AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (42.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Surfing the nano-wave: Emerging trends in cancer diagnostics and therapy

Genping Fu1,2,§Yuting Weng1,2,§Yunfan Li7,§Carl Ho5,§Yiyu Fu1,2Wenxuan Wang1,2Songbin Fu1,2Wenjing Sun1,2Jie Lin6Xiaoyu Fan3( )Binbin Jia4 ( )Mengdi Cai1,2 ( )Linlin Li1,2 ( )
Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
Key Laboratory of Preservation of Human Genetics Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin 150081, China
Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Aix-Marseille College, Wuhan University of Technology, Wuhan 430070, China

§ Genping Fu, Yuting Weng, Yunfan Li, and Carl Ho contributed equally to this work.

Show Author Information

Graphical Abstract

This review provides a comprehensive summary of the recent advancements in nanoparticles for tumor diagnosis, treatment, and theragnostics. The aim is to equip researchers with up-to-date information and insights, encouraging them to further investigate the precise and effective capabilities of new nanoparticle technologies in the field of tumor diagnosis, treatment and theragnostics.

Abstract

Facing the growing global challenge posed by cancer, the quest for more accurate and potent cancer diagnostic and therapeutic strategies continues to require a multidisciplinary integration approach. This review firstly summarizes various types of nanoparticles in cancer research. Subsequently, it offers a comprehensive overview of signal-enhancing techniques for visualizing in situ tumors, along with multimodal diagnostic methods for detecting metastases. As for tumor therapy, cutting-edge drug delivery methods that can cross biological barriers and the pinpoint targeting of tumor lesions for precise medical intervention are introduced. Within the domain of therapeutic diagnostics, we elucidate the theoretical underpinnings and structural paradigms that underlie a spectrum of advanced diagnostic and therapeutic modalities. Additionally, we present a compendium of publications delineating the clinical applications of each nano-based theragnostic integration platform. Finally, this comprehensive review discusses the safety concerns pertaining to the clinical application of nanoparticles and proposes some strategic recommendations to enhance the precision and safety of theragnostic-guided, nanotechnology-based clinical practices. A deeper understanding of nanomaterials, together with intimate interdisciplinary collaborations, nano-wave will most probably guide human beings to win the battle against cancers.

References

[1]

Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R. L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263.

[2]

Crosby, D.; Bhatia, S.; Brindle, K. M.; Coussens, L. M.; Dive, C.; Emberton, M.; Esener, S.; Fitzgerald, R. C.; Gambhir, S. S.; Kuhn, P. et al. Early detection of cancer. Science 2022, 375, eaay9040.

[3]

Cheng, Z.; Li, M. Y.; Dey, R.; Chen, Y. H. Nanomaterials for cancer therapy: Current progress and perspectives. J. Hematol. Oncol. 2021, 14, 85.

[4]

Arif, M.; Nawaz, A. F.; Ullah Khan, S.; Mueen, H.; Rashid, F.; Hemeg, H. A.; Rauf, A. Nanotechnology-based radiation therapy to cure cancer and the challenges in its clinical applications. Heliyon 2023, 9, e17252.

[5]

Yang, W.; Wang, L.; Mettenbrink, E. M.; DeAngelis, P. L.; Wilhelm, S. Nanoparticle toxicology. Annu. Rev. Pharmacol. Toxicol. 2021, 61, 269–289.

[6]

Sakthi Devi, R.; Girigoswami, A.; Siddharth, M.; Girigoswami, K. Applications of gold and silver nanoparticles in theranostics. Appl. Biochem. Biotechnol. 2022, 194, 4187–4219.

[7]

Singh, P.; Pandit, S.; Mokkapati, V. R. S. S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci. 2018, 19, 1979.

[8]

Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.

[9]

Esteruelas, G.; Souto, E. B.; Espina, M.; García, M. L.; Świtalska, M.; Wietrzyk, J.; Gliszczyńska, A.; Sánchez-López, E. Diclofenac loaded biodegradable nanoparticles as antitumoral and antiangiogenic therapy. Pharmaceutics 2022, 15, 102.

[10]

Zhang, Z. K.; Yao, S. Y.; Hu, Y. W.; Zhao, X. B.; Lee, R. J. Application of lipid-based nanoparticles in cancer immunotherapy. Front. Immunol. 2022, 13, 967505.

[11]

Zong, Y.; Lin, Y.; Wei, T.; Cheng, Q. Lipid nanoparticle (LNP) enables mRNA delivery for cancer therapy. Adv. Mater. 2023, 35, 2303261.

[12]

Eygeris, Y.; Gupta, M.; Kim, J.; Sahay, G. Chemistry of lipid nanoparticles for RNA delivery. Acc. Chem. Res. 2022, 55, 2–12.

[13]

Bevers, S.; Kooijmans, S. A. A.; Van de Velde, E.; Evers, M. J. W.; Seghers, S.; Gitz-Francois, J. J. J. M.; van Kronenburg, N. C. H.; Fens, M. H. A. M.; Mastrobattista, E.; Hassler, L. et al. mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells. Mol. Ther. 2022, 30, 3078–3094.

[14]

Ye, B. X.; Hu, Y. X.; Zhang, M. M.; Huang, H. Research advance in lipid nanoparticle-mRNA delivery system and its application in CAR-T cell therapy. J. Zhejiang Univ. (Med. Sci.) 2022, 51, 185–191.

[15]

Li, K. T.; Duan, Q. Q.; Chen, Q.; He, J. W.; Tian, S.; Lin, H. D.; Gao, Q.; Bai, D. Q. The effect of aloe emodin-encapsulated nanoliposome-mediated r-caspase-3 gene transfection and photodynamic therapy on human gastric cancer cells. Cancer Med. 2016, 5, 361–369.

