AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (30.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A novel active-passive protection strategy endows carbonyl iron with excellent intelligent anti-corrosion and microwave absorption dual functional characteristics

Wei Tian1Quanyuan Feng1Linbo Zhang2( )Yinfan Liu3Xian Jian3,4 ( )Longjiang Deng2
Institute of Microelectronics, School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China
National Engineering Researching Centre of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-Spectral Absorbing Materials and Structures of Ministry of Education, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
The Yangtze Delta Region Institute (Huzhou) & School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Huzhou 313001, China
Show Author Information

Graphical Abstract

CI@PDA/BTA@SiO2/HMDS (CI = carbonyl iron absorbers, PDA = polydopamine, BTA = benzotriazole, HMDS = 1,1,1,3,3,3-hexamethyl disilazane) composites exhibit excellent intelligent anti-corrosion and microwave absorption properties, mainly benefiting from the proactive/passive protection and magnetic-dielectric synergistic features of multistage anti-corrosion layers.

Abstract

Carbonyl iron absorbers (CI) face significant challenges in practical applications, such as corrosion, interface bonding failure, detachment, and high maintenance costs. Herein, we have developed intelligent self-healing technology based on proactive/passive mechanisms via in situ synthesis of self-healing factors (polydopamine/benzotriazole (PDA/BTA)) and physical barrier layers (SiO2/1,1,1,3,3,3-hexamethyl disilazane, SiO2/HMDS) to enhance corrosion resistance, while also being compatible with efficient microwave absorption characteristics. The unique multiscale structure gives full play to the utilization of the roles of each functional layer, including the intelligent self-healing features of PDA/BTA, physical shielding and spatial confinement characteristics of SiO2/HMDS, and magnetic-dielectric synergistic mechanism resulted from the good impedance matching characteristics, the conduction loss, the interfacial polarization loss and natural resonance. The as-fabricated composites achieved an exceptional minimum reflection loss value of −55.4 dB at 10.7 GHz and the effective absorption band of 7.6 GHz. Moreover, it still exhibits obvious self-healing and corrosion resistance characteristics after 360 h corrosion treatment, ascribed to the self-healing mechanism of PDA/BTA and the blocking intervention effect of SiO2/HMDS. This work is considered to pave the way for the synthesis of high-performance magnetic absorbers, especially in enhancing their intelligent self-healing ability in corrosive environments.

Electronic Supplementary Material

Download File(s)
7029_ESM.pdf (2.9 MB)

References

[1]

Ren, B.; Deng, Y. M.; Jia, Y. J.; Han, L. Y.; Wang, X.; Li, H. J. Achieving broadband electromagnetic absorption at a wide temperature range up to 1273 K by metamaterial design on polymer-derived SiC-BN@CNT ceramic composites. Chem. Eng. J. 2023, 478, 147251.

[2]

Zhang, H. Y.; Cao, F.; Xu, H.; Tian, W.; Pan, Y.; Mahmood, N.; Jian, X. Plasma-enhanced interfacial engineering of FeSiAl@PUA@SiO2 hybrid for efficient microwave absorption and anti-corrosion. Nano Res. 2023, 16, 645–653.

[3]

Zhao, T. B.; Jia, Z. R.; Liu, J. K.; Zhang, Y.; Wu, G. L.; Yin, P. F. Multiphase interfacial regulation based on hierarchical porous molybdenum selenide to build anticorrosive and multiband tailorable absorbers. Nano-Micro Lett. 2024, 16, 6.

[4]

Gai, L. X.; Wang, Y. H.; Wan, P.; Yu, S. P.; Chen, Y. Z.; Han, X. J.; Xu, P.; Du, Y. C. Compositional and hollow engineering of silicon carbide/carbon microspheres as high-performance microwave absorbing materials with good environmental tolerance. Nano-Micro Lett. 2024, 16, 167.

[5]

Jiang, X. Y.; Wang, W. H.; Wang, B.; Zhang, L. B.; Yin, L. J.; Van Bui, H.; Xie, J. L.; Zhang, L.; Lu, H. P.; Deng, L. J. Enhanced anti-corrosion and microwave absorption performance with carbonyl iron modified by organic fluorinated chemicals. Appl. Surf. Sci. 2022, 572, 151320.

