Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Hexagonal boron nitride (h-BN) is a two-dimensional (2D) layered material with a structure similar to graphite and it has potential as a hydrogen and ammonia storage material. However, dense packing in the standard h-BN structure limits its surface area and prevents the B and N from being adsorption sites. In this study, the addition of Mg2+ during h-BN synthesis facilitated the growth of lattice dislocations and led to a cross-linked three-dimensional (3D) porous structure. A proposed formation mechanism for porous h-BN was confirmed by several characterization routes, most clearly by high-resolution transmission electron microscopy (HRTEM). Porous Mg/BNs exhibited high H2 and NH3 uptakes and showed potential for H2 and NH3 storage.
Rowsell, J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M. Hydrogen sorption in functionalized metal-organic frameworks. J. Am. Chem. Soc. 2004, 126, 5666–5667.
Furukawa, H.; Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 2009, 131, 8875–8883.
Usman, M. R. Hydrogen storage methods: Review and current status. Renew. Sust. Energy Rev. 2022, 167, 112743.
Chen, Z. J.; Kirlikovali, K. O.; Idrees, K. B.; Wasson, M. C.; Farha, O. K. Porous materials for hydrogen storage. Chem 2022, 8, 693–716.
Shi, L.; Yang, Z. N.; Sha, F. R.; Chen, Z. J. Design, synthesis and applications of functional zirconium-based metal-organic frameworks. Sci. China Chem. 2023, 66, 3383–3397.
Doonan, C. J.; Tranchemontagne, D. J.; Glover, T. G.; Hunt, J. R.; Yaghi, O. M. Exceptional ammonia uptake by a covalent organic framework. Nat. Chem. 2010, 2, 235–238.
Germain, J.; Fréchet, J. M. J.; Svec, F. Nanoporous polymers for hydrogen storage. Small 2009, 5, 1098–1111.
Zhu, L. J.; Zhang, Y. B. Crystallization of covalent organic frameworks for gas storage applications. Molecules 2017, 22, 1149.
Peedikakkal, A. M. P.; Aljundi, I. H. Mixed-metal Cu-BTC metal-organic frameworks as a strong adsorbent for molecular hydrogen at low temperatures. ACS Omega 2020, 5, 28493–28499.
Yuan, D. Q.; Zhao, D.; Sun, D. F.; Zhou, H. C. An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem., Int. Ed. 2010, 49, 5357–5361.
Chen, Y. A.; Zhang, Q. R.; Cai, X. R.; Zhang, H. R.; Lin, H. M.; Zheng, C. Y.; Guo, Z. Q.; Hu, S. Y.; Chen, L.; Tao, S. et al. Rapid increase in China's industrial ammonia emissions: Evidence from unit-based mapping. Environ. Sci. Technol. 2022, 56, 3375–3385.
Rees, N. V.; Compton, R. G. Carbon-free energy: A review of ammonia- and hydrazine-based electrochemical fuelcells. Energy Environ. Sci. 2011, 4, 1255–1260.
de Rezende, A.; Malmali, M.; Dral, P. O.; Lischka, H.; Tunega, D.; Aquino, A. J. A. Machine learning for designing mixed metal halides for efficient ammonia separation and storage. J. Phys. Chem. C 2022, 126, 12184–12196.
Qajar, A.; Peer, M.; Andalibi, M. R.; Rajagopalan, R.; Foley, H. C. Enhanced ammonia adsorption on functionalized nanoporous carbons. Microporous Mesoporous Mater. 2015, 218, 15–23.
Zheng, W. H.; Hu, J. T.; Rappeport, S.; Zheng, Z.; Wang, Z. X.; Han, Z. S.; Langer, J.; Economy, J. Activated carbon fiber composites for gas phase ammonia adsorption. Microporous Mesoporous Mater. 2016, 234, 146–154.
Glomb, S.; Woschko, D.; Makhloufi, G.; Janiak, C. Metal-organic frameworks with internal urea-functionalized dicarboxylate linkers for SO2 and NH3 adsorption. ACS Appl. Mater. Interfaces 2017, 9, 37419–37434.
Rieth, A. J.; Wright, A. M.; Dincă, M. Kinetic stability of metal-organic frameworks for corrosive and coordinating gas capture. Nat. Rev. Mater. 2019, 4, 708–725.
Wang, Y.; Shi, Y. L.; Li, Z. Y.; Wang, H. Y.; Qiu, J. K.; Xuan, X. P.; Wang, J. J. Defects in a metal-organic framework fabricated by carboxy-functionalized ionic liquids for enhancing NH3 uptake. ACS Sustainable Chem. Eng. 2022, 10, 12457–12465.
Matikolaei, M. K.; Binaeian, E. Boosting ammonia uptake within metal-organic frameworks by anion modulating strategy. ACS Appl. Mater. Interfaces 2021, 13, 27159–27168.
Wang, Z. Z.; Li, Z. Y.; Zhang, X. G.; Xia, Q. C.; Wang, H. Y.; Wang, C. L.; Wang, Y. L.; He, H. Y.; Zhao, Y.; Wang, J. J. Tailoring multiple sites of metal-organic frameworks for highly efficient and reversible ammonia adsorption. ACS Appl. Mater. Interfaces 2021, 13, 56025–56034.
Van Humbeck, J. F.; McDonald, T. M.; Jing, X. F.; Wiers, B. M.; Zhu, G. S.; Long, J. R. Ammonia capture in porous organic polymers densely functionalized with bronsted acid groups. J. Am. Chem. Soc. 2014, 136, 2432–2440.