[16]

Franzè, S.; Selmin, F.; Rocco, P.; Colombo, G.; Casiraghi, A.; Cilurzo, F. Preserving the integrity of liposomes prepared by ethanol injection upon freeze-drying: Insights from combined molecular dynamics simulations and experimental data. Pharmaceutics 2020, 12, 530.

[17]

Sonju, J. J.; Dahal, A.; Singh, S. S.; Jois, S. D. Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment. J. Controlled Release 2021, 329, 624–644.

[18]

Zhang, T.; Li, M.; Yang, R. Y.; Zhang, D.; Guan, J. B.; Yu, J.; Yang, B.; Zhang, H. C.; Zhang, S. W.; Liu, D. et al. Therapeutic efficacy of lipid emulsions of docetaxel-linoleic acid conjugate in breast cancer. Int. J. Pharm. 2018, 546, 61–69.

[19]

Mao, W.; Son, Y. J.; Yoo, H. S. Gold nanospheres and nanorods for anti-cancer therapy: Comparative studies of fabrication, surface-decoration, and anti-cancer treatments. Nanoscale 2020, 12, 14996–15020.

[20]

Bai, X.; Wang, Y. Y.; Song, Z. Y.; Feng, Y. M.; Chen, Y. Y.; Zhang, D. Y.; Feng, L. The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment. Int. J. Mol. Sci. 2020, 21, 2480.

[21]

Park, J. H.; Choe, H. S.; Kim, S. W.; Im, G. B.; Um, S. H.; Kim, J. H.; Bhang, S. H. Silica-capped and gold-decorated silica nanoparticles for enhancing effect of gold nanoparticle-based photothermal therapy. Tissue Eng. Regen. Med. 2022, 19, 1161–1168.

[22]

Shcherbakov, V.; Denisov, S. A.; Mostafavi, M. A mechanistic study of gold nanoparticles catalysis of O2 reduction by ascorbate and hydroethidine, investigating reactive oxygen species reactivity. RSC Adv. 2023, 13, 8557–8563.

[23]

Mieszawska, A. J.; Mulder, W. J. M.; Fayad, Z. A.; Cormode, D. P. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol. Pharmaceutics 2013, 10, 831–847.

[24]
Sun, W.; Hou, J. Y.; Zhou, Y. L.; Zhu, T. K.; Yuan, Q. Y.; Wang, S. L.; Manshaii, F.; Song, C. S.; Lei, X. Y.; Wu, X. Y. et al. Amorphous FeSnO x nanosheets with hierarchical vacancies for room-temperature sodium-sulfur batteries. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.202404816.
[25]

Arias, L. S.; Pessan, J. P.; Vieira, A. P. M.; de Lima, T. M. T.; Delbem, A. C. B.; Monteiro, D. R. Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 2018, 7, 46.

[26]

Živojević, K.; Mladenović, M.; Djisalov, M.; Mundzic, M.; Ruiz-Hernandez, E.; Gadjanski, I.; Knežević, N. Ž. Advanced mesoporous silica nanocarriers in cancer theranostics and gene editing applications. J. Controlled Release 2021, 337, 193–211.

[27]

Hou, S.; Hu, X. N.; Wen, T.; Liu, W. Q.; Wu, X. C. Core-shell noble metal nanostructures templated by gold nanorods. Adv. Mater. 2013, 25, 3857–3862.

[28]

Li, S. L.; Jiang, P.; Hua, S. Y.; Jiang, F. L.; Liu, Y. Near-infrared Zn-doped Cu2S quantum dots: An ultrasmall theranostic agent for tumor cell imaging and chemodynamic therapy. Nanoscale 2021, 13, 3673–3685.

[29]

Zheng, S. H.; Zhang, M.; Bai, H. Y.; He, M. J.; Dong, L. N.; Cai, L. L.; Zhao, M. M.; Wang, Q.; Xu, K.; Li, J. J. Preparation of AS1411 aptamer modified Mn-MoS2 QDs for targeted MR imaging and fluorescence labelling of renal cell carcinoma. Int. J. Nanomed. 2019, 14, 9513–9524.

[30]

Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.

[31]

Cai, B.; Zhou, L.; Zhao, P. Y.; Peng, H. L.; Hou, Z. L.; Hu, P. F.; Liu, L. M.; Wang, G. S. Interface-induced dual-pinning mechanism enhances low-frequency electromagnetic wave loss. Nat. Commun. 2024, 15, 3299.

[32]

Ðorđević, L.; Arcudi, F.; Cacioppo, M.; Prato, M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 2022, 17, 112–130.

[33]

Gong, N. Q.; Ma, X. W.; Ye, X. X.; Zhou, Q. F.; Chen, X. A.; Tan, X. L.; Yao, S. K.; Huo, S. D.; Zhang, T. B.; Chen, S. Z. et al. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat. Nanotechnol. 2019, 14, 379–387.

[34]

Du, J. J.; Xu, N.; Fan, J. L.; Sun, W.; Peng, X. J. Carbon dots for in vivo bioimaging and theranostics. Small 2019, 15, 1805087.

[35]

Sun, L. M.; Liu, H. M.; Ye, Y. Q.; Lei, Y.; Islam, R.; Tan, S. M.; Tong, R. S.; Miao, Y. B.; Cai, L. L. Smart nanoparticles for cancer therapy. Sig. Transduct. Target. Ther. 2023, 8, 418.