[6]

Yang, X.; Duan, Y. P.; Li, S. Q.; Pang, H. F.; Huang, L. X.; Fu, Y. Y.; Wang, T. M. Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring. Nano-Micro Lett. 2022, 14, 28.

[7]

Wang, X. W.; Yang, S. S.; Li, C. P.; Zhao, C.; Liu, Y.; Sun, S.; Chen, X. L.; Yu, B.; Cai, M. R.; Yu, Q. L. et al. A microwave-absorbing and corrosion-resistant integrated coating based on corrosion inhibitor-collaborative silica-encapsulated carbonyl iron particles. Prog. Org. Coat. 2024, 192, 108500.

[8]

Tian, W.; Li, J. Y.; Liu, Y. F.; Deng, L. J.; Guo, Y.; Jian, X. Large-scale synthesis of fluorine-free carbonyl iron-organic silicon hydrophobic absorbers with long term corrosion protection property. Nano Res. 2022, 15, 9479–9491.

[9]

Cui, P. C.; Bao, Z. J.; Liu, Y.; Zhou, F.; Lai, Z. H.; Zhou, Y.; Zhu, J. C. Corrosion behavior and mechanism of dual phase Fe1.125Ni1.06CrAl high entropy alloy. Corros. Sci. 2022, 201, 110276.

[10]

Wang, X.; Li, C.; Zhang, M.; Lin, D.; Yuan, S. C.; Xu, F.; Zhou, Y. X.; Wang, C. J.; Zhu, Y. J.; Wang, H. Y. A novel waterborne epoxy coating with anti-corrosion performance under harsh oxygen environment. Chem. Eng. J. 2022, 430, 133156.

[11]

Liu, S. P.; Zhang, X. F.; Rao, J. S.; Yu, L.; Lu, W.; Zhou, H.; Chen, S. B.; Zhang, Y. X.; Liu, X. Y. Ni–Co hydrotalcite modified diatom to achieve corrosion inhibition and Cl adsorption for long-term corrosion protection of steel. Corros. Sci. 2023, 225, 111589.

[12]

Wang, X.; Li, Y.; Li, C.; Zhang, X. G.; Lin, D.; Xu, F.; Zhu, Y. J.; Wang, H. Y.; Gong, J. L.; Wang, T. Highly orientated graphene/epoxy coating with exceptional anti-corrosion performance for harsh oxygen environments. Corros. Sci. 2020, 176, 109049.

[13]

Laadam, G.; El Faydy, M.; Benhiba, F.; Titi, A.; Amegroud, H.; Al-Gorair, A. S.; Hawsawi, H.; Touzani, R.; Warad, I.; Bellaouchou, A. et al. Outstanding anti-corrosion performance of two pyrazole derivatives on carbon steel in acidic medium: Experimental and quantum-chemical examinations. J. Mol. Liq. 2023, 375, 121268.

[14]

Lamaka, S. V.; Shchukin, D. G.; Andreeva, D. V.; Zheludkevich, M. L.; Möhwald, H.; Ferreira, M. G. S. Sol-gel/polyelectrolyte active corrosion protection system. Adv. Funct. Mater. 2008, 18, 3137–3147.

[15]

Ma, C. C.; Wang, W.; Kong, D. B.; Li, W.; Chen, S. G. A novel all-organic microcapsule with excellent long-term antibacterial and anti-corrosion performances. J. Colloid Interface Sci. 2023, 634, 553–562.

[16]

Ge, J. W.; Cui, Y.; Qian, J. X.; Liu, L.; Meng, F. D.; Wang, F. H. Morphology-controlled CoNi/C hybrids with bifunctions of efficient anti-corrosion and microwave absorption. J. Mater. Sci. Technol. 2022, 102, 24–35.

