AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication | Open Access

Feasible synthesis of porous h-BN by Mg2+ induced lattice dislocations for hydrogen and ammonia storage

Xiaojia Huang1,§Zihao Wang1,§Yihan Kong1Li Jiang1Baolin Wang1Jiangtao Jia1 ( )Heping Ma2 ( )Guangshan Zhu1 ( )
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
School of Chemical Engineering and Technology Xi’an Jiaotong University, Xi’an 710049, China

§ Xiaojia Huang and Zihao Wang contributed equally to this work.

Show Author Information

Graphical Abstract

By introducing magnesium ions during the formation of boron nitride nanosheets to induce their dislocated growth, they form a three-dimensional (3D) porous structure that can adsorb sizable amounts of hydrogen and ammonia.

Abstract

Hexagonal boron nitride (h-BN) is a two-dimensional (2D) layered material with a structure similar to graphite and it has potential as a hydrogen and ammonia storage material. However, dense packing in the standard h-BN structure limits its surface area and prevents the B and N from being adsorption sites. In this study, the addition of Mg2+ during h-BN synthesis facilitated the growth of lattice dislocations and led to a cross-linked three-dimensional (3D) porous structure. A proposed formation mechanism for porous h-BN was confirmed by several characterization routes, most clearly by high-resolution transmission electron microscopy (HRTEM). Porous Mg/BNs exhibited high H2 and NH3 uptakes and showed potential for H2 and NH3 storage.

Electronic Supplementary Material

Download File(s)
7027_ESM.pdf (1.3 MB)

References

[1]

Rowsell, J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M. Hydrogen sorption in functionalized metal-organic frameworks. J. Am. Chem. Soc. 2004, 126, 5666–5667.

[2]

Furukawa, H.; Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 2009, 131, 8875–8883.

[3]

Usman, M. R. Hydrogen storage methods: Review and current status. Renew. Sust. Energy Rev. 2022, 167, 112743.

[4]

Chen, Z. J.; Kirlikovali, K. O.; Idrees, K. B.; Wasson, M. C.; Farha, O. K. Porous materials for hydrogen storage. Chem 2022, 8, 693–716.

[5]

Shi, L.; Yang, Z. N.; Sha, F. R.; Chen, Z. J. Design, synthesis and applications of functional zirconium-based metal-organic frameworks. Sci. China Chem. 2023, 66, 3383–3397.

[6]

Doonan, C. J.; Tranchemontagne, D. J.; Glover, T. G.; Hunt, J. R.; Yaghi, O. M. Exceptional ammonia uptake by a covalent organic framework. Nat. Chem. 2010, 2, 235–238.

[7]

Germain, J.; Fréchet, J. M. J.; Svec, F. Nanoporous polymers for hydrogen storage. Small 2009, 5, 1098–1111.

[8]

Zhu, L. J.; Zhang, Y. B. Crystallization of covalent organic frameworks for gas storage applications. Molecules 2017, 22, 1149.

[9]

Peedikakkal, A. M. P.; Aljundi, I. H. Mixed-metal Cu-BTC metal-organic frameworks as a strong adsorbent for molecular hydrogen at low temperatures. ACS Omega 2020, 5, 28493–28499.

[10]

Yuan, D. Q.; Zhao, D.; Sun, D. F.; Zhou, H. C. An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem., Int. Ed. 2010, 49, 5357–5361.

[11]

Chen, Y. A.; Zhang, Q. R.; Cai, X. R.; Zhang, H. R.; Lin, H. M.; Zheng, C. Y.; Guo, Z. Q.; Hu, S. Y.; Chen, L.; Tao, S. et al. Rapid increase in China's industrial ammonia emissions: Evidence from unit-based mapping. Environ. Sci. Technol. 2022, 56, 3375–3385.

[12]

Rees, N. V.; Compton, R. G. Carbon-free energy: A review of ammonia- and hydrazine-based electrochemical fuelcells. Energy Environ. Sci. 2011, 4, 1255–1260.

[13]

de Rezende, A.; Malmali, M.; Dral, P. O.; Lischka, H.; Tunega, D.; Aquino, A. J. A. Machine learning for designing mixed metal halides for efficient ammonia separation and storage. J. Phys. Chem. C 2022, 126, 12184–12196.