[36]

Hwang, Y.; Park, S. H.; Lee, J. W. Applications of functionalized carbon nanotubes for the therapy and diagnosis of cancer. Polymers 2017, 9, 13.

[37]
Jia, B. B.; Liu, G.; Zhang, B. H.; Zheng, J. L.; Yin, K. X.; Lin, J.; Han, C. Q.; Fan, X. Y.; Xu, M. Y.; Ye, L. Q. General modification strategy on amorphous materials to boost catalytic performance. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202405867.
[38]

Guan, L. J.; Rizzello, L.; Battaglia, G. Polymersomes and their applications in cancer delivery and therapy. Nanomedicine 2015, 10, 2757–2780.

[39]

Sharma, A. K.; Gothwal, A.; Kesharwani, P.; Alsaab, H.; Iyer, A. K.; Gupta, U. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov. Today 2017, 22, 314–326.

[40]

Gong, F. R.; Chen, D.; Teng, X.; Ge, J. H.; Ning, X. F.; Shen, Y. L.; Li, J.; Wang, S. F. Curcumin-loaded blood-stable polymeric micelles for enhancing therapeutic effect on erythroleukemia. Mol. Pharmaceutics 2017, 14, 2585–2594.

[41]

Alavi, M.; Webster, T. J. Recent progress and challenges for polymeric microsphere compared to nanosphere drug release systems: Is there a real difference. Bioorg. Med. Chem. 2021, 33, 116028.

[42]

Jun, J. K.; Choi, K. S.; Lee, H. Y.; Suh, M.; Park, B.; Song, S. H.; Jung, K. W.; Lee, C. W.; Choi, I. J.; Park, E. C. et al. Effectiveness of the Korean national cancer screening program in reducing gastric cancer mortality. Gastroenterology 2017, 152, 1319–1328.e7.

[43]

Inoue, M. Changing epidemiology of Helicobacter pylori in Japan. Gastric Cancer. 2017, 20, 3–7.

[44]

Schroeder, A.; Heller, D. A.; Winslow, M. M.; Dahlman, J. E.; Pratt, G. W.; Langer, R.; Jacks, T.; Anderson, D. G. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 2012, 12, 39–50.

[45]

Eusebi, L. H.; Telese, A.; Marasco, G.; Bazzoli, F.; Zagari, R. M. Gastric cancer prevention strategies: A global perspective. J. Gastroenterol. Hepatol. 2020, 35, 1495–1502.

[46]

Kim, J.; Lee, N.; Hyeon, T. Recent development of nanoparticles for molecular imaging. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20170022.

[47]

António, M.; Vitorino, R.; Daniel-da-Silva, A. L. Gold nanoparticles-based assays for biodetection in urine. Talanta 2021, 230, 122345.

[48]

Zheng, T.; Huang, Z. N.; Ge, H. Y.; Hu, P. F.; Fan, X. Y.; Jia, B. B. Applying machine learning to design delicate amorphous micro-nano materials for rechargeable batteries. Energy Storage Mater. 2024, 71, 103614.

[49]

Farshchi, F.; Hasanzadeh, M. Nanomaterial based aptasensing of prostate specific antigen (PSA): Recent progress and challenges in efficient diagnosis of prostate cancer using biomedicine. Biomed. Pharmacother. 2020, 132, 110878.

[50]

Inose, T.; Kitamura, N.; Takano-Kasuya, M.; Tokunaga, M.; Une, N.; Kato, C.; Tayama, M.; Kobayashi, Y.; Yamauchi, N.; Nagao, D. et al. Development of X-ray contrast agents using single nanometer-sized gold nanoparticles and lactoferrin complex and their application in vascular imaging. Colloids Surf. B: Biointerfaces 2021, 203, 111732.

[51]

Jin, C. H.; Zhang, B. N.; Wei, Z. P.; Ma, B.; Pan, Q.; Hu, P. P. Effects of WD-3 on tumor growth and the expression of integrinαvβ3 and ERK1/2 in mice bearing human gastric cancer using the 18F-RGD PET/CT imaging system. Mol. Med. Rep. 2017, 16, 9295–9300.

[52]

Li, X. L.; Yu, N.; Li, J.; Bai, J. N.; Ding, D.; Tang, Q. Y.; Xu, H. E. Novel "carrier-free" nanofiber codelivery systems with the synergistic antitumor effect of paclitaxel and tetrandrine through the enhancement of mitochondrial apoptosis. ACS Appl. Mater. Interfaces 2020, 12, 10096–10106.

[53]

Cheng, H. D.; Chi, C. W.; Shang, W. T.; Rengaowa, S.; Cui, J. X.; Ye, J. Z.; Jiang, S. X.; Mao, Y. M.; Zeng, C. T.; Huo, H. P. et al. Precise integrin-targeting near-infrared imaging-guided surgical method increases surgical qualification of peritoneal carcinomatosis from gastric cancer in mice. Oncotarget 2017, 8, 6258–6272.

[54]

Yuan, M. J.; Han, Z. Y.; Li, Y.; Zhan, X.; Sun, Y.; He, B.; Liang, Y.; Luo, K.; Li, F. A pH-responsive nanoplatform with dual-modality imaging for enhanced cancer phototherapy and diagnosis of lung metastasis. J. Nanobiotechnol. 2024, 22, 180.

[55]

Lara, P.; Palma-Florez, S.; Salas-Huenuleo, E.; Polakovicova, I.; Guerrero, S.; Lobos-Gonzalez, L.; Campos, A.; Muñoz, L.; Jorquera-Cordero, C.; Varas-Godoy, M. et al. Gold nanoparticle based double-labeling of melanoma extracellular vesicles to determine the specificity of uptake by cells and preferential accumulation in small metastatic lung tumors. J. Nanobiotechnol. 2020, 18, 20.

