AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Theoretical studies of nitrogen-doped graphene loaded transition metal single-atom catalysts for electrochemical CO reduction

Yongze Gao1Shamraiz Hussain Talib2Qi Yu1( )
School of Materials Science and Engineering, and Shaanxi Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong 723001, China
Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
Show Author Information

Graphical Abstract

The hydrogen evolution reaction (HER) and carbon monoxide reduction reaction (CORR) processes of transition metals (TM1 = Sc, Ti, V, Cr, Mn, Fe, Co, Ni and Cu) loaded on N-doped graphene have been calculated by first principles calculations.

Abstract

The electrochemical carbon monoxide reduction reaction (CORR) holds significant potential for sustainable fuel and chemical production, offering an effective means to reduce carbon emissions and maintain environmental sustainability. Graphene, a single layer of carbon atoms arranged in a unique two-dimensional structure, possesses properties that make it suitable for various applications. Nitrogen-doped graphene (NDG) based metal single-atom catalysts (SACs) have emerged as one of the most effective methods for converting CO into one carbon (C1) products such as CH4 and CH3OH. In this study, defective graphene was doped with four nitrogen atoms, which stabilized the catalyst through complexation with metal species by binding with the nitrogen atoms. First-principles calculations were employed to investigate the catalytic performance of selected transition metals (TM1 = Sc, Ti, V, Cr, Mn, Fe, Co, Ni and Cu) as SACs anchored on the NDG surface for hydrogen evolution reaction (HER) and CORR processes. Theoretical analysis indicated that NDG is highly favorable for binding transition metal single adatoms with excellent stability, facilitating rapid electron transfer during catalysis and yielding outstanding catalytic performance. Among the SACs, Cr supported by N4-G catalyst selectively produces CH4 with Cr-N4-G exhibiting the lowest overpotential of 0.47 eV. This study demonstrates that the N4-G support is a promising candidate for use as a single-atom catalyst for selective CO reduction and other electrochemical processes.

Electronic Supplementary Material

Download File(s)
7026_ESM.pdf (631.5 KB)

References

[1]

Ji, Y. L.; Chen, Z.; Wei, R. L.; Yang, C.; Wang, Y. H.; Xu, J.; Zhang, H.; Guan, A. X.; Chen, J. T.; Sham, T. K. et al. Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu-Pd sites. Nat. Catal. 2022, 5, 251–258.

[2]

Li, J.; Chang, X. X.; Zhang, H. C.; Malkani, A. S.; Cheng, M. J.; Xu, B. J.; Lu, Q. Electrokinetic and in situ spectroscopic investigations of CO electrochemical reduction on copper. Nat. Commun. 2021, 12, 3624.

[3]

Xiang, S. Q.; Shi, J. L.; Gao, S. T.; Zhang, W.; Zhao, L. B. Thermodynamic and kinetic competition between C–H and O–H bond formation pathways during electrochemical reduction of CO on copper electrodes. ACS Catal. 2021, 11, 2422–2434.

[4]

Tang, S. H.; Xu, L.; Dong, K. J.; Wang, Q. C.; Zeng, J.; Huang, X.; Li, H. T.; Xia, L. B.; Wang, L. L. Curvature effect on graphene-based Co/Ni single-atom catalysts. Appl. Surf. Sci. 2023, 615, 156357.

[5]

Pan, C.; El-Khodary, S.; Wang, S.; Ling, Q. F.; Hu, X.; Xu, L. J.; Zhong, S. Research progress in graphene based single atom catalysts in recent years. Fuel Process. Technol. 2023, 250, 107879.

[6]

Yu, Q. Theoretical studies of non-noble metal single-atom catalyst Ni1/MoS2: Electronic structure and electrocatalytic CO2 reduction. Sci. China Mater. 2023, 66, 1079–1088.

