PDF (26.2 MB)
Collect
Submit Manuscript
Mini Review | Open Access

Zinc-based fiber-shaped rechargeable batteries: Insights into structures, electrodes, and electrolytes

Xuan Zhang1,§Hongcheng Zhang1,§Mengxiang Chen1,§Jingqi Lu1Evgeny Zhuravlev1Jing Jiang1Pin Liu1Shengyang Dong1Du Yuan3Guoyin Zhu1()Lianbo Ma2()Yizhou Zhang1 ()
Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410004, China

§ Xuan Zhang, Hongcheng Zhang, and Mengxiang Chen contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
The rapid evolution of flexible wearable electronics has spurred a demand for energy storage devices with low-cost manufacturing, high safety, exceptional electrochemical performance and robust mechanical properties. Zinc-based fiber-shaped batteries (ZFSBs) have emerged as prominent solutions due to their unique one-dimensional (1D) architecture, remarkable flexibility and promising electrochemical properties, with research focusing on their structural design, fabrication processes, electrode modifications and electrolyte selection to advance their application in wearable electronics.

Abstract

The rapid evolution of flexible wearable electronics has spurred a growing demand for energy storage devices, characterized by low-cost manufacturing processes, high safety standards, exceptional electrochemical performance and robust mechanical properties. Among novel flexible devices, fiber-shaped batteries (FSBs) have emerged as prominent solutions exceptionally suited to future applications, owing to their unique one-dimensional (1D) architecture, remarkable flexibility, potential for miniaturization, adaptability to deformation and compatibility with the conventional textile industry. In the forefront research on fiber-shaped batteries, zinc-based FSBs (ZFSBs) have garnered significant attentions, featured by the promising electrochemical properties of metallic Zn. This enthusiasm is driven by the impressive capacity of Zn (820 mAh·g−1) and its low redox potential (Zn/Zn2+: −0.76 V vs. standard hydrogen electrode). This review aims to consolidate recent achievements in the structural design, fabrication processes and electrode materials of flexible ZFSBs. Notably, we highlight three representative structural configurations: parallel type, twisted type and coaxial type. We also place special emphasis on electrode modifications and electrolyte selection. Furthermore, we delve into the promising development opportunities and anticipate future challenges associated with ZFSBs, emphasizing their potential roles in powering the next generation of wearable electronics.

References

[1]

Li, H. F.; Tang, Z. J.; Liu, Z. X.; Zhi, C. Y. Evaluating flexibility and wearability of flexible energy storage devices. Joule 2019, 3, 613–619.

[2]

Pan, Z.; Yang, J.; Jiang, J.; Qiu, Y.; Wang, J. Flexible quasi-solid-state aqueous Zn-based batteries: Rational electrode designs for high-performance and mechanical flexibility. Mater. Today Energy 2020, 18, 100523.

[3]

Li, X. J.; Tang, Y. C.; Lv, H. M.; Wang, W. L.; Mo, F. N.; Liang, G. J.; Zhi, C. Y.; Li, H. F. Recent advances in flexible aqueous zinc-based rechargeable batteries. Nanoscale 2019, 11, 17992–18008.

[4]

Zhang, Y.; Jiao, Y. D.; Liao, M.; Wang, B. J.; Peng, H. S. Carbon nanomaterials for flexible lithium ion batteries. Carbon 2017, 124, 79–88.

[5]

Li, Q. L.; Zhang, Q. C.; Zhou, Z. Y.; Gong, W. B.; Liu, C. L.; Feng, Y. B.; Hong, G.; Yao, Y. G. Boosting Zn-ion storage capability of self-standing Zn-doped Co3O4 nanowire array as advanced cathodes for high-performance wearable aqueous rechargeable Co//Zn batteries. Nano Res. 2021, 14, 91–99.

[6]

Sun, H.; Zhang, Y.; Zhang, J.; Sun, X. M.; Peng, H. S. Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2017, 2, 17023.

[7]

Kong, L.; Tang, C.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Advanced energy materials for flexible batteries in energy storage: A review. SmartMat 2020, 1, 35.

[8]

Mo, F. N.; Liang, G. J.; Huang, Z. D.; Li, H. F.; Wang, D. H.; Zhi, C. Y. An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Adv. Mater. 2020, 32, 1902151.

[9]

Man, Z. M.; Zhu, X. L.; Ye, S. Y.; Wu, G.; Bao, N. Z. Recent advances and future perspectives of fiber-shaped batteries. Energy Fuels 2022, 36, 9866–9881.

[10]

Kwon, Y. H.; Woo, S. W.; Jung, H. R.; Yu, H. K.; Kim, K.; Oh, B. H.; Ahn, S.; Lee, S. Y.; Song, S. W.; Cho, J. et al. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv. Mater. 2012, 24, 5192–5197.

[11]

Yu, X.; Fu, Y. P.; Cai, X.; Kafafy, H.; Wu, H. W.; Peng, M.; Hou, S. C.; Lv, Z. B.; Ye, S. Y.; Zou, D. C. Flexible fiber-type zinc-carbon battery based on carbon fiber electrodes. Nano Energy 2013, 2, 1242–1248.

[12]

Fang, X.; Weng, W.; Ren, J.; Peng, H. S. A cable-shaped lithium sulfur battery. Adv. Mater. 2016, 28, 491–496.

[13]

Zhang, Y.; Wang, L.; Guo, Z. Y.; Xu, Y. F.; Wang, Y. G.; Peng, H. S. High-performance lithium-air battery with a coaxial-fiber architecture. Angew. Chem., Int. Ed. 2016, 55, 4487–4491.

[14]

Zhu, Y. H.; Yuan, S.; Bao, D.; Yin, Y. B.; Zhong, H. X.; Zhang, X. B.; Yan, J. M.; Jiang, Q. Decorating waste cloth via industrial wastewater for tube-type flexible and wearable sodium-ion batteries. Adv. Mater. 2017, 29, 1603719.

[15]

Mossali, E.; Picone, N.; Gentilini, L.; Rodrìguez, O.; Pérez, J. M.; Colledani, M. Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments. J. Environ. Manage. 2020, 264, 110500.

[16]

Wang, N.; Zhai, S. L.; Ma, Y. Y.; Tan, X. H.; Jiang, K. R.; Zhong, W. B.; Zhang, W. Y.; Chen, N.; Chen, W. F.; Li, S. D. et al. Tridentate citrate chelation towards stable fiber zinc-polypyrrole battery with hybrid mechanism. Energy Stor. Mater. 2021, 43, 585–594.

[17]

Gao, Y. M.; Liu, Y.; Feng, K. J.; Ma, J. Q.; Miao, Y. J.; Xu, B. R.; Pan, K. M.; Akiyoshi, O.; Wang, G. X.; Zhang, K. K. et al. Emerging WS2/WSe2@graphene nanocomposites: Synthesis and electrochemical energy storage applications. Rare Met. 2024, 43, 1–19.

[18]

Canepa, P.; Sai Gautam, G.; Hannah, D. C.; Malik, R.; Liu, M.; Gallagher, K. G.; Persson, K. A.; Ceder, G. Odyssey of multivalent cathode materials: Open questions and future challenges. Chem. Rev. 2017, 117, 4287–4341.

[19]

Wang, H. B.; Wang, F.; Liu, Y.; Liu, Z. X.; Miao, Y. J.; Zhang, W. H.; Wang, G. X.; Ji, J. T.; Zhang, Q. B. Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chin. Chem. Lett. 2024, 109589.

[20]

He, B.; Zhang, Q. C.; Man, P.; Zhou, Z. Y.; Li, C. W.; Li, Q. L.; Xie, L. Y.; Wang, X. N.; Pang, H.; Yao, Y. G. Self-sacrificed synthesis of conductive vanadium-based metal-organic framework nanowire-bundle arrays as binder-free cathodes for high-rate and high-energy-density wearable Zn-ion batteries. Nano Energy 2019, 64, 103935.