[56]

Dai, Y. N.; Li, X. Y.; Xue, Y. W.; Chen, K.; Jiao, G. D.; Zhu, L. P.; Li, M. X.; Fan, Q. L.; Dai, Y. L.; Zhao, Q. et al. Self-delivery of metal-coordinated NIR-II nanoadjuvants for multimodal imaging-guided photothermal-chemodynamic amplified immunotherapy. Acta Biomater. 2023, 166, 496–511.

[57]

Yao, D. F.; Wang, Y. S.; Zou, R. F.; Bian, K. X.; Liu, P.; Shen, S. Z.; Yang, W. T.; Zhang, B. B.; Wang, D. B. Molecular engineered squaraine nanoprobe for NIR-II/photoacoustic imaging and photothermal therapy of metastatic breast cancer. ACS Appl. Mater. Interfaces 2020, 12, 4276–4284.

[58]

Zhang, X.; Li, X. D.; Sun, S. H.; Wang, P.; Ma, X. T.; Hou, R.; Liang, X. L. Anti-tumor metastasis via platelet inhibitor combined with photothermal therapy under activatable fluorescence/magnetic resonance bimodal imaging guidance. ACS Appl. Mater. Interfaces 2021, 13, 19679–19694.

[59]

Chen, P. P.; Wang, Y.; He, Y. Q.; Huang, K.; Wang, X.; Zhou, R. H.; Liu, T. Y. H.; Qu, R. L.; Zhou, J.; Peng, W. et al. Homogeneous visual and fluorescence detection of circulating tumor cells in clinical samples via selective recognition reaction and enzyme-free amplification. ACS Nano 2021, 15, 11634–11643.

[60]

Wang, M.; Lv, C. Y.; Li, S. A.; Wang, J. K.; Luo, W. Z.; Zhao, P. C.; Liu, X. Y.; Wang, Z. M.; Jiao, Y.; Sun, H. W. et al. Near infrared light fluorescence imaging-guided biomimetic nanoparticles of extracellular vesicles deliver indocyanine green and paclitaxel for hyperthermia combined with chemotherapy against glioma. J. Nanobiotechnol. 2021, 19, 210.

[61]

Wu, L. L.; Li, Q.; Deng, J. J.; Shen, J. L.; Xu, W. D.; Yang, W.; Chen, B. Y.; Du, Y. Q.; Zhang, W.; Ge, F. H. et al. Platelet-tumor cell hybrid membrane-camouflaged nanoparticles for enhancing therapy efficacy in glioma. Int. J. Nanomed. 2021, 16, 8433–8446.

[62]

Ye, Z.; Gao, L.; Cai, J. Y.; Wang, Y. X.; Li, Y.; Tong, S. A.; Yan, T. F.; Sun, Q.; Qi, Y. Z.; Xu, Y. et al. Esterase-responsive and size-optimized prodrug nanoparticles for effective intracranial drug delivery and glioblastoma treatment. Nanomed.: Nanotechnol., Biol. Med. 2022, 44, 102581.

[63]
Hu, P. F.; Yang, H. S.; Si, R. T.; Wei, B.; Wang, X. T.; Xu, Z. Y.; Yang, X. Y.; Guo, T. Q.; Gebauer, R.; Teobaldi, G. et al. Atomically thin Ag nanosheets for single-molecule SERS detection of BPF. Chem, in press, DOI: 10.1016/j.chempr.2024.06.020.
[64]

Farshbaf, M.; Mojarad-Jabali, S.; Hemmati, S.; Khosroushahi, A. Y.; Motasadizadeh, H.; Zarebkohan, A.; Valizadeh, H. Enhanced BBB and BBTB penetration and improved anti-glioma behavior of Bortezomib through dual-targeting nanostructured lipid carriers. J. Controlled Release 2022, 345, 371–384.

[65]

Wu, D.; Chen, Q.; Chen, X. J.; Han, F.; Chen, Z.; Wang, Y. The blood-brain barrier: Structure, regulation and drug delivery. Sig. Transduct. Target. Ther. 2023, 8, 217.

[66]

Chu, J. J.; Ji, W. B.; Zhuang, J. H.; Gong, B. F.; Chen, X. H.; Cheng, W. B.; Liang, W. D.; Li, G. R.; Gao, J.; Yin, Y. Nanoparticles-based anti-aging treatment of Alzheimer's disease. Drug Deliv. 2022, 29, 2100–2116.

[67]

Zhang, Y. K.; Ren, Y. H.; Xu, H. Y.; Li, L. F.; Qian, F.; Wang, L. S.; Quan, A. K.; Ma, H. W.; Liu, H. M.; Yu, R. T. Cascade-responsive 2-DG nanocapsules encapsulate aV-siCPT1C conjugates to inhibit glioblastoma through multiple inhibition of energy metabolism. ACS Appl. Mater. Interfaces 2023, 15, 10356–10370.

[68]

Ak, G.; Ünal, A.; Karakayalı, T.; Özel, B.; Selvi Günel, N.; Hamarat Şanlıer, Ş. Brain-targeted, drug-loaded solid lipid nanoparticles against glioblastoma cells in culture. Colloids Surf. B: Biointerfaces 2021, 206, 111946.