[7]

Ren, S.; Yu, Q.; Yu, X. H.; Rong, P.; Jiang, L. Y.; Jiang, J. C. Graphene-supported metal single-atom catalysts: A concise review. Sci. China Mater. 2020, 63, 903–920.

[8]

Feng, S. X.; Yu, Q.; Ma, X. B.; Yu, X. H.; Yan, N. Hydroformylation over polyoxometalates supported single-atom Rh catalysts. Natl. Sci. Open 2023, 2, 20220064.

[9]

Jiang, J. C.; Chen, J. C.; Zhao, M. D.; Yu, Q.; Wang, Y. G.; Li, J. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 7116–7123.

[10]

Yang, Q. Q.; Jiang, Y. F.; Zhuo, H. Y.; Mitchell, E. M.; Yu, Q. Recent progress of metal single-atom catalysts for energy applications. Nano Energy 2023, 111, 108404.

[11]

Rong, P.; Jiang, Y. F.; Wang, Q.; Gu, M., Jiang, X. L.; Yu, Q. Photocatalytic degradation of methylene blue (MB) with Cu1-ZnO single atom catalysts on graphene-coated flexible substrates. J. Mater. Chem. A 2022, 10, 6231–6241.

[12]

Hai, X.; Zheng, Y.; Yu, Q.; Guo, N.; Xi, S. B.; Zhao, X. X.; Mitchell, S.; Luo, X. H.; Tulus, V.; Wang, M. et al. Geminal-atom catalysis for cross-coupling. Nature 2023, 622, 754–760.

[13]

Jiang, L. Y.; Yang, Q. Q.; Xia, Z. M.; Yu, X. H.; Zhao, M. D.; Shi, Q. P.; Yu, Q. Recent progress of theoretical studies on electro- and photo-chemical conversion of CO2 with single-atom catalysts. RSC Adv. 2023, 13, 5833–5850.

[14]

Zhao, M. D.; Jiang, L. Y.; Yu, Q. Environmental applications of single-atom catalysts based on graphdiyne. Catal. Sci. Technol. 2023, 13, 5154–5174.

[15]

Li, X. J.; Yu, X. H.; Yu, Q. Research progress on electrochemical CO2 reduction for Cu-based single-atom catalysts. Sci. China Mater. 2023, 66, 3765–3781.

[16]

Ma, T.; Fan, Q.; Li, X.; Qiu, J. S.; Wu, T. B.; Sun, Z. Y. Graphene-based materials for electrochemical CO2 reduction. J. CO2 Util. 2019, 30, 168–182.

[17]

Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E. P.; Nika, D. L.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 2008, 92, 151911.

[18]

Yu, Q.; Jiang, J. C.; Jiang, L. Y.; Yang, Q. Q.; Yan, N. Advances in green synthesis and applications of graphene. Nano Res. 2021, 14, 3724–3743.

[19]

Zhuo, H. Y.; Zhang, X.; Liang, J. X.; Yu, Q.; Xiao, H.; Li, J. Theoretical understandings of graphene-based metal single-atom catalysts: Stability and catalytic performance. Chem. Rev. 2020, 120, 12315–12341.

[20]

Chen, Z. P.; Mou, K. W.; Yao, S. Y.; Liu, L. C. Zinc-coordinated nitrogen-codoped graphene as an efficient catalyst for selective electrochemical reduction of CO2 to CO. ChemSusChem 2018, 11, 2944–2952.

[21]

Liu, J. C.; Ma, X. L.; Li, Y.; Wang, Y. G.; Xiao, H.; Li, J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 2018, 9, 1610.

[22]

Wang, J.; You, R.; Zhao, C.; Zhang, W.; Liu, W.; Fu, X. P.; Li, Y. Y.; Zhou, F. Y.; Zheng, X. S.; Xu, Q. et al. N-coordinated dual-metal single-site catalyst for low-temperature CO oxidation. ACS Catal. 2020, 10, 2754–2761.