[21]

Dong, H. B.; Li, J. W.; Zhao, S. Y.; Zhao, F. J.; Xiong, S. Y.; Brett, D. J. L.; He, G. J.; Parkin, I. P. An anti-aging polymer electrolyte for flexible rechargeable zinc-ion batteries. J. Mater. Chem. A 2020, 8, 22637–22644.

[22]

Kang, L. T.; Cui, M. W.; Jiang, F. Y.; Gao, Y. F.; Luo, H. J.; Liu, J. J.; Liang, W.; Zhi, C. Y. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 2018, 8, 1801090.

[23]

Liu, Y.; Feng, K. J.; Han, J. M.; Wang, F.; Xing, Y. B.; Tao, F.; Li, H. M.; Xu, B. R.; Ji, J. T.; Li, H. X. Regulation of Zn2+ solvation shell by a novel N-methylacetamide based eutectic electrolyte toward high-performance zinc-ion batteries. J. Mater. Sci. Technol. 2025, 211, 53–61.

[24]

Phillips, J.; Mohanta, S.; Geng, M. M.; Barton, J.; McKinney, B.; Wu, J. Environmentally friendly nickel-zinc battery for high rate application with higher specific energy. ECS Trans. 2009, 16, 11.

[25]

Heise, G. W.; Schumacher, E. A. An air-depolarized primary cell with caustic alkali electrolyte. Trans. Electrochem. Soc. 1932, 62, 383.

[26]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe–Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[27]

Shoji, T.; Hishinuma, M.; Yamamoto, T. Zinc-manganese dioxide galvanic cell using zinc sulphate as electrolyte. Rechargeability of the cell. J. Appl. Electrochem. 1988, 18, 521–526.

[28]

Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y. Energetic zinc ion chemistry: The rechargeable zinc ion battery. Angew. Chem., Int. Ed. 2012, 51, 933–935.

[29]

Park, J.; Park, M.; Nam, G.; Lee, J. S.; Cho, J. All-solid-state cable-type flexible zinc-air battery. Adv. Mater. 2015, 27, 1396–1401.

[30]

Xu, Y. F.; Zhang, Y.; Guo, Z. Y.; Ren, J.; Wang, Y. G.; Peng, H. S. Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets. Angew. Chem., Int. Ed. 2015, 54, 15390–15394.

[31]

Lu, Z. C.; Chen, L.; Zhou, J. X.; He, B.; Liu, R. J.; Zhu, C. J.; Xue, P.; Sun, Y.; Li, C. S.; Wei, L. et al. Integrating high-sensitivity photodetector and high-energy aqueous battery in all-in-one triple-twisted fiber. ACS Nano 2023, 17, 20087–20097.

[32]

Xiong, T.; Zhou, X. H.; Wang, Y. T.; Zhou, T. Z.; Huang, R. Q.; Zhong, H. Y.; Zhang, X.; Yuan, S. X.; Wang, Z. X.; Xin, J. W. et al. Photo-powered all-in-one energy harvesting and storage fibers towards low-carbon smart wearables. Energy Storage Mater. 2024, 65, 103146.

[33]

Zhang, Z. T.; Yang, Z. B.; Wu, Z. W.; Guan, G. Z.; Pan, S. W.; Zhang, Y.; Li, H. P.; Deng, J.; Sun, B. Q.; Peng, H. S. Weaving efficient polymer solar cell wires into flexible power textiles. Adv. Energy Mater. 2014, 4, 1301750.

[34]

Zhang, Q.; Jin, Y. N.; Qi, S. Y.; Ma, Q.; Wang, Z. Y.; Lv, P.; Shi, F. F.; Wei, W. Overview of fiber-shaped energy storage devices: From fabrication to application. Nano Energy 2024, 128, 109896.

[35]

Shim, G.; Tran, M. X.; Liu, G. C.; Byun, D.; Lee, J. K. Flexible, fiber-shaped, quasi-solid-state Zn-polyaniline batteries with methanesulfonic acid-doped aqueous gel electrolyte. Energy Storage Mater. 2021, 35, 739–749.