[69]

Alonso, M.; Barcia, E.; González, J. F.; Montejo, C.; García-García, L.; Villa-Hermosilla, M. C.; Negro, S.; Fraguas-Sánchez, A. I.; Fernández-Carballido, A. Functionalization of morin-loaded PLGA nanoparticles with phenylalanine dipeptide targeting the brain. Pharmaceutics 2022, 14, 2348.

[70]

Yuan, Z. W.; Wang, B.; Teng, Y. L.; Ho, W.; Hu, B.; Boakye-Yiadom, K. O.; Xu, X. Y.; Zhang, X. Q. Rational design of engineered H-ferritin nanoparticles with improved siRNA delivery efficacy across an in vitro model of the mouse BBB. Nanoscale 2022, 14, 6449–6464.

[71]

Qian, W. B.; Qian, M.; Wang, Y.; Huang, J. F.; Chen, J.; Ni, L. C.; Huang, Q. F.; Liu, Q. Q.; Gong, P. P.; Hou, S. Q. et al. Combination glioma therapy mediated by a dual-targeted delivery system constructed using OMCN-PEG-Pep22/DOX. Small 2018, 14, 1801905.

[72]

Kuo, Y. C.; Chen, Y. C. Targeting delivery of etoposide to inhibit the growth of human glioblastoma multiforme using lactoferrin- and folic acid-grafted poly(lactide- co-glycolide) nanoparticles. Int. J. Pharm. 2015, 479, 138–149.

[73]

Zhao,J. J.; Zhang, B.; Shen, S.; Chen, J.; Zhang, Q. Z.; Jiang, X. G.; Pang, Z. Q. CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery. J. Colloid Interface Sci. 2015, 450, 396–403.

[74]

Cheng, Y.; Morshed, R.; Cheng, S. H.; Tobias, A.; Auffinger, B.; Wainwright, D. A.; Zhang, L. J.; Yunis, C.; Han, Y.; Chen, C. T. et al. Nanoparticle-programmed self-destructive neural stem cells for glioblastoma targeting and therapy. Small 2013, 9, 4123–4129.

[75]

Li, Y.; Zhao, Q. Y.; Zhu, X. Y.; Zhou, L.; Song, P.; Liu, B. H.; Tian, D. F.; Chen, Q. X.; Zhou, J. B.; Deng, G. Self-assembled nanoparticles of natural bioactive molecules enhance the delivery and efficacy of paclitaxel in glioblastoma. CNS Neurosci. Ther. 2024, 30, e14528.

[76]

Alphandéry, E. Nano-therapies for glioblastoma treatment. Cancers 2020, 12, 242.

[77]

Zhu, L.; Kate, P.; Torchilin, V. P. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 2012, 6, 3491–3498.

[78]

Zhu, L.; Wang, T.; Perche, F.; Taigind, A.; Torchilin, V. P. Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety. Proc. Natl. Acad. Sci. USA 2013, 110, 17047–17052.

[79]

Sun, C. Y.; Shen, S.; Xu, C. F.; Li, H. J.; Liu, Y.; Cao, Z. T.; Yang, X. Z.; Xia, J. X.; Wang, J. Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery. J. Am. Chem. Soc. 2015, 137, 15217–15224.

[80]

Fan, D. H.; Cao, Y. K.; Cao, M. Q.; Wang, Y. J.; Cao, Y. L.; Gong, T. Nanomedicine in cancer therapy. Sig. Transduct. Target. Ther. 2023, 8, 293.

[81]

Gong, N. Q.; Sheppard, N. C.; Billingsley, M. M.; June, C. H.; Mitchell, M. J. Nanomaterials for T-cell cancer immunotherapy. Nat. Nanotechnol. 2021, 16, 25–36.

[82]

Tang, L.; Zheng, Y. R.; Melo, M. B.; Mabardi, L.; Castaño, A. P.; Xie, Y. Q.; Li, N.; Kudchodkar, S. B.; Wong, H. C.; Jeng, E. K. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 2018, 36, 707–716.

[83]

Restifo, N. P.; Dudley, M. E.; Rosenberg, S. A. Adoptive immunotherapy for cancer: Harnessing the T cell response. Nat. Rev. Immunol. 2012, 12, 269–281.

[84]

Waldman, A. D.; Fritz, J. M.; Lenardo, M. J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668.

[85]

Joice, S. L.; Mydeen, F.; Couraud, P. O.; Weksler, B. B.; Romero, I. A.; Fraser, P. A.; Easton, A. S. Modulation of blood-brain barrier permeability by neutrophils: In vitro and in vivo studies. Brain Res. 2009, 1298, 13–23.

[86]

Xue, J. W.; Zhao, Z. K.; Zhang, L.; Xue, L. J.; Shen, S. Y.; Wen, Y. J.; Wei, Z. Y.; Wang, L.; Kong, L. Y.; Sun, H. B. et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol. 2017, 12, 692–700.

[87]

Hu, P. F.; Yang, H. S.; Chen, S. L.; Xue, Y. F.; Zhu, Q. N.; Tang, M. Y.; Wang, H.; Liu, L. M.; Gao, P.; Duan, X. F. et al. Hybrid lamellar superlattices with monoatomic platinum layers and programmable organic ligands. J. Am. Chem. Soc. 2023, 145, 717–724.

[88]

Smith, T. T.; Stephan, S. B.; Moffett, H. F.; McKnight, L. E.; Ji, W. H.; Reiman, D.; Bonagofski, E.; Wohlfahrt, M. E.; Pillai, S. P. S.; Stephan, M. T. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 2017, 12, 813–820.