[17]

Yang, P. A.; Deng, W. J.; Ruan, H. B.; Qu, Z. W.; Li, R.; Wang, L. R.; Luo, J. F.; Zhou, Z. H.; Shou, M. J.; Huang, X. et al. Amorphous/graphitic carbon phase engineering of corrosion-resistant Fe@C core–shell nanowires for optimized dipole polarization and enhanced microwave absorption. Chem. Eng. J. 2024, 492, 152253.

[18]

Wang, K.; Shen, L.; Wen, N. B.; Jiang, Q. Designing BN@CF hybrid to enhance the epoxy resin towards outstanding anti-corrosion and anti-wear performances. Compos. Sci. Technol. 2022, 228, 109646.

[19]

Wu, Y. M.; Zhao, W. J.; Qiang, Y. J.; Chen, Z. J.; Wang, L. P.; Gao, X. L.; Fang, Z. W. π–π interaction between fluorinated reduced graphene oxide and acridizinium ionic liquid: Synthesis and anti-corrosion application. Carbon 2020, 159, 292–302.

[20]

Li, S. Z.; Ma, L.; Lei, Z. X.; Hua, A.; Zhang, A. Q.; Song, Y. H.; Liu, F. C.; Geng, D. Y.; Liu, W.; Ma, S. et al. Bifunctional two-dimensional nanocomposite for electromagnetic wave absorption and comprehensive anti-corrosion. Carbon 2022, 186, 520–529.

[21]

Zheng, H.; Nan, K.; Lu, Z.; Wang, N.; Wang, Y. Core–shell FeCo@carbon nanocages encapsulated in biomass-derived carbon aerogel: Architecture design and interface engineering of lightweight, anti-corrosion and superior microwave absorption. J. Colloid Interface Sci. 2023, 646, 555–566.

[22]

Auepattana-Aumrung, K.; Crespy, D. Self-healing and anticorrosion coatings based on responsive polymers with metal coordination bonds. Chem. Eng. J. 2023, 452, 139055.

[23]

Sun, X.; Gu, S. L.; Wang, L. X.; Wang, H.; Xiong, S. W.; Yin, X. Z.; Yang, S. W. Multifunctional liquid-like magnetic nanofluids mediated coating with anticorrosion and self-healing performance. J. Colloid Interface Sci. 2024, 654, 25–35.

[24]

Yimyai, T.; Crespy, D.; Rohwerder, M. Corrosion-responsive self-healing coatings. Adv. Mater. 2023, 35, 2300101.

[25]

Cheng, L.; Liu, C. B.; Wu, H.; Zhao, H. C.; Mao, F. X.; Wang, L. P. A mussel-inspired delivery system for enhancing self-healing property of epoxy coatings. J. Mater. Sci. Technol. 2021, 80, 36–49.

[26]

Chen, G. Y.; Jin, B.; Li, Y. L.; He, Y. Y.; Luo, J. B. A smart healable anticorrosion coating with enhanced loading of benzotriazole enabled by ultra-highly exfoliated graphene and mussel-inspired chemistry. Carbon 2022, 187, 439–450.

[27]

Ma, Y. Q.; Huang, H. W.; Zhou, H. D.; Graham, M.; Smith, J.; Sheng, X. X.; Chen, Y.; Zhang, L.; Zhang, X. Y.; Shchukina, E. et al. Superior anti-corrosion and self-healing bi-functional polymer composite coatings with polydopamine modified mesoporous silica/graphene oxide. J. Mater. Sci. Technol. 2021, 95, 95–104.

[28]

Ma, C. C.; Wang, W.; Wang, Q.; Sun, N.; Hu, S. Q.; Wei, S.; Feng, H. M.; Hao, X. P.; Li, W.; Kong, D. B. et al. Facile synthesis of BTA@NiCo2O4 hollow structure for excellent microwave absorption and anticorrosion performance. J. Colloid Interface Sci. 2021, 594, 604–620.

[29]

Li, X. D.; Fu, S.; Zhang, W. X.; Ke, S. Z.; Song, W. J.; Fang, J. F. Chemical anti-corrosion strategy for stable inverted perovskite solar cells. Sci. Adv. 2020, 6, eabd1580.

