AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (23.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Mini Review | Open Access

Biomass materials for zinc-based sustainable and green energy storage devices: Strategy and mechanism

Xiaotong Yang1,§Xiaoxin Nie1,§Chenke Tang2Yiyang Xiao2Qiongguang Li3Du Yuan1 ( )Meng Yao2 ( )
College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410004, China
College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
Anhui Province International Research Center on Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China

§ Xiaotong Yang and Xiaoxin Nie contributed equally to this work.

Show Author Information

Graphical Abstract

The interdisciplinary field between zinc-ion energy storage devices and biomass materials is blooming, paving the way on sustainable development.

Abstract

As next-generation rechargeable alternatives, zinc-based energy storage devices (ZESs) are being intensely explored due to their merits of abundant resource, low cost, safety and environmental benignity. However, ZESs face a succession of critical challenges on pursuing advancing performance, including the stability and kinetics of cathode, stability and transport of zinc electrolyte, reversibility and deep utilization of metallic Zn anode. Biomass, possessing unique molecular structures with abundant functionals groups, motivates the interdisciplinary field emerging from biomass and aqueous rechargeable battery. Concerning its high compatibility with ZES design, we here summarize the application of biomass materials in ZESs from the aspects of cathode, electrolyte, membrane/separator and Zn anode, with their corresponding operational mechanisms and attractive functionalities from polymeric structures. Accordingly, the outlooks and perspectives are provided, regarding current challenges and future directions. We anticipate our minireview paves way on exploring the roles of biomass in aqueous rechargeable batteries.

References

[1]

Casola, F.; van der Sar, T.; Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 2018, 3, 17088.

[2]

Dong, H.; Tutusaus, O.; Liang, Y. L.; Zhang, Y.; Lebens-Higgins, Z.; Yang, W. L.; Mohtadi, R.; Yao, Y. High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes. Nat. Energy 2020, 5, 1043–1050.

[3]

Fang, C. C.; Li, J. X.; Zhang, M. H.; Zhang, Y. H.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y. Y. C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572, 511–515.

[4]

Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.

[5]

Zhang, Y. D.; Sun, Y. J.; Wang, Q. Y.; Zhuang, Z. C.; Ma, Z. T.; Liu, L. M.; Wang, G. M.; Wang, D. S.; Zheng, X. S. Synergy of photogenerated electrons and holes toward efficient photocatalytic urea synthesis from CO2 and N2. Angew. Chem., Int. Ed. 2024, 63, e202405637.

[6]

Qiu, W. B.; Qin, S. M.; Li, Y. B.; Cao, N.; Cui, W. R.; Zhang, Z. D.; Zhuang, Z. C.; Wang, D. S.; Zhang, Y. Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis. Angew. Chem., Int. Ed. 2024, 63, e202402684.

[7]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

[8]

Chen, S. H.; Ye, C. L.; Wang, Z. W.; Li, P.; Jiang, W. J.; Zhuang, Z. C.; Zhu, J. X.; Zheng, X. B.; Zaman, S.; Ou, H. H. et al. Selective CO2 reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts. Angew. Chem., Int. Ed. 2023, 62, e202315621.

[9]

Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0–Co δ + interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

[10]

Blanc, L. E.; Kundu, D.; Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020, 4, 771–799.

[11]

Zhang, N.; Chen, X. Y.; Yu, M.; Niu, Z. Q.; Cheng, F. Y.; Chen, J. Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 2020, 49, 4203–4219.

[12]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[13]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe–Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[14]

Shi, W.; Lee, W. S. V.; Xue, J. M. Recent development of Mn-based oxides as zinc-ion battery cathode. ChemSusChem 2021, 14, 1634–1658.

[15]

Yi, Z. H.; Chen, G. Y.; Hou, F.; Wang, L. Q.; Liang, J. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 2021, 11, 2003065.

[16]

Sun, W.; Wang, F.; Hou, S.; Yang, C. Y.; Fan, X. L.; Ma, Z. H.; Gao, T.; Han, F. D.; Hu, R. Z.; Zhu, M. et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 2017, 139, 9775–9778.

[17]

Wang, N.; Qiu, X.; Xu, J.; Huang, J. H.; Cao, Y. J.; Wang, Y. G. Cathode materials challenge varied with different electrolytes in zinc batteries. ACS Mater. Lett. 2022, 4, 190–204.

[18]

Liu, A. N.; Wu, F.; Zhang, Y. X.; Zhou, J. H.; Zhou, Y. Z.; Xie, M. Insight on cathodes chemistry for aqueous zinc-ion batteries: From reaction mechanisms, structural engineering, and modification strategies. Small 2022, 18, 2201011.