[89]

Wang, L. Y.; Zhang, T. T.; Huo, M. F.; Guo, J.; Chen, Y.; Xu, H. X. Construction of nucleus-targeting iridium nanocrystals for photonic hyperthermia-synergized cancer radiotherapy. Small 2019, 15, 1903254.

[90]

Bates, P. J.; Reyes-Reyes, E. M.; Malik, M. T.; Murphy, E. M.; O'Toole, M. G.; Trent, J. O. G-quadruplex oligonucleotide AS1411 as a cancer-targeting agent: Uses and mechanisms. Biochim. Biophys. Acta (BBA) - Gen Subj. 2017, 1861, 1414–1428.

[91]

Yazdian-Robati, R.; Bayat, P.; Oroojalian, F.; Zargari, M.; Ramezani, M.; Taghdisi, S. M.; Abnous, K. Therapeutic applications of AS1411 aptamer, an update review. Int. J. Biol. Macromol. 2020, 155, 1420–1431.

[92]

Guo, J. W.; Gao, X. L.; Su, L. N.; Xia, H. M.; Gu, G. Z.; Pang, Z. Q.; Jiang, X. G.; Yao, L.; Chen, J.; Chen, H. Z. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 2011, 32, 8010–8020.

[93]

Li, L. Y.; Hou, J. J.; Liu, X. J.; Guo, Y. J.; Wu, Y.; Zhang, L. H.; Yang, Z. J. Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials 2014, 35, 3840–3850.

[94]

Li, L.; Feng, Y.; Hong, Y. L.; Lin, X.; Shen, L. Recent advances in drug delivery system for bioactive glycosides from traditional Chinese medicine. Am. J. Chin. Med. 2018, 46, 1791–1824.

[95]

Wen, K. M.; Fang, X. C.; Yang, J. L.; Yao, Y. F.; Nandakumar, K. S.; Salem, M. L.; Cheng, K. Recent research on flavonoids and their biomedical applications. Curr. Med. Chem. 2021, 28, 1042–1066.

[96]

Bergman, M. E.; Davis, B.; Phillips, M. A. Medically useful plant terpenoids: Biosynthesis, occurrence, and mechanism of action. Molecules 2019, 24, 3961.

[97]

Weng, C. J.; Yen, G. C. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: Phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat. Rev. 2012, 38, 76–87.

[98]

Mahmoudi, A.; Kesharwani, P.; Majeed, M.; Teng, Y.; Sahebkar, A. Recent advances in nanogold as a promising nanocarrier for curcumin delivery. Colloids Surf. B: Biointerfaces 2022, 215, 112481.

[99]

Abbai, R.; Mathiyalagan, R.; Markus, J.; Kim, Y. J.; Wang, C.; Singh, P.; Ahn, S.; El-Agamy Farh, M.; Yang, D. C. Green synthesis of multifunctional silver and gold nanoparticles from the oriental herbal adaptogen: Siberian ginseng. Int. J. Nanomed. 2016, 11, 3131–3143.

[100]

Khan, S.; Setua, S.; Kumari, S.; Dan, N.; Massey, A.; Hafeez, B. B.; Yallapu, M. M.; Stiles, Z. E.; Alabkaa, A.; Yue, J. M. et al. Superparamagnetic iron oxide nanoparticles of curcumin enhance gemcitabine therapeutic response in pancreatic cancer. Biomaterials 2019, 208, 83–97.

[101]

Wang, K. Q.; Hu, H. P.; Zhang, Q.; Zhang, Y.; Shi, C. Synthesis, purification, and anticancer effect of magnetic Fe3O4-loaded poly (lactic-co-glycolic) nanoparticles of the natural drug tetrandrine. J. Microencapsul. 2019, 36, 356–370.

[102]

Mary Lazer, L.; Sadhasivam, B.; Palaniyandi, K.; Muthuswamy, T.; Ramachandran, I.; Balakrishnan, A.; Pathak, S.; Narayan, S.; Ramalingam, S. Chitosan-based nano-formulation enhances the anticancer efficacy of hesperetin. Int. J. Biol. Macromol. 2018, 107, 1988–1998.

[103]

He, Y. M.; Lei, L.; Cao, J.; Yang, X. T.; Cai, S. S.; Tong, F.; Huang, D.; Mei, H.; Luo, K.; Gao, H. L. et al. A combinational chemo-immune therapy using an enzyme-sensitive nanoplatform for dual-drug delivery to specific sites by cascade targeting. Sci Adv. 2021, 7, eaba0776.

[104]

Luo, K. P.; Gao, Y.; Yin, S. P.; Yao, Y. W.; Yu, H.; Wang, G. J.; Li, J. Co-delivery of paclitaxel and STAT3 siRNA by a multifunctional nanocomplex for targeted treatment of metastatic breast cancer. Acta Biomater. 2021, 134, 649–663.

[105]

Shukla, R. P.; Dewangan, J.; Urandur, Sandeep.; Banala, V. T.; Diwedi, M.; Sharma, S.; Agrawal, S.; Rath, S. K.; Trivedi, R.; Mishra, P. R. Multifunctional hybrid nanoconstructs facilitate intracellular localization of doxorubicin and genistein to enhance apoptotic and anti-angiogenic efficacy in breast adenocarcinoma. Biomater. Sci. 2020, 8, 1298–1315.

[106]

Hu, Y. Z.; Nie, W.; Lyu, L.; Zhang, X. F.; Wang, W. Y.; Zhang, Y. C.; He, S.; Guo, A. J.; Liu, F.; Wang, B. L. et al. Tumor-microenvironment-activatable nanoparticle mediating immunogene therapy and M2 macrophage-targeted inhibitor for synergistic cancer immunotherapy. ACS Nano 2024, 18, 3295–3312.

[107]

Chen, Z.; Li, Y.; Tan, B.; Zhao, Q.; Fan, L.; Li, F.; Zhao, X. Progress and current status of molecule-targeted therapy and drug resistance in gastric cancer. Drugs Today 2020, 56, 469.

[108]

Zi, Y. X.; Yang, K. Y.; He, J. H.; Wu, Z. M.; Liu, J. P.; Zhang, W. L. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv. Drug Deliv. Rev. 2022, 188, 114449.

[109]

Tajbakhsh, A.; Hasanzadeh, M.; Rezaee, M.; Khedri, M.; Khazaei, M.; ShahidSales, S.; Ferns, G. A.; Hassanian, S. M.; Avan, A. Therapeutic potential of novel formulated forms of curcumin in the treatment of breast cancer by the targeting of cellular and physiological dysregulated pathways. J. Cell. Physiol. 2018, 233, 2183–2192.

[110]

Clemente, N.; Ferrara, B.; Gigliotti, C. L.; Boggio, E.; Capucchio, M. T.; Biasibetti, E.; Schiffer, D.; Mellai, M.; Annovazzi, L.; Cangemi, L. et al. Solid lipid nanoparticles carrying temozolomide for melanoma treatment. preliminary in vitro and in vivo studies. Int. J. Mol. Sci. 2018, 19, 255.

[111]

Santos-Magalhães, N. S.; Mosqueira, V. C. F. Nanotechnology applied to the treatment of malaria. Adv. Drug Deliv. Rev. 2010, 62, 560–575.

[112]

Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Controlled Release 2000, 65, 271–284.

[113]

Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 2006, 11, 812–818.

[114]

Ding, H. T.; Tan, P.; Fu, S. Q.; Tian, X. H.; Zhang, H.; Ma, X. L.; Gu, Z. W.; Luo, K. Preparation and application of pH-responsive drug delivery systems. J. Controlled Release 2022, 348, 206–238.

[115]

Im, S.; Lee, J.; Park, D.; Park, A.; Kim, Y. M.; Kim, W. J. Hypoxia-triggered transforming immunomodulator for cancer immunotherapy via photodynamically enhanced antigen presentation of dendritic cell. ACS Nano 2019, 13, 476–488.

[116]

Xing, L.; Gong, J. H.; Wang, Y.; Zhu, Y.; Huang, Z. J.; Zhao, J.; Li, F.; Wang, J. H.; Wen, H.; Jiang, H. L. Hypoxia alleviation-triggered enhanced photodynamic therapy in combination with IDO inhibitor for preferable cancer therapy. Biomaterials 2019, 206, 170–182.

[117]

Lin, G.; Chen, S. Y.; Mi, P. Nanoparticles targeting and remodeling tumor microenvironment for cancer theranostics. J. Biomed. Nanotechnol. 2018, 14, 1189–1207.

[118]

Tang, L.; Mei, Y. J.; Shen, Y.; He, S.; Xiao, Q. Q.; Yin, Y.; Xu, Y. G.; Shao, J.; Wang, W.; Cai, Z. H. Nanoparticle-mediated targeted drug delivery to remodel tumor microenvironment for cancer therapy. Int. J. Nanomed. 2021, 16, 5811–5829.

[119]

Shivange, G.; Urbanek, K.; Przanowski, P.; Perry, J. S. A.; Jones, J.; Haggart, R.; Kostka, C.; Patki, T.; Stelow, E.; Petrova, Y. et al. A single-agent dual-specificity targeting of FOLR1 and DR5 as an effective strategy for ovarian cancer. Cancer Cell 2018, 34, 331–345.e11.

[120]

Lin, C. J.; Kuan, C. H.; Wang, L. W.; Wu, H. C.; Chen, Y.; Chang, C. W.; Huang, R. Y.; Wang, T. W. Integrated self-assembling drug delivery system possessing dual responsive and active targeting for orthotopic ovarian cancer theranostics. Biomaterials 2016, 90, 12–26.

[121]

Tang, Z. M.; You, X. R.; Xiao, Y. F.; Chen, W.; Li, Y. J.; Huang, X. G.; Liu, H. J.; Xiao, F.; Liu, C.; Koo, S. et al. Inhaled mRNA nanoparticles dual-targeting cancer cells and macrophages in the lung for effective transfection. Proc. Natl. Acad. Sci. USA 2023, 120, e2304966120.

[122]

Billingsley, M. M.; Gong, N. Q.; Mukalel, A. J.; Thatte, A. S.; El-Mayta, R.; Patel, S. K.; Metzloff, A. E.; Swingle, K. L.; Han, X. X.; Xue, L. L. et al. In vivo mRNA CAR T cell engineering via targeted ionizable lipid nanoparticles with extrahepatic tropism. Small 2024, 20, 2304378.

[123]

Pang, L.; Zhang, C.; Qin, J.; Han, L. M.; Li, R. X.; Hong, C.; He, H. N.; Wang, J. X. A novel strategy to achieve effective drug delivery: Exploit cells as carrier combined with nanoparticles. Drug Deliv. 2017, 24, 83–91.

[124]

Ha, L.; Choi, K. M.; Kim, D. P. Interwoven MOF-coated janus cells as a novel carrier of toxic proteins. ACS Appl. Mater. Interfaces 2021, 13, 18545–18553.

[125]

Kouri, M. A.; Spyratou, E.; Kalkou, M. E.; Patatoukas, G.; Angelopoulou, E.; Tremi, I.; Havaki, S.; Gorgoulis, V. G.; Kouloulias, V.; Platoni, K. et al. Nanoparticle-mediated radiotherapy: Unraveling dose enhancement and apoptotic responses in cancer and normal cell lines. Biomolecules 2023, 13, 1720.

[126]

Kaittanis, C.; Shaffer, T. M.; Ogirala, A.; Santra, S.; Perez, J. M.; Chiosis, G.; Li, Y. M.; Josephson, L.; Grimm, J. Environment-responsive nanophores for therapy and treatment monitoring via molecular MRI quenching. Nat. Commun. 2014, 5, 3384.

[127]

Sood, A.; Dev, A.; Sardoiwala, M. N.; Choudhury, S. R.; Chaturvedi, S.; Mishra, A. K.; Karmakar, S. Alpha-ketoglutarate decorated iron oxide-gold core-shell nanoparticles for active mitochondrial targeting and radiosensitization enhancement in hepatocellular carcinoma. Mater. Sci. Eng.: C 2021, 129, 112394.

[128]

Tang, Z. M.; Liu, Y. Y.; He, M. Y.; Bu, W. B. Chemodynamic therapy: Tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew. Chem., Int. Ed. 2019, 58, 946–956.

[129]

Fu, L. H.; Wan, Y. L.; Qi, C.; He, J.; Li, C. Y.; Yang, C.; Xu, H.; Lin, J.; Huang, P. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Adv. Mater. 2021, 33, 2006892.

[130]

Lei, P.; Chen, H.; Feng, C.; Yuan, X.; Xiong, Z. L.; Liu, Y. L.; Liao, W. H. Noninvasive visualization of sub-5 mm orthotopic hepatic tumors by a nanoprobe-mediated positive and reverse contrast-balanced imaging strategy. ACS Nano 2022, 16, 897–909.

[131]

Juengpanich, S.; Li, S. J.; Yang, T. R.; Xie, T. A.; Chen, J. D.; Shan, Y. K.; Lee, J.; Lu, Z. Y.; Chen, T. E.; Zhang, B. et al. Pre-activated nanoparticles with persistent luminescence for deep tumor photodynamic therapy in gallbladder cancer. Nat. Commun. 2023, 14, 5699.

[132]

Son, S.; Kim, J. H.; Wang, X. W.; Zhang, C. L.; Yoon, S. A.; Shin, J.; Sharma, A.; Lee, M. H.; Cheng, L.; Wu, J. S. et al. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev. 2020, 49, 3244–3261.

[133]

Feng, Q. H.; Li, Y. Z.; Yang, X. M.; Zhang, W. X.; Hao, Y. W.; Zhang, H. L.; Hou, L.; Zhang, Z. Z. Hypoxia-specific therapeutic agents delivery nanotheranostics: A sequential strategy for ultrasound mediated on-demand tritherapies and imaging of cancer. J. Controlled Release 2018, 275, 192–200.

[134]

Luo, Z. C.; Yi, Z. G.; Liu, X. G. Surface engineering of lanthanide nanoparticles for oncotherapy. Acc. Chem. Res. 2023, 56, 425–439.

[135]

Sindhwani, S.; Syed, A. M.; Ngai, J.; Kingston, B. R.; Maiorino, L.; Rothschild, J.; MacMillan, P.; Zhang, Y. W.; Rajesh, N. U.; Hoang, T. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 2020, 19, 566–575.

[136]

Sun, Q. H.; Sun, X. R.; Ma, X.; Zhou, Z. X.; Jin, E. L.; Zhang, B.; Shen, Y. Q.; Van Kirk, E. A.; Murdoch, W. J.; Lott, J. R. et al. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv. Mater. 2014, 26, 7615–7621.

[137]

Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37.

[138]

Lammers, T.; Kiessling, F.; Hennink, W. E.; Storm, G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J. Controlled Release 2012, 161, 175–187.

[139]

Jing, Z. W.; Wang, X. H.; Li, N.; Sun, Z.; Zhang, D. D.; Zhou, L.; Yin, F. X.; Jia, Q. Q.; Wang, M. L.; Chu, Y. J. et al. Ultrasound-guided percutaneous metal-organic frameworks based codelivery system of doxorubicin/acetazolamide for hepatocellular carcinoma therapy. Clin. Transl. Med. 2021, 11, e600.

[140]

Shi, Y.; van der Meel, R.; Chen, X. Y.; Lammers, T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 2020, 10, 7921–7924.

[141]

Chakraborty, A.; Das, A.; Raha, S.; Barui, A. Size-dependent apoptotic activity of gold nanoparticles on osteosarcoma cells correlated with SERS signal. J. Photochem. Photobiol. B: Biol. 2020, 203, 111778.

[142]

De Jong, W. H.; Borm, P. J. A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed. 2008, 3, 133–149.

[143]

Li, L. L.; Zhou, A. D.; Wei, Y. J.; Liu, F.; Li, P.; Fang, R. P.; Ma, L.; Zhang, S. C.; Wang, L. Q.; Liu, J. Z. et al. Critical role of lncEPAT in coupling dysregulated EGFR pathway and histone H2A deubiquitination during glioblastoma tumorigenesis. Sci. Adv. 2022, 8, eabn2571.

Nano Research
Article number: 94907030
Cite this article:
Fu G, Weng Y, Li Y, et al. Surfing the nano-wave: Emerging trends in cancer diagnostics and therapy. Nano Research, 2025, 18(1): 94907030. https://doi.org/10.26599/NR.2025.94907030
Topics:

365

Views

53

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 05 August 2024
Revised: 10 September 2024
Accepted: 10 September 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return