[30]

Du, Q. J.; Zhou, P.; Pan, Y. P.; Qu, X.; Liu, L.; Yu, H.; Hou, J. Influence of hydrophobicity and roughness on the wetting and flow resistance of water droplets on solid surface: A many-body dissipative particle dynamics study. Chem. Eng. Sci. 2022, 249, 117327.

[31]

Li, J.; Liu, Y. H.; Wang, T. Q.; Lu, X. C. Chemical effects on the tribological behavior during copper chemical mechanical planarization. Mater. Chem. Phys. 2015, 153, 48–53.

[32]

He, S.; Huang, Y. J.; Chen, G. N.; Feng, M. M.; Dai, H. M.; Yuan, B. H.; Chen, X. F. Effect of heat treatment on hydrophobic silica aerogel. J. Hazard. Mater. 2019, 362, 294–302.

[33]

Chen, G. Y.; Zhao, J.; Chen, K.; Liu, S. Y.; Zhang, M. Y.; He, Y. Y.; Luo, J. B. Ultrastable lubricating properties of robust self-repairing tribofilms enabled by in situ-assembled polydopamine nanoparticles. Langmuir 2020, 36, 852–861.

[34]

Zhu, R. F.; Liu, M. M.; Hou, Y. Y.; Zhang, L. P.; Li, M.; Wang, D.; Fu, S. H. One-pot preparation of fluorine-free magnetic superhydrophobic particles for controllable liquid marbles and robust multifunctional coatings. ACS Appl. Mater. Interfaces 2020, 12, 17004–17017.

[35]

Mungse, H. P.; Gupta, K.; Singh, R.; Sharma, O. P.; Sugimura, H.; Khatri, O. P. Alkylated graphene oxide and reduced graphene oxide: Grafting density, dispersion stability to enhancement of lubrication properties. J. Colloid Interface Sci. 2019, 541, 150–162.

[36]

Zhan, C. C.; Chen, F.; Yang, J. T.; Dai, D. X.; Cao, X. H.; Zhong, M. Q. Visible light responsive sulfated rare earth doped TiO2@fumed SiO2 composites with mesoporosity: Enhanced photocatalytic activity for methyl orange degradation. J. Hazard. Mater. 2014, 267, 88–97.

[37]

Li, C. P.; Liu, H.; Jiang, X. H.; Waterhouse, G. I. N.; Zhang, Z. M.; Yu, L. M. Hierarchical Fe3O4/C with a flower-like morphology: A highly efficient and reusable dye adsorbent. Synth. Met. 2018, 246, 45–56.

[38]

Shi, L.; Sun, Y. D.; Liu, W.; Zhao, F. J.; Liu, R. X.; Dong, C. Y.; Cheng, G. G.; Ding, J. N. Pre-engineering artificial solid electrolyte interphase for hard carbon anodes for superior sodium storage performance. Chem. Commun. 2023, 59, 12723–12726.

[39]

Daradmare, S.; Raj, S.; Bhattacharyya, A. R.; Parida, S. Factors affecting barrier performance of composite anti-corrosion coatings prepared by using electrochemically exfoliated few-layer graphene as filler. Compos. B: Eng. 2018, 155, 1–10.

[40]

Li, Q.; Zhang, X. D.; Ben, S.; Zhao, Z. H.; Ning, Y. Z.; Liu, K. S.; Jiang, L. Bio-inspired superhydrophobic magnesium alloy surfaces with active anti-corrosion and self-healing properties. Nano Res. 2023, 16, 3312–3319.

[41]

Qin, X. Y.; Kong, L. B.; Wang, J. S.; Liu, M. H.; Lu, S. X.; Wang, X. L.; Wang, N.; Wang, X. M.; Zhang, X. Double-layer with electroactive and superhydrophobicity based on polymer nanotubes to improve robustness and anti-corrosion performances. Chem. Eng. J. 2024, 488, 150928.

[42]

Ai, Y. F.; Xia, L.; Pang, F. Q.; Xu, Y. L.; Zhao, H. B.; Jian, R. K. Mechanically strong and flame-retardant epoxy resins with anti-corrosion performance. Compos. B: Eng. 2020, 193, 108019.