[19]

Lv, T. T.; Zhu, G. Y.; Dong, S. Y.; Kong, Q. Q.; Peng, Y.; Jiang, S.; Zhang, G. X.; Yang, Z. L.; Yang, S. Y.; Dong, X. C. et al. Co-intercalation of dual charge carriers in metal-ion-confining layered vanadium oxide nanobelts for aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202216089.

[20]

Zhu, G.; Zhang, H.; Lu, J.; Hou, Y.; Liu, P.; Dong, S.; Zhang, Y.; Dong, X. Recent advances in MXene-based anode materials for alkali metal-ion capacitors. Mater. Today Sustain. 2022, 20, 100226.

[21]

Yin, J.; Zhang, W. L.; Alhebshi, N. A.; Salah, N.; Alshareef, H. N. Electrochemical zinc ion capacitors: Fundamentals, materials, and systems. Adv. Energy Mater. 2021, 11, 2100201.

[22]

Xue, M. D.; Bai, J.; Wu, M. C.; He, Q. Q.; Zhang, Q. C.; Chen, L. Y. Carbon-assisted anodes and cathodes for zinc ion batteries: From basic science to specific applications, opportunities and challenges. Energy Storage Mater. 2023, 62, 102940.

[23]

Liu, Y.; Wu, L. J. Recent advances of cathode materials for zinc-ion hybrid capacitors. Nano Energy 2023, 109, 108290.

[24]

Luo, C.; Lei, H. Y.; Xiao, Y. Y.; Nie, X. X.; Li, Y. H.; Wang, Q.; Cai, W. L.; Dai, C. L.; Yao, M.; Zhang, Y. et al. Recent development in addressing challenges and implementing strategies for manganese dioxide cathodes in aqueous zinc ion batteries. Energy Mater. 2024, 4, 400036.

[25]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[26]

Li, Y. P.; Niu, S. W.; Liu, P. G.; Pan, R. R.; Zhang, H. K.; Ahmad, N.; Shi, Y.; Liang, X.; Cheng, M. Y.; Chen, S. H. et al. Ruthenium nanoclusters and single atoms on α-MoC/N-doped carbon achieves low-input/input-free hydrogen evolution via decoupled/coupled hydrazine oxidation. Angew. Chem., Int. Ed. 2024, 63, e202316755.

[27]

Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to Enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

[28]

Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e202308800.

[29]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[30]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[31]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[32]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[33]

Zhang, X. M.; Deng, Z. W.; Xu, C. H. Y.; Deng, Y.; Jia, Y.; Luo, H.; Wu, H.; Cai, W. L.; Zhang, Y. Electrolyte engineering via competitive solvation structures for developing longevous zinc ion batteries. Adv. Energy Mater. 2023, 13, 2302749.

[34]

Yang, Q.; Li, Q.; Liu, Z. X.; Wang, D. H.; Guo, Y.; Li, X. L.; Tang, Y. C.; Li, H. F.; Dong, B. B.; Zhi, C. Y. Dendrites in Zn-based batteries. Adv. Mater. 2020, 32, 2001854.

[35]

Hao, J. N.; Li, X. L.; Zeng, X. H.; Li, D.; Mao, J. F.; Guo, Z. P. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 2020, 13, 3917–3949.

[36]

Zheng, J. X.; Archer, L. A. Controlling electrochemical growth of metallic zinc electrodes: Toward affordable rechargeable energy storage systems. Sci. Adv. 2021, 7, eabe0219.

[37]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru–Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[38]

Yang, J. J.; Zhao, R.; Wang, Y. S.; Hu, Z. F.; Wang, Y. H.; Zhang, A. Q.; Wu, C.; Bai, Y. Insights on artificial interphases of Zn and electrolyte: Protection mechanisms, constructing techniques, applicability, and prospective. Adv. Funct. Mater. 2023, 33, 2213510.

[39]

Zhou, M.; Chen, Y.; Fang, G. Z.; Liang, S. Q. Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries. Energy Storage Mater. 2022, 45, 618–646.

[40]

Zhang, Q.; Luan, J. Y.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 13180–13191.

[41]

Chen, J. Y.; Qiao, X.; Han, X. R.; Zhang, J. H.; Wu, H. B.; He, Q.; Chen, Z. B.; Shi, L.; Wang, Y. Z.; Xie, Y. N. et al. Releasing plating-induced stress for highly reversible aqueous Zn metal anodes. Nano Energy 2022, 103, 107814.