[36]

He, J. Q.; Lu, C. H.; Jiang, H. B.; Han, F.; Shi, X.; Wu, J. X.; Wang, L. Y.; Chen, T. Q.; Wang, J. J.; Zhang, Y. et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 2021, 597, 57–63.

[37]

Zhou, Y.; Zhao, Y.; Fang, J.; Lin, T. Electrochromic/supercapacitive dual functional fibres. RSC Adv. 2016, 6, 110164–110170.

[38]

Zeng, Y. X.; Meng, Y.; Lai, Z. Z.; Zhang, X. Y.; Yu, M. H.; Fang, P. P.; Wu, M. M.; Tong, Y. X.; Lu, X. H. An ultrastable and high-performance flexible fiber-shaped Ni-Zn battery based on a Ni–NiO heterostructured nanosheet cathode. Adv. Mater. 2017, 29, 1702698.

[39]

Zhang, Q. C.; Li, C. W.; Li, Q. L.; Pan, Z. H.; Sun, J.; Zhou, Z. Y.; He, B.; Man, P.; Xie, L. Y.; Kang, L. X. et al. Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett. 2019, 19, 4035–4042.

[40]

Liu, Y.; Zhou, X. M.; Bai, Y.; Liu, R.; Li, X. L.; Xiao, H. H.; Wang, Y. M.; Wang, X.; Ma, Y.; Yuan, G. H. Engineering integrated structure for high-performance flexible zinc-ion batteries. Chem. Eng. J. 2021, 417, 127955.

[41]

Wang, K.; Zhang, X. H.; Han, J. W.; Zhang, X.; Sun, X. Z.; Li, C.; Liu, W. H.; Li, Q. W.; Ma, Y. W. High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS Appl. Mater. Interfaces 2018, 10, 24573–24582.

[42]

Gao, T. T.; Yan, G. Y.; Yang, X.; Yan, Q.; Tian, Y. K.; Song, J. W.; Li, F. X.; Wang, X. L.; Yu, J. Y.; Li, Y. J. et al. Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage. J. Energy Chem. 2022, 71, 192–200.

[43]

Chen, S. M.; Ma, L. T.; Wu, S. L.; Wang, S. Y.; Li, Z. B.; Emmanuel, A. A.; Huqe, M. R.; Zhi, C. Y.; Zapien, J. A. Uniform virus-like Co-N-Cs electrocatalyst derived from prussian blue analog for stretchable fiber-shaped Zn-air batteries. Adv. Funct. Mater. 2020, 30, 1908945.

[44]

Cong, Z. F.; Guo, W. B.; Zhang, P. P.; Sha, W.; Guo, Z. H.; Chang, C. Y.; Xu, F.; Gang, X.; Hu, W. G.; Pu, X. Wearable antifreezing fiber-shaped Zn/PANI batteries with suppressed Zn dendrites and operation in sweat electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 17608–17617.

[45]

Guan, Q.; Li, Y. P.; Bi, X. X.; Yang, J.; Zhou, J. W.; Li, X. L.; Cheng, J. L.; Wang, Z. P.; Wang, B.; Lu, J. Dendrite-free flexible fiber-shaped Zn battery with long cycle life in water and air. Adv. Energy Mater. 2019, 9, 1901434.

[46]

Li, M.; Meng, J. S.; Li, Q.; Huang, M.; Liu, X.; Owusu, K. A.; Liu, Z. A.; Mai, L. Finely crafted 3D electrodes for dendrite-free and high-performance flexible fiber-shaped Zn-Co batteries. Adv. Funct. Mater. 2018, 28, 1802016.

[47]

Li, M.; Li, Z. Q.; Ye, X. R.; Zhang, X. J.; Qu, L. J.; Tian, M. W. Tendril-inspired 900% ultrastretching fiber-based Zn-ion batteries for wearable energy textiles. ACS Appl. Mater. Interfaces 2021, 13, 17110–17117.

[48]

Yi, H. H.; Ma, Y.; Zhang, S.; Na, B.; Zeng, R.; Zhang, Y.; Lin, C. Robust aqueous Zn-ion fiber battery based on high-strength cellulose yarns. ACS Sustainable Chem. Eng. 2019, 7, 18894–18900.