Han, Y. S.; An, S. H.; Dai, J. L.; Hu, J.; Xu, Q.; Song, F.; Li, M. Y.; Peng, C. J.; Liu, H. L. Defect-engineering of anionic porous aromatic frameworks for ammonia capture. ACS Appl. Polym. Mater. 2021, 3, 4534–4542.
Mi, J. X.; Peng, W. L.; Luo, Y.; Chen, W.; Lin, L.; Chen, C. Q.; Zhu, Q. L.; Liu, F. J.; Zheng, A. M.; Jiang, L. L. A cationic polymerization strategy to design sulfonated micro-mesoporous polymers as efficient adsorbents for ammonia capture and separation. Macromolecules 2021, 54, 7010–7020.
Wang, Z.; Zhang, Y.; Jiang, L.; Han, Q.; Wang, Q.; Jia, J.; Zhu, G. Post-modified porous aromatic frameworks for carbon dioxide capture. Chem. Synth. 2024, 4, 40.
Hayat, A.; Sohail, M.; Hamdy, M. S.; Taha, T. A.; AlSalem, H. S.; Alenad, A. M.; Amin, M. A.; Shah, R.; Palamanit, A.; Khan, J. et al. Fabrication, characteristics, and applications of boron nitride and their composite nanomaterials. Surf. Interfaces 2022, 29, 101725.
Li, M. N.; Huang, G.; Chen, X. J.; Yin, J. N.; Zhang, P.; Yao, Y.; Shen, J.; Wu, Y. W.; Huang, J. Perspectives on environmental applications of hexagonal boron nitride nanomaterials. Nano Today 2022, 44, 101486.
Wang, J. G.; Ma, F. C.; Sun, M. T. Graphene, hexagonal boron nitride, and their heterostructures: Properties and applications. RSC Adv. 2017, 7, 16801–16822.
Weng, Q. H.; Wang, X. B.; Bando, Y.; Golberg, D. One-step template-free synthesis of highly porous boron nitride microsponges for hydrogen storage. Adv. Energy Mater. 2014, 4, 1301525.
Xu, X. D.; Wang, Y. X.; Wang, Y. X.; Fu, S. L.; Wang, C. G.; Yue, Y.; Wang, Y. B.; Zhuang, G. S. Study of one-step pyrolysis porous boron nitride with large specific surface area. Vacuum 2020, 182, 109769.
Wu, P. W.; Yang, S. Z.; Zhu, W. S.; Li, H. P.; Chao, Y. H.; Zhu, H. Y.; Li, H. M.; Dai, S. Tailoring N-terminated defective edges of porous boron nitride for enhanced aerobic catalysis. Small 2017, 13, 1701857.
Lei, W. W.; Zhang, H.; Wu, Y.; Zhang, B.; Liu, D.; Qin, S.; Liu, Z. W.; Liu, L. M.; Ma, Y. M.; Chen, Y. Oxygen-doped boron nitride nanosheets with excellent performance in hydrogen storage. Nano Energy 2014, 6, 219–224.
Chen, H.; Yang, Z. Z.; Zhang, Z. H.; Chen, Z. T.; Chi, M. F.; Wang, S.; Fu, J.; Dai, S. Construction of a nanoporous highly crystalline hexagonal boron nitride from an amorphous precursor for catalytic dehydrogenation. Angew. Chem., Int. Ed. 2019, 58, 10626–10630.
Huang, K.; Liang, L. B.; Chai, S. H.; Tumuluri, U.; Li, M. J.; Wu, Z. L.; Sumpter, B. G.; Dai, S. Aminopolymer functionalization of boron nitride nanosheets for highly efficient capture of carbon dioxide. J. Mater. Chem. A 2017, 5, 16241–16248.
Song, Q. Q.; Liang, J. L.; Fang, Y.; Guo, Z. L.; Du, Z.; Zhang, L.; Liu, Z. Y.; Huang, Y.; Lin, J.; Tang, C. C. Nickel (II) modified porous boron nitride: An effective adsorbent for tetracycline removal from aqueous solution. Chem. Eng. J. 2020, 394, 124985.
Wu, P. W.; Zhu, W. S.; Chao, Y. H.; Zhang, J. S.; Zhang, P. F.; Zhu, H. Y.; Li, C. F.; Chen, Z. G.; Li, H. M.; Dai, S. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization. Chem. Commun. 2016, 52, 144–147.
Liu, S.; Li, Z. D.; Wang, C. L.; Tao, W. W.; Huang, M. X.; Zuo, M.; Yang, Y.; Yang, K.; Zhang, L. J.; Chen, S. et al. Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nat. Commun. 2020, 11, 938.
Sun, Y. Q.; Alemany, L. B.; Billups, W. E.; Lu, J. X.; Yakobson, B. I. Structural dislocations in anthracite. J. Phys. Chem. Lett. 2011, 2, 2521–2524.
He, T.; Pachfule, P.; Wu, H.; Xu, Q.; Chen, P. Hydrogen carriers. Nat. Rev. Mater. 2016, 1, 16059.
Langmi, H. W.; Ren, J. W.; North, B.; Mathe, M.; Bessarabov, D. Hydrogen storage in metal-organic frameworks: A review. Electrochim. Acta 2014, 128, 368–392.
249
Views
37
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).