PDF (19.7 MB)
Collect
Submit Manuscript
Research Article | Open Access

Anisotropic resistive switching of 2D-layered single crystal halide perovskite CsPb2Br5-based memristor

Uijin Jung1Dae-Seong Woo2Sangmin Kim1Zhaozhong Tan1Jinsub Park1,2,3 ()
Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
Department of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 04763, Republic of Korea
Department of Semiconductor Engineering, Hanyang University, Seoul 04763, Republic of Korea
Show Author Information

Graphical Abstract

View original image Download original image
Anisotropic resistance switching characteristics of single crystal CsPb2Br5 were investigated, revealing that the main factor in resistance switching is the migration of active metal ions, and multi-high-resistance state (HRS) characteristics can be caused by the behavior of active metal ions trapped in Cs layers.

Abstract

Metal halide perovskites (MHPs) have attracted attention in advanced memory technology, such as resistive switching (RS) devices, owing to their hysteretic behavior. However, the mechanisms underlying MHP-based RS devices remain elusive. We present a two-dimensional (2D)-layered single-crystal (SC) CsPb2Br5 microsheet-based RS device with vertical and planar structures. Although RS occurs in both structural devices, the planar structured device exhibits volatile RS operation, whereas the vertically structured device exhibits bipolar RS characteristics, including a long retention time (> 2.5 × 104 s), large on/off ratio (up to 108), low-operating voltage (Vset < 0.32 V), and reset voltage-driven multilevel properties with a large resistance ratio (~ 102) between each state. A possible RS mechanism of the vertically structured devices can be explained by the migration of active metal ions. The 2D-layered structure induces partial localization of active metal elements between the Cs layers owing to its high migration barrier energy level along the [001] crystal direction. Experimental and theoretical analyses, including Auger electron spectroscopy depth-profile and density functional theory calculations support our suggestions. This work clarifies the operational mechanisms in SC MHP-based anisotropic RS and proposes the potential for SC MHP in advanced memory devices, marking a leap in the understanding and application of these materials for next-generation electronics.

Electronic Supplementary Material

Download File(s)
7023_ESM.pdf (1.5 MB)

References

[1]

Choi, J.; Han, J. S.; Hong, K.; Kim, S. Y.; Jang, H. W. Organic–inorganic hybrid halide perovskites for memories, transistors, and artificial synapses. Adv. Mater. 2018, 30, 1704002.

[2]

Ge, S. P.; Huang, Y. X.; Chen, X. J.; Zhang, X. R.; Xiang, Z. C.; Zhang, R. X.; Li, W. P.; Cui, Y. M. Silver iodide induced resistive switching in CsPbI3 perovskite-based memory device. Adv. Mater. Interfaces 2019, 6, 1802071.

[3]

Zhu, X. J.; Lee, J.; Lu, W. D. Iodine vacancy redistribution in organic–inorganic halide perovskite films and resistive switching effects. Adv. Mater. 2017, 29, 1700527.

[4]

Xu, W. T.; Cho, H.; Kim, Y. H.; Kim, Y. T.; Wolf, C.; Park, C. G.; Lee, T. W. Organometal halide perovskite artificial synapses. Adv. Mater. 2016, 28, 5916–5922.

[5]

Kim, S. G.; Van Le, Q.; Han, J. S.; Kim, H.; Choi, M. J.; Lee, S. A.; Kim, T. L.; Kim, S. B.; Kim, S. Y.; Jang, H. W. Dual-phase all-inorganic cesium halide perovskites for conducting-bridge memory-based artificial synapses. Adv. Funct. Mater. 2019, 29, 1906686.

[6]

Lao, J.; Xu, W.; Jiang, C. L.; Zhong, N.; Tian, B. B.; Lin, H. C.; Luo, C. H.; Travas-Sejdic, J.; Peng, H.; Duan, C. G. An air-stable artificial synapse based on a lead-free double perovskite Cs2AgBiBr6 film for neuromorphic computing. J. Mater. Chem. C 2021, 9, 5706–5712.

[7]

Xu, J.; Wu, Y. H.; Li, Z. Z.; Liu, X. L.; Cao, G. Z.; Yao, J. X. Resistive switching in nonperovskite-phase CsPbI3 film-based memory devices. ACS Appl. Mater. Interfaces 2020, 12, 9409–9420.

[8]

Wu, Y.; Wei, Y.; Huang, Y.; Cao, F.; Yu, D. J.; Li, X. M.; Zeng, H. B. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res. 2017, 10, 1584–1594.