[14]

Qajar, A.; Peer, M.; Andalibi, M. R.; Rajagopalan, R.; Foley, H. C. Enhanced ammonia adsorption on functionalized nanoporous carbons. Microporous Mesoporous Mater. 2015, 218, 15–23.

[15]

Zheng, W. H.; Hu, J. T.; Rappeport, S.; Zheng, Z.; Wang, Z. X.; Han, Z. S.; Langer, J.; Economy, J. Activated carbon fiber composites for gas phase ammonia adsorption. Microporous Mesoporous Mater. 2016, 234, 146–154.

[16]

Glomb, S.; Woschko, D.; Makhloufi, G.; Janiak, C. Metal-organic frameworks with internal urea-functionalized dicarboxylate linkers for SO2 and NH3 adsorption. ACS Appl. Mater. Interfaces 2017, 9, 37419–37434.

[17]

Rieth, A. J.; Wright, A. M.; Dincă, M. Kinetic stability of metal-organic frameworks for corrosive and coordinating gas capture. Nat. Rev. Mater. 2019, 4, 708–725.

[18]

Wang, Y.; Shi, Y. L.; Li, Z. Y.; Wang, H. Y.; Qiu, J. K.; Xuan, X. P.; Wang, J. J. Defects in a metal-organic framework fabricated by carboxy-functionalized ionic liquids for enhancing NH3 uptake. ACS Sustainable Chem. Eng. 2022, 10, 12457–12465.

[19]

Matikolaei, M. K.; Binaeian, E. Boosting ammonia uptake within metal-organic frameworks by anion modulating strategy. ACS Appl. Mater. Interfaces 2021, 13, 27159–27168.

[20]

Wang, Z. Z.; Li, Z. Y.; Zhang, X. G.; Xia, Q. C.; Wang, H. Y.; Wang, C. L.; Wang, Y. L.; He, H. Y.; Zhao, Y.; Wang, J. J. Tailoring multiple sites of metal-organic frameworks for highly efficient and reversible ammonia adsorption. ACS Appl. Mater. Interfaces 2021, 13, 56025–56034.

[21]

Van Humbeck, J. F.; McDonald, T. M.; Jing, X. F.; Wiers, B. M.; Zhu, G. S.; Long, J. R. Ammonia capture in porous organic polymers densely functionalized with bronsted acid groups. J. Am. Chem. Soc. 2014, 136, 2432–2440.

[22]

Han, Y. S.; An, S. H.; Dai, J. L.; Hu, J.; Xu, Q.; Song, F.; Li, M. Y.; Peng, C. J.; Liu, H. L. Defect-engineering of anionic porous aromatic frameworks for ammonia capture. ACS Appl. Polym. Mater. 2021, 3, 4534–4542.

[23]

Mi, J. X.; Peng, W. L.; Luo, Y.; Chen, W.; Lin, L.; Chen, C. Q.; Zhu, Q. L.; Liu, F. J.; Zheng, A. M.; Jiang, L. L. A cationic polymerization strategy to design sulfonated micro-mesoporous polymers as efficient adsorbents for ammonia capture and separation. Macromolecules 2021, 54, 7010–7020.

[24]

Wang, Z.; Zhang, Y.; Jiang, L.; Han, Q.; Wang, Q.; Jia, J.; Zhu, G. Post-modified porous aromatic frameworks for carbon dioxide capture. Chem. Synth. 2024, 4, 40.

[25]

Hayat, A.; Sohail, M.; Hamdy, M. S.; Taha, T. A.; AlSalem, H. S.; Alenad, A. M.; Amin, M. A.; Shah, R.; Palamanit, A.; Khan, J. et al. Fabrication, characteristics, and applications of boron nitride and their composite nanomaterials. Surf. Interfaces 2022, 29, 101725.

[26]

Li, M. N.; Huang, G.; Chen, X. J.; Yin, J. N.; Zhang, P.; Yao, Y.; Shen, J.; Wu, Y. W.; Huang, J. Perspectives on environmental applications of hexagonal boron nitride nanomaterials. Nano Today 2022, 44, 101486.