[49]

Pu, J.; Cao, Q. H.; Gao, Y.; Wang, Q. Z.; Geng, Z. Y.; Cao, L. Q.; Bu, F.; Yang, N. T.; Guan, C. Liquid metal-based stable and stretchable Zn-ion battery for electronic textiles. Adv. Mater. 2024, 36, 2305812.

[50]

Xiao, X.; Xiao, X.; Zhou, Y. H.; Zhao, X.; Chen, G. R.; Liu, Z. X.; Wang, Z. H.; Lu, C. Y.; Hu, M. L.; Nashalian, A. et al. An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Sci. Adv. 2021, 7, eabl3742.

[51]

Zhang, Q. C.; Li, L. H.; Li, H.; Tang, L.; He, B.; Li, C. W.; Pan, Z. H.; Zhou, Z. Y.; Li, Q. L.; Sun, J. et al. Ultra-endurance coaxial-fiber stretchable sensing systems fully powered by sunlight. Nano Energy 2019, 60, 267–274.

[52]

Li, H. F.; Liu, Z. X.; Liang, G. J.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Tang, Z. J.; Wang, Y. K. et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 2018, 12, 3140–3148.

[53]

Zhao, B. T.; Wang, M.; Wang, S. L.; Ni, T.; Wang, Q.; Ruan, L. M.; Huang, L. S.; Zeng, W. A highly flexible and self-healable rechargeable fibrous Zn-MnO2 battery. Sustai. Energy Fuels 2021, 5, 2907–2915.

[54]

Chen, L.; Hu, K. R.; Yang, K.; Yanilmaz, M.; Han, X.; Liu, Y.; Zhang, X. W. A braided flexible Zn-MnO2 yarn battery based on cobweb-like carbonized polypyrrole modified carbon fiber electrodes. Carbon 2023, 215, 118461.

[55]

He, B.; Zhou, Z. Y.; Man, P.; Zhang, Q. C.; Li, C. W.; Xie, L. Y.; Wang, X. N.; Li, Q. L.; Yao, Y. G. V2O5 nanosheets supported on 3D N-doped carbon nanowall arrays as an advanced cathode for high energy and high power fiber-shaped zinc-ion batteries. J. Mater. Chem. A 2019, 7, 12979–12986.

[56]

Pan, Z. H.; Yang, J.; Yang, J.; Zhang, Q. C.; Zhang, H.; Li, X.; Kou, Z. K.; Zhang, Y. F.; Chen, H.; Yan, C. L. et al. Stitching of Zn3(OH)2V2O7·2H2O 2D nanosheets by 1D carbon nanotubes boosts ultrahigh rate for wearable quasi-solid-state zinc-ion batteries. ACS Nano 2020, 14, 842–853.

[57]

Lin, Y. T.; Zhou, F. S.; Chen, M.; Zhang, S.; Deng, C. Building defect-rich oxide nanowires@graphene coaxial scrolls to boost high-rate capability, cycling durability and energy density for flexible Zn-ion batteries. Chem. Eng. J. 2020, 396, 125259.

[58]

Lin, Y. T.; Zhou, F. S.; Xie, M. X.; Zhang, S.; Deng, C. V6O13− δ @C nanoscrolls with expanded distances between adjacent shells as a high-performance cathode for a knittable zinc-ion battery. ChemSusChem 2020, 13, 3696–3706.

[59]

Yang, J.; Tian, H. L.; Li, Y.; Li, H.; Li, S.; Yang, H. T.; Ding, M.; Wang, X. N.; Chen, P. Y. Eco-friendly synthesis of vanadium metal-organic frameworks from gasification waste for wearable Zn-ion batteries. Energy Stor. Mater. 2022, 53, 352–362.

[60]

Khumujam, D. D.; Kshetri, T.; Singh, T. I.; Singh, S. B.; Kim, N. H.; Lee, J. H. Achieving the optimal performance of VO@CoNC anchored on MX/CF through phosphorous-doped induced defects for the fiber-shaped solid-state Zn-ion battery. Chem. Eng. J. 2024, 486, 150252.