[9]

Liu, D. J.; Lin, Q. Q.; Zang, Z. G.; Wang, M.; Wangyang, P. H.; Tang, X. S.; Zhou, M.; Hu, W. Flexible all-inorganic perovskite CsPbBr3 nonvolatile memory device. ACS Appl. Mater. Interfaces 2017, 9, 6171–6176.

[10]

Shang, Y. Q.; Li, G.; Liu, W. M.; Ning, Z. J. Quasi-2D inorganic CsPbBr3 perovskite for efficient and stable light-emitting diodes. Adv. Funct. Mater. 2018, 28, 1801193.

[11]

Yuan, X.; Hou, X. M.; Li, J.; Qu, C. Q.; Zhang, W. J.; Zhao, J. L.; Li, H. B. Thermal degradation of luminescence in inorganic perovskite CsPbBr3 nanocrystals. Phys. Chem. Chem. Phys. 2017, 19, 8934–8940.

[12]

Guan, X. W.; Lei, Z. H.; Yu, X. C.; Lin, C. H.; Huang, J. K.; Huang, C. Y.; Hu, L.; Li, F.; Vinu, A.; Yi, J. B. et al. Low-dimensional metal-halide perovskites as high-performance materials for memory applications. Small 2022, 18, 2203311.

[13]

Jung, J. H.; Kim, S. H.; Park, Y.; Lee, D.; Lee, J. S. Metal-halide perovskite design for next-generation memories: First-principles screening and experimental verification. Adv. Sci. 2020, 7, 2001367.

[14]

Paul, T.; Sarkar, P. K.; Maiti, S.; Sahoo, A.; Chattopadhyay, K. K. Solution-processed light-induced multilevel non-volatile wearable memory device based on CsPb2Br5 perovskite. Dalton Trans. 2022, 51, 3864–3874.

[15]

Li, H. B.; Wang, X. L.; Chu, H. Y.; Yao, X. D. High performance resistive memory device based on highly stable layered CsPb2Br5 perovskite polymer nanocomposite. J. Alloys Compd. 2022, 921, 166014.

[16]

McGovern, L.; Koschany, I.; Grimaldi, G.; Muscarella, L. A.; Ehrler, B. Grain size influences activation energy and migration pathways in MAPbBr3 perovskite solar cells. J. Phys. Chem. Lett. 2021, 12, 2423–2428.

[17]

Park, Y.; Lee, J. S. Controlling the grain size of Dion-Jacobson-phase two-dimensional layered perovskite for memory application. ACS Appl. Mater. Interfaces 2022, 14, 4371–4377.

[18]

Choi, J.; Park, S.; Lee, J.; Hong, K.; Kim, D. H.; Moon, C. W.; Park, G. D.; Suh, J.; Hwang, J.; Kim, S. Y. et al. Organolead halide perovskites for low operating voltage multilevel resistive switching. Adv. Mater. 2016, 28, 6562–6567.

[19]

Qin, C. J.; Matsushima, T.; Sandanayaka, A. S. D.; Tsuchiya, Y.; Adachi, C. Centrifugal-coated quasi-two-dimensional perovskite CsPb2Br5 films for efficient and stable light-emitting diodes. J. Phys. Chem. Lett. 2017, 8, 5415–5421.

[20]

Lin, C. J.; Liu, L.; Xu, J. Z.; Fang, F. E.; Jiang, K.; Liu, Z. X.; Wang, Y.; Chen, F. M.; Yao, H. Z. Facile synthesis of a dual-phase CsPbBr3-CsPb2Br5 single crystal and its photoelectric performance. RSC Adv. 2020, 10, 20745–20752.

[21]

Zhang, Z. J.; Zhu, Y. M.; Wang, W. L.; Zheng, W.; Lin, R. C.; Huang, F. Growth, characterization and optoelectronic applications of pure-phase large-area CsPb2Br5 flake single crystals. J. Mater. Chem. C 2018, 6, 446–451.

[22]
Feng, X. L.; Zhang, L.; Zhang, B. B.; You, J. X.; Li, K.; Zeng, H. Q.; Wang, X. F.; Dai, Z. H.; Jia, S. L.; Bao, H. B. et al. Ligand-assisted growth of 2D perovskite single crystal for highly sensitive X-ray detectors. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202402166.
[23]

Zhang, M. Z.; Zheng, Z. P.; Fu, Q. Y.; Chen, Z.; He, J. L.; Zhang, S.; Yan, L.; Hu, Y. X.; Luo, W. Growth and characterization of all-inorganic lead halide perovskite semiconductor CsPbBr3 single crystals. CrystEngComm 2017, 19, 6797–6803.