[43]

Ren, S. M.; Cui, M. J.; Li, W. S.; Pu, J. B.; Xue, Q. J.; Wang, L. P. N-doping of graphene: Toward long-term corrosion protection of Cu. J. Mater. Chem. A 2018, 6, 24136–24148.

[44]

Habibiyan, A.; Ramezanzadeh, B.; Mahdavian, M.; Bahlakeh, G.; Kasaeian, M. Rational assembly of mussel-inspired polydopamine (PDA)-Zn(II) complex nanospheres on graphene oxide framework tailored for robust self-healing anti-corrosion coatings application. Chem. Eng. J. 2020, 391, 123630.

[45]

Guo, Y.; Duan, Y. P.; Liu, X. J.; Zhang, H.; Yuan, T. K.; Wen, N. X.; Li, C. W.; Pang, H. F.; Fan, Z.; Pan, L. J. Boosting conductive loss and magnetic coupling based on “size modulation engineering” toward lower-frequency microwave absorption. Small 2024, 20, 2308809.

[46]

Cao, M. S.; Wang, X. X.; Cao, W. Q.; Fang, X. Y.; Wen, B.; Yuan, J. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 2018, 14, 1800987.

[47]
Liang, H. S.; Hui, S. C.; Chen, G.; Shen, H.; Yun, J. J.; Zhang, L. M.; Lu, W.; Wu, H. J. Discovery of deactivation phenomenon in NiCo2S4/NiS2 electromagnetic wave absorbent and its reactivation mechanism. Small Methods, in press, DOI: 10.1002/smtd.202301600.
[48]

Chen, N. K.; Xiao, Y. Y.; Wang, C.; He, J. H.; Song, N. N. Dual resonance behavior and enhanced microwave absorption performance of Fe3O4@C@MoS2 composites with shape magnetic anisotropy. ACS Appl. Mater. Interfaces 2023, 15, 48529–48542.

[49]

Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

[50]

Liang, H. S.; Chen, G.; Liu, D.; Li, Z. J.; Hui, S. C.; Yun, J. J.; Zhang, L. M.; Wu, H. J. Exploring the Ni 3d orbital unpaired electrons induced polarization loss based on Ni single-atoms model absorber. Adv. Funct. Mater. 2023, 33, 2212604.

[51]

Ma, W. J.; He, P.; Zhou, Y. K.; Xie, C.; Chen, Y.; Liu, X. Y.; Lin, S. L.; Zuo, P. Y.; Zhuang, Q. X. NiCo2O4/hollow mesoporous carbon nanosphere hybrids enabling super-hydrophobicity, thermal insulation, and highly efficient microwave absorption. Small 2023, 19, 2305353.

[52]

Liu, Z.; Wang, B.; Wei, S. C.; Huang, W.; Wang, Y. J.; Liang, Y.; Wang, X. Y. Novel preparation of FeCo alloy/graphene foam composites for efficient microwave absorption. Carbon 2023, 215, 118452.

[53]

Chen, C. L.; Xiao, G. Q.; He, Y.; Zhong, F.; Li, H. J.; Wu, Y. Q.; Chen, J. Y. Bio-inspired superior barrier self-healing coating: Self-assemble of graphene oxide and polydopamine-coated halloysite nanotubes for enhancing corrosion resistance of waterborne epoxy coating. Prog. Org. Coat. 2020, 139, 105402.

[54]

Chen, Z. Y.; Huang, L.; Zhang, G. A.; Qiu, Y. B.; Guo, X. P. Benzotriazole as a volatile corrosion inhibitor during the early stage of copper corrosion under adsorbed thin electrolyte layers. Corros. Sci. 2012, 65, 214–222.

Nano Research
Article number: 94907029
Cite this article:
Tian W, Feng Q, Zhang L, et al. A novel active-passive protection strategy endows carbonyl iron with excellent intelligent anti-corrosion and microwave absorption dual functional characteristics. Nano Research, 2025, 18(1): 94907029. https://doi.org/10.26599/NR.2025.94907029

321

Views

62

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 04 August 2024
Revised: 05 September 2024
Accepted: 10 September 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return