[61]

Guo, J. B.; He, B.; Gong, W. B.; Xu, S. H.; Xue, P.; Li, C. S.; Sun, Y.; Wang, C. L.; Wei, L.; Zhang, Q. C. et al. Emerging amorphous to crystalline conversion chemistry in Ca-doped VO2 cathodes for high-capacity and long-term wearable aqueous zinc-ion batteries. Adv. Mater. 2024, 36, 2303906.

[62]

Zhang, Z. C.; Liu, Q. F.; Xiao, L. J.; Zang, L. M.; Yu, X. W.; Yang, C. Auricularia-like V2O5 anchored on NiTi alloy wire for quasi-solid-state fibrous zinc-ion batteries with shape memory function. J. Alloys Compd. 2024, 981, 173698.

[63]

Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

[64]

Chen, Y. J.; Jiang, B.; Hao, H. G.; Li, H. J.; Qiu, C. Y.; Liang, X.; Qu, Q. Y.; Zhang, Z. D.; Gao, R.; Duan, D. M. et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew. Chem., Int. Ed. 2023, 135, e202301879.

[65]

Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 135, e202308800.

[66]

Li, W. H.; Ye, B. C.; Yang, J. R.; Wang, Y.; Yang, C. J.; Pan, Y. M.; Tang, H. T.; Wang, D. S.; Li, Y. D. A single‐atom cobalt catalyst for the fluorination of acyl chlorides at parts-per-million catalyst loading. Angew. Chem., Int. Ed. 2022, 61, e202209749.

[67]

Lu, Y. F.; Zhang, H. J.; Liu, H. D.; Nie, Z. T.; Xu, F.; Zhao, Y.; Zhu, J. X.; Huang, W. Electrolyte dynamics engineering for flexible fiber-shaped aqueous zinc-ion battery with ultralong stability. Nano Lett. 2021, 21, 9651–9660.

[68]

Li, C. W.; Wang, W. H.; Tang, Y. J.; Zhuang, W. B.; Zhang, J. C.; Zhang, D. J.; Qian, X. Y.; Hong, G.; Du, J. M.; Yao Y. G. Building microcracked structure fibrous cathode coated by poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) for ultra-stable fiber-shaped aqueous zinc ions batteries. J. Colloid Interf. Sci. 2025, 677, 551–559.

[69]

Chen, R. Y.; Shi, P. P.; Gong, Y. J.; Yu, C. Y.; Hua, L.; Li, L.; Zhou, J. Y.; Xu, T.; Zhang, Y. N.; Sun, G. Z. Solution-processable design of fiber-shaped wearable Zn//Ni(OH)2 battery. Energy Technol. 2018, 6, 2326–2332.

[70]

Li, P. P.; Jin, Z. Y.; Xiao, D. Three-dimensional nanotube-array anode enables a flexible Ni/Zn fibrous battery to ultrafast charge and discharge in seconds. Energy Stor. Mater. 2018, 12, 232–240.

[71]

Liu, Y.; Wang, J.; Zeng, Y. X.; Liu, J.; Liu, X. Q.; Lu, X. H. Interfacial engineering coupled valence tuning of MoO3 cathode for high-capacity and high-rate fiber-shaped zinc-ion batteries. Small 2020, 16, 1907458.

[72]

Li, Y. P.; Niu, S. W.; Liu, P. G.; Pan, R. R.; Zhang, H. K.; Ahmad, N.; Shi, Y.; Liang, X.; Cheng, M. Y.; Chen, S. H. et al. Ruthenium nanoclusters and single atoms on α-MoC/N-doped carbon achieves low-input/input-free hydrogen evolution via decoupled/coupled hydrazine oxidation. Angew. Chem., Int. Ed. 2024, e202316755.

[73]

Li, Y. P.; Guan, Q.; Cheng, J. L.; Wang, B. Amorphous H0.82MoO3.26 cathodes based long cyclelife fiber-shaped Zn-ion battery for wearable sensors. Energy Stor. Mater. 2022, 49, 227–235.