[42]

Zheng, J. X.; Zhu, G. Y.; Liu, X.; Xie, H. X.; Lin, Y. D.; Zeng, Y.; Zhang, Y. Z.; Gandi, A. N.; Qi, Z. B.; Wang, Z. C. et al. Simultaneous dangling bond and zincophilic site engineering of SiN x protective coatings toward stable zinc anodes. ACS Energy Lett. 2022, 7, 4443–4450.

[43]

Hao, Z. M.; Zhang, Y. F.; Hao, Z. K.; Li, G.; Lu, Y.; Jin, S.; Yang, G. J.; Zhang, S. H.; Yan, Z. H.; Zhao, Q. et al. Metal anodes with ultrahigh reversibility enabled by the closest packing crystallography for sustainable batteries. Adv. Mater. 2023, 35, 2209985.

[44]

Zheng, J. X.; Zhao, Q.; Tang, T.; Yin, J. F.; Quilty, C. D.; Renderos, G. D.; Liu, X. T.; Deng, Y.; Wang, L.; Bock, D. C. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 2019, 366, 645–648.

[45]

Yuan, D.; Zhao, J.; Ren, H.; Chen, Y. Q.; Chua, R.; Jie, E. T. J.; Cai, Y.; Edison, E.; Manalastas Jr, W.; Wong, M. W. et al. Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem., Int. Ed. 2021, 60, 7213–7219.

[46]

Hu, W.; Ju, J. G.; Deng, N. P.; Liu, M. Y.; Liu, W. C.; Zhang, Y. X.; Fan, L. L.; Kang, W. M.; Cheng, B. W. Recent progress in tackling Zn anode challenges for Zn ion batteries. J. Mater. Chem. A 2021, 9, 25750–25772.

[47]

Wang, S. B.; Ran, Q.; Yao, R. Q.; Shi, H.; Wen, Z.; Zhao, M.; Lang, X. Y.; Jiang, Q. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 2020, 11, 1634.

[48]

Wu, C.; Tan, H. T.; Huang, W. J.; Li, W. X.; Dinh, K. N.; Yan, C. S.; Wei, W. F.; Chen, L. B.; Yan, Q. Y. A new scalable preparation of metal nanosheets: Potential applications for aqueous Zn-ion batteries anode. Adv. Funct. Mater. 2020, 30, 2003187.

[49]

Chen, Z. B.; Zhao, J.; He, Q.; Li, M. S.; Feng, S.; Wang, Y. Z.; Yuan, D.; Chen, J. Y.; Alshareef, H. N.; Ma, Y. W. Texture control of commercial Zn foils prolongs their reversibility as aqueous battery anodes. ACS Energy Lett. 2022, 7, 3564–3571.

[50]

Pu, S. D.; Gong, C.; Tang, Y. T.; Ning, Z. Y.; Liu, J. L.; Zhang, S. M.; Yuan, Y.; Melvin, D.; Yang, S. X.; Pi, L. Q. et al. Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes. Adv. Mater. 2022, 34, 2202552.

[51]

Chen, Z. B.; Wu, Q.; Han, X. R.; Wang, C.; Chen, J. L.; Hu, T.; He, Q.; Zhu, X. Y.; Yuan, D.; Chen, J. Y. et al. Converting commercial Zn foils into single (002)-textured Zn with millimeter-sized grains for highly reversible aqueous zinc batteries. Angew. Chem., Int. Ed. 2024, 63, e202401507.

[52]

Yu, A.; Zhang, W.; Joshi, N.; Yang, Y. Recent advances in anode design for mild aqueous Zn-ion batteries. Energy Storage Mater. 2024, 64, 103075.

[53]

Cheng, Y.; Jiao, Y. C.; Wu, P. Y. Manipulating Zn 002 deposition plane with zirconium ion crosslinked hydrogel electrolyte toward dendrite free Zn metal anodes. Energy Environ. Sci. 2023, 16, 4561–4571.

[54]

Li, X. W.; Ye, P.; Dou, A. C.; Jiang, Z. Y.; Naveed, A.; Zhou, Y.; Su, M. R.; Zhang, P. P.; Liu, Y. J. Nanoporous Nb2O5 coatings enabled long-life and deeply rechargeable zinc anodes for aqueous zinc-ion batteries. J. Energy Storage 2024, 76, 109874.

[55]

Li, T.; Li, X.; Yang, H. F.; Zhou, Y.; Li, X. W.; Su, M. R.; Dou, A. C.; Zhang, P. P.; Wu, X. W.; Naveed, A. et al. Multifunctional optimization enabled by the space design of a nontoxic fluoride protective layer for dendrites-free and corrosