Y. H.; Bao, K.; Zhai, L.; Wu, J. K.; Ke, C. X.; Wang, L. Z. et al. On-chip electrocatalytic microdevices. Nat. Protoc. 2023, 18, 2891–2926.
Zhang, J.; Wu, J. J.; Guo, H.; Chen, W. B.; Yuan, J. T.; Martinez, U.; Gupta, G.; Mohite, A.; Ajayan, P. M.; Lou, J. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2. Adv. Mater. 2017, 29, 1701955.
Yang, H.; Zhao, Y. H.; Wen, Q. L.; Mi, Y.; Liu, Y. W.; Li, H. Q.; Zhai, T. Y. Single MoTe2 sheet electrocatalytic microdevice for in situ revealing the activated basal plane sites by vacancies engineering. Nano Res. 2021, 14, 4814–4821.
Ling, N.; Zheng, S. J.; Lee, Y.; Zhao, M. L.; Kim, E.; Cho, S.; Yang, H. E. J. Active hydrogen evolution on the plasma-treated edges of WTe2. APL Mater. 2021, 9, 061108.
Fu, Q.; Han, J. C.; Wang, X. J.; Xu, P.; Yao, T.; Zhong, J.; Zhong, W. W.; Liu, S. W.; Gao, T. L.; Zhang, Z. H. et al. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis. Adv. Mater. 2021, 33, 1907818.
Gao, Y.; Wang, L. D.; Chen, X. Q.; Du, Y.; Wang, B. Revisiting electrocatalyst design by a knowledge graph of Cu-based catalysts for CO2 reduction. ACS Catal. 2023, 13, 8525–8534.
Xie, R.; Luo, W. C.; Zou, L. W.; Fan, X. L.; Li, C.; Lv, T. Z.; Jiang, J. M.; Chen, Z. H.; Zhou, Y. Low-temperature synthesis of colloidal few-layer WTe2 nanostructures for electrochemical hydrogen evolution. Discover Nano 2023, 18, 44.
Yang, R. J.; Fan, Y. Y.; Mei, L.; Shin, H. S.; Voiry, D.; Lu, Q. Y.; Li, J.; Zeng, Z. Y. Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials. Nat. Synth. 2023, 2, 101–118.
Chhowalla, M.; Liu, Z. F.; Zhang, H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev. 2015, 44, 2584–2586.
Wu, Y. C.; Wang, J. Y.; Li, Y. B.; Zhou, J. W.; Wang, B. Y.; Yang, A. K.; Wang, L. W.; Hwang, H. Y.; Cui, Y. Observation of an intermediate state during lithium intercalation of twisted bilayer MoS2. Nat. Commun. 2022, 13, 3008.
Yu, Y. F.; Nam, G. H.; He, Q. Y.; Wu, X. J.; Zhang, K.; Yang, Z. Z.; Chen, J. Z.; Ma, Q. L.; Zhao, M. T.; Liu, Z. Q. et al. High phase-purity 1T'-MoS2- and 1T'-MoSe2-layered crystals. Nat. Chem. 2018, 10, 638–643.
Vedhanarayanan, B.; Shi, J.; Lin, J. Y.; Yun, S. N.; Lin, T. W. Enhanced activity and stability of MoS2 through enriching 1T-phase by covalent functionalization for energy conversion applications. Chem. Eng. J. 2021, 403, 126318.
Li, S. W.; Huang, C.; Gao, L.; Shen, Q. Y.; Li, P.; Qu, X. H.; Jiao, L. F.; Liu, Y. C. Unveiling the "proton lubricant" chemistry in aqueous Zinc-MoS2 batteries. Angew. Chem., Int. Ed. 2022, 61, e202211478.
Wen, S. D.; Liu, B. W.; Li, W.; Liang, T.; Li, X. L.; Yi, D.; Luo, B.; Zhi, L. J.; Liu, D.; Wang, B. A battery process activated highly efficient carbon catalyst toward oxygen reduction by stabilizing lithium-oxygen bonding. Adv. Funct. Mater. 2022, 32, 2203960.
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Wellendorff, J.; Lundgaard, K. T.; Møgelhøj, A.; Petzold, V.; Landis, D. D.; Nørskov, J. K.; Bligaard, T.; Jacobsen, K. W. Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation. Phys. Rev. B 2012, 85, 235149.
Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 2011, 115, 5461–5466.
Nelson, R.; Ertural, C.; George, J.; Deringer, V. L.; Hautier, G.; Dronskowski, R. LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J. Comput. Chem. 2020, 41, 1931–1940.
372
Views
66
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).