[74]

Li, C. W.; Zhang, Q. C.; E, S. F.; Li, T. T.; Zhu, Z. Z.; He, B.; Zhou, Z. Y.; Man, P.; Li, Q. L.; Yao, Y. G. An ultra-high endurance and high-performance quasi-solid-state fiber-shaped Zn-Ag2O battery to harvest wind energy. J. Mater. Chem. A 2019, 7, 2034–2040.

[75]

Peng, M.; Yan, K.; Hu, H.; Shen, D. H.; Song, W. X.; Zou, D. C. Efficient fiber shaped zinc bromide batteries and dye sensitized solar cells for flexible power sources. J. Mater. Chem. C 2015, 3, 2157–2165.

[76]

Yu, H.; Liu, G. C.; Wang, M. X.; Ren, R.; Shim, G.; Kim, J. Y.; Tran, M. X.; Byun, D.; Lee, J. K. Plasma-assisted surface modification on the electrode interface for flexible fiber-shaped Zn-polyaniline batteries. ACS Appl. Mater. Interfaces 2020, 12, 5820–5830.

[77]

Zhai, S. L.; Wang, N.; Tan, X. H.; Jiang, K. R.; Quan, Z. Y.; Li, Y. W.; Li, Z. Interface-engineered dendrite-free anode and ultraconductive cathode for durable and high-rate fiber Zn dual-ion microbattery. Adv. Funct. Mater. 2021, 31, 2008894.

[78]

Wang, C. F.; He, T.; Cheng, J. L.; Guan, Q.; Wang, B. Bioinspired interface design of sewable, weavable, and washable fiber zinc batteries for wearable power textiles. Adv. Funct. Mater. 2020, 30, 2004430.

[79]

Cheng, X. Y.; Yang, X.; Zhang, Y. N.; Lv, P. F.; Yang, J. X.; Huang, F. L.; Wei, Q. F. Sulfur vacancies tune the charge distribution of NiCo2S4 for boosting the energy density of stretchable yarn-based Zn ion batteries. Adv. Fiber Mater. 2023, 5, 650–661.

[80]

Cheng, X. Y.; Gao, H.; Tian, X. J.; Wu, D. S.; Lv, P. F.; Yoon, S. S.; Yang, J. X.; Wei, Q. F. Tunable fabric zinc-based batteries utilizing core–shell like fiber electrodes with enhanced deformation durability. Nano Energy 2024, 125, 109501.

[81]

Zang, X. B.; Li, L. T.; Meng, J. X.; Liu, L. J.; Pan, Y. Y.; Shao, Q. G.; Cao, N. Enhanced zinc storage performance of mixed valent manganese oxide for flexible coaxial fiber zinc-ion battery by limited reduction control. J. Mater. Sci. Technol. 2021, 74, 52–59.

[82]

Zhang, H. Z.; Xiong, T.; Zhou, T. Z.; Zhang, X.; Wang, Y. T.; Zhou, X. H.; Wei, L. Advanced fiber-shaped aqueous Zn ion battery integrated with strain sensor. ACS Appl. Mater. Interfaces 2022, 14, 41045–41052.

[83]

Wang, X. Y.; Pan, Y. Z.; Yang, J. R.; Li, W. H.; Gan, T.; Pan, Y. M.; Tang, H. T.; Wang, D. S. Single-atom iron catalyst as an advanced redox mediator for anodic oxidation of organic electrosynthesis. Angew. Chem., Int. Ed. 2024, e202404295.

[84]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual‐single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 136, e202319618.

[85]

Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 136, e202315032.

[86]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[87]

Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene. Angew. Chem., Int. Ed. 2024, 63, e202316550.

[88]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 135, e202215136.

Nano Research
Article number: 94907025
Cite this article:
Zhang X, Zhang H, Chen M, et al. Zinc-based fiber-shaped rechargeable batteries: Insights into structures, electrodes, and electrolytes. Nano Research, 2025, 18(1): 94907025. https://doi.org/10.26599/NR.2025.94907025
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return