[27]

Wang, J. G.; Ma, F. C.; Sun, M. T. Graphene, hexagonal boron nitride, and their heterostructures: Properties and applications. RSC Adv. 2017, 7, 16801–16822.

[28]

Weng, Q. H.; Wang, X. B.; Bando, Y.; Golberg, D. One-step template-free synthesis of highly porous boron nitride microsponges for hydrogen storage. Adv. Energy Mater. 2014, 4, 1301525.

[29]

Xu, X. D.; Wang, Y. X.; Wang, Y. X.; Fu, S. L.; Wang, C. G.; Yue, Y.; Wang, Y. B.; Zhuang, G. S. Study of one-step pyrolysis porous boron nitride with large specific surface area. Vacuum 2020, 182, 109769.

[30]

Wu, P. W.; Yang, S. Z.; Zhu, W. S.; Li, H. P.; Chao, Y. H.; Zhu, H. Y.; Li, H. M.; Dai, S. Tailoring N-terminated defective edges of porous boron nitride for enhanced aerobic catalysis. Small 2017, 13, 1701857.

[31]

Lei, W. W.; Zhang, H.; Wu, Y.; Zhang, B.; Liu, D.; Qin, S.; Liu, Z. W.; Liu, L. M.; Ma, Y. M.; Chen, Y. Oxygen-doped boron nitride nanosheets with excellent performance in hydrogen storage. Nano Energy 2014, 6, 219–224.

[32]

Chen, H.; Yang, Z. Z.; Zhang, Z. H.; Chen, Z. T.; Chi, M. F.; Wang, S.; Fu, J.; Dai, S. Construction of a nanoporous highly crystalline hexagonal boron nitride from an amorphous precursor for catalytic dehydrogenation. Angew. Chem., Int. Ed. 2019, 58, 10626–10630.

[33]

Huang, K.; Liang, L. B.; Chai, S. H.; Tumuluri, U.; Li, M. J.; Wu, Z. L.; Sumpter, B. G.; Dai, S. Aminopolymer functionalization of boron nitride nanosheets for highly efficient capture of carbon dioxide. J. Mater. Chem. A 2017, 5, 16241–16248.

[34]

Song, Q. Q.; Liang, J. L.; Fang, Y.; Guo, Z. L.; Du, Z.; Zhang, L.; Liu, Z. Y.; Huang, Y.; Lin, J.; Tang, C. C. Nickel (II) modified porous boron nitride: An effective adsorbent for tetracycline removal from aqueous solution. Chem. Eng. J. 2020, 394, 124985.

[35]

Wu, P. W.; Zhu, W. S.; Chao, Y. H.; Zhang, J. S.; Zhang, P. F.; Zhu, H. Y.; Li, C. F.; Chen, Z. G.; Li, H. M.; Dai, S. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization. Chem. Commun. 2016, 52, 144–147.

[36]

Liu, S.; Li, Z. D.; Wang, C. L.; Tao, W. W.; Huang, M. X.; Zuo, M.; Yang, Y.; Yang, K.; Zhang, L. J.; Chen, S. et al. Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nat. Commun. 2020, 11, 938.

[37]

Sun, Y. Q.; Alemany, L. B.; Billups, W. E.; Lu, J. X.; Yakobson, B. I. Structural dislocations in anthracite. J. Phys. Chem. Lett. 2011, 2, 2521–2524.

[38]

He, T.; Pachfule, P.; Wu, H.; Xu, Q.; Chen, P. Hydrogen carriers. Nat. Rev. Mater. 2016, 1, 16059.

[39]

Langmi, H. W.; Ren, J. W.; North, B.; Mathe, M.; Bessarabov, D. Hydrogen storage in metal-organic frameworks: A review. Electrochim. Acta 2014, 128, 368–392.

Nano Research
Article number: 94907027
Cite this article:
Huang X, Wang Z, Kong Y, et al. Feasible synthesis of porous h-BN by Mg2+ induced lattice dislocations for hydrogen and ammonia storage. Nano Research, 2025, 18(1): 94907027. https://doi.org/10.26599/NR.2025.94907027
Topics:

249

Views

37

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 July 2024
Revised: 30 August 2024
Accepted: 09 September 2024
Published: 24 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return