[24]

Zhang, L. Q.; Yang, X. L.; Jiang, Q.; Wang, P. Y.; Yin, Z. G.; Zhang, X. W.; Tan, H. R.; Yang, Y.; Wei, M. Y.; Sutherland, B. R. et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat. Commun. 2017, 8, 15640.

[25]

Marques, A. S.; Faria, R. M.; Freitas, J. N.; Nogueira, A. F. Low-temperature blade-coated perovskite solar cells. Ind. Eng. Chem. Res. 2021, 60, 7145–7154.

[26]

Hua, J. C.; Deng, X.; Niu, C.; Huang, F. Z.; Peng, Y.; Li, W. N.; Ku, Z. L.; Cheng, Y. B. A pressure-assisted annealing method for high quality CsPbBr3 film deposited by sequential thermal evaporation. RSC Adv. 2020, 10, 8905–8909.

[27]

Wang, R. D.; Li, Z.; Li, S. T.; Wang, P. F.; Xiu, J.; Wei, G. X.; Liu, H. Q.; Jiang, N.; Liu, Y. Y.; Zhong, M. Z. All-inorganic perovskite CsPb2Br5 nanosheets for photodetector application based on rapid growth in aqueous phase. ACS Appl. Mater. Interfaces 2020, 12, 41919–41931.

[28]

Yin, J.; Yang, H. Z.; Song, K. P.; El-Zohry, A. M.; Han, Y.; Bakr, O. M.; Brédas, J. L.; Mohammed, O. F. Point defects and green emission in zero-dimensional perovskites. J. Phys. Chem. Lett. 2018, 9, 5490–5495.

[29]
Dellinger, J. H. The Temperature Coefficient of Resistance of Copper; Govt. Print. Off.: Washington, 1911.
[30]

Munjal, S.; Khare, N. Advances in resistive switching based memory devices. J. Phys. D: Appl. Phys. 2019, 52, 433002.

[31]

Zhang, Y.; Wu, H. Q.; Bai, Y.; Chen, A.; Yu, Z. P.; Zhang, J. Y.; Qian, H. Study of conduction and switching mechanisms in Al/AlO x /WO x /W resistive switching memory for multilevel applications. Appl. Phys. Lett. 2013, 102, 233502.

[32]

Minnekhanov, A. A.; Shvetsov, B. S.; Martyshov, M. M.; Nikiruy, K. E.; Kukueva, E. V.; Presnyakov, M. Y.; Forsh, P. A.; Rylkov, V. V.; Erokhin, V. V.; Demin, V. A. et al. On the resistive switching mechanism of parylene-based memristive devices. Org. Electron. 2019, 74, 89–95.

[33]

Fan, Y.; King, S. W.; Bielefeld, J.; Orlowski, M. K. Characterization of porous BEOL dielectrics for resistive switching. ECS Trans. 2016, 72, 35.

[34]

Ghosh, G.; Kang, Y.; King, S. W.; Orlowski, M. Role of CMOS back-end metals as active electrodes for resistive switching in ReRAM cells. ECS J. Solid State Sci. Technol. 2017, 6, N1–N9.

[35]

Sun, Y. M.; Tai, M. Q.; Song, C.; Wang, Z. Y.; Yin, J.; Li, F.; Wu, H. Q.; Zeng, F.; Lin, H.; Pan, F. Competition between metallic and vacancy defect conductive filaments in a CH3NH3PbI3-based memory device. J. Phys. Chem. C 2018, 122, 6431–6436.

[36]

Sun, Y. M.; Song, C.; Yin, S. Q.; Qiao, L. L.; Wan, Q.; Wang, R.; Zeng, F.; Pan, F. Design of a controllable redox-diffusive threshold switching Memristor. Adv. Electron. Mater. 2020, 6, 2000695.

[37]

Ali, A.; Abbas, H.; Hussain, M.; Jaffery, S. H. A.; Hussain, S.; Choi, C.; Jung, J. Thickness-dependent monochalcogenide GeSe-based CBRAM for memory and artificial electronic synapses. Nano Res. 2022, 15, 2263–2277.