[23]

Wu, T. J.; Lin, J.; Cheng, Y.; Tian, J.; Wang, S. W.; Xie, S. H.; Pei, Y.; Yan, S. R.; Qiao, M. H.; Xu, H. L. et al. Porous graphene-confined Fe-K as highly efficient catalyst for CO2 direct hydrogenation to light olefins. ACS Appl. Mater. Interfaces 2018, 10, 23439–23443.

[24]

Tao, H. C.; Sun, X. F.; Back, S.; Han, Z. S.; Zhu, Q. G.; Robertson, A. W.; Ma, T.; Fan, Q.; Han, B. X.; Jung, Y. et al. Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO2 to CO. Chem. Sci. 2018, 9, 483–487.

[25]

Wang, H.; Li, Y. Z.; Wang, M. Y.; Chen, S.; Yao, M.; Chen, J. L.; Liao, X. L.; Zhang, Y. W.; Lu, X.; Matios, E. et al. Precursor-mediated in situ growth of hierarchical N-doped graphene nanofibers confining nickel single atoms for CO2 electroreduction. Proc. Natl. Acad. Sci. USA 2023, 120, e2219043120.

[26]

Sun, Q.; Jia, C.; Zhao, Y.; Zhao, C. Single atom-based catalysts for electrochemical CO2 reduction. Chin. J. Catal. 2022, 43, 1547–1597.

[27]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[28]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[29]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[30]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[31]

Bader, R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928.

[32]

Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 2013, 34, 2557–2567.

[33]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[34]

Peterson, A. A.; Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 2012, 3, 251–258.

[35]

Bi, W. T.; Li, X. G.; You, R.; Chen, M. L.; Yuan, R. L.; Huang, W. X.; Wu, X. J.; Chu, W. S.; Wu, C. Z.; Xie, Y. Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction. Adv. Mater. 2018, 30, 1706617.

[36]

Yang, Y.; Li, J. Y.; Zhang, C. Y.; Yang, Z. Q.; Sun, P. L.; Liu, S. X.; Cao, Q. E. Theoretical insights into nitrogen-doped graphene-supported Fe, Co, and Ni as single-atom catalysts for CO2 reduction reaction. J. Phys. Chem. C 2022, 126, 4338–4346.

[37]

Zhang, C. H.; Yang, S. Z.; Wu, J. J.; Liu, M. J.; Yazdi, S.; Ren, M. Q.; Sha, J. W.; Zhong, J.;Nie, K. Q.; Jalilov, A. S. et al. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 2018, 8, 1703487.

[38]

Mun, Y.; Lee, S.; Kim, K.; Kim, S.; Lee, S.; Han, J. W.; Lee, J. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 2019, 141, 6254–6262.

[39]

Lin, S.; Ye, X. X.; Johnson, R. S.; Guo, H. First-principles investigations of metal (Cu, Ag, Au, Pt, Rh, Pd, Fe, Co, and Ir) doped hexagonal boron nitride nanosheets: Stability and catalysis of CO oxidation. J. Phys. Chem. C 2013, 117, 17319–17326.

[40]

Irmer, S.; Kochan, D.; Lee, J.; Fabian, J. Resonant scattering due to adatoms in graphene: Top, bridge, and hollow positions. Phys. Rev. B 2018, 97, 075417.

[41]

Feibelman, P. J.; Hammer, B.; Nørskov, J. K.; Wagner, F.; Scheffler, M.; Stumpf, R.; Watwe, R.; Dumesic, J. The CO/Pt (111) puzzle. J. Phys. Chem. B 2001, 105, 4018–4025.

Nano Research
Article number: 94907026
Cite this article:
Gao Y, Talib SH, Yu Q. Theoretical studies of nitrogen-doped graphene loaded transition metal single-atom catalysts for electrochemical CO reduction. Nano Research, 2025, 18(1): 94907026. https://doi.org/10.26599/NR.2025.94907026
Topics:

340

Views

53

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 29 July 2024
Revised: 28 August 2024
Accepted: 05 September 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return