[38]

Su, T. K.; Cheng, W. K.; Chen, C. Y.; Wang, W. C.; Chuang, Y. T.; Tan, G. H.; Lin, H. C.; Hou, C. H.; Liu, C. M.; Chang, Y. C. et al. Room-temperature fabricated multilevel nonvolatile lead-free cesium halide memristors for reconfigurable in-memory computing. ACS Nano 2022, 16, 12979–12990.

[39]

Lee, M. J.; Kim, S. H.; Lee, S.; Yoon, C.; Min, K. A.; Choi, H.; Hong, S.; Lee, S.; Park, J. G.; Ahn, J. P. et al. Understanding filamentary growth and rupture by Ag ion migration through single-crystalline 2D layered CrPS4. NPG Asia Mater. 2020, 12, 82.

[40]

Oranskaia, A.; Yin, J.; Bakr, O. M.; Brédas, J. L.; Mohammed, O. F. Halogen migration in hybrid perovskites: The organic cation matters. J. Phys. Chem. Lett. 2018, 9, 5474–5480.

[41]

Gala, D. K.; Sharma, A. A.; Li, D. S.; Goodwill, J. M.; Bain, J. A.; Skowronski, M. Low temperature electroformation of TaO x -based resistive switching devices. APL Mater. 2016, 4, 016101.

[42]

Ielmini, D.; Nardi, F.; Cagli, C.; Lacaita, A. L. Size-dependent retention time in NiO-based resistive-switching memories. IEEE Electron Device Lett. 2010, 31, 353–355.

[43]

Qi, M.; Bai, L.; Xu, H. Y.; Wang, Z. Q.; Kang, Z. H.; Zhao, X. N.; Liu, W. Z.; Ma, J. G.; Liu, Y. C. Oxidized carbon quantum dot-graphene oxide nanocomposites for improving data retention of resistive switching memory. J. Mater. Chem. C 2018, 6, 2026–2033.

[44]

Even, J.; Pedesseau, L.; Jancu, J. M.; Katan, C. Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 2013, 4, 2999–3005.

[45]

Stroppa, A.; Di Sante, D.; Barone, P.; Bokdam, M.; Kresse, G.; Franchini, C.; Whangbo, M. H.; Picozzi, S. Tunable ferroelectric polarization and its interplay with spin-orbit coupling in tin iodide perovskites. Nat. Commun. 2014, 5, 5900.

[46]

Du, M. H. Efficient carrier transport in halide perovskites: Theoretical perspectives. J. Mater. Chem. A 2014, 2, 9091–9098.

[47]

Xu, Z. W.; Zhang, C. R.; Wu, Y. Z.; Gong, J. J.; Wang, W.; Liu, Z. J.; Chen, H. S. Density functional theory study on the electronic structures and related properties of Ag-doped CH3NH3PbI3 perovskite. Results Phys. 2019, 15, 102709.

[48]
Brillouin, L. Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, 2nd ed.; Dover Publications: New York, 1953.
[49]

Ning, H. L.; Liu, X. Z.; Ruan, H. G.; Peng, C.; Huang, F. X.; Deng, Y. X.; Yuan, W. J.; Yao, R. H.; Qiu, B.; Wang, X. F. Density functional theory study of the electronic and optical properties of Si incorporated SnO2. AIP Adv. 2019, 9, 115104.

[50]

Liu, Z. F.; Peters, J. A.; Pan, L.; Klepov, V.; De Siena, M.; Benadia, A.; Chung, D. Y.; Kanatzidis, M. G.; Wessels, B. W. Investigation of defects in melt and solution grown perovskite CsPbBr3 single crystals. Appl. Phys. Lett. 2023, 122, 131902.

[51]

Yin, J.; Zhang, G. D.; Tao, X. T. A fractional crystallization technique towards pure mega-size CsPb2Br5 single crystal films. CrystEngComm 2019, 21, 1352–1357.

[52]

Sudha, C.; Srinivasan, K. Supersaturation dependent nucleation control and separation of mono, ortho and unstable polymorphs of paracetamol by swift cooling crystallization technique. CrystEngComm 2013, 15, 1914–1921.

[53]

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. Quantum Espresso: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.

[54]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[55]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Perdew, burke, and ernzerhof reply. Phys. Rev. Lett. 1998, 80, 891.

[56]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

Nano Research
Article number: 94907023
Cite this article:
Jung U, Woo D-S, Kim S, et al. Anisotropic resistive switching of 2D-layered single crystal halide perovskite CsPb2Br5-based memristor. Nano Research, 2025, 18(1): 94907023. https://doi.org/10.26599/NR.2025.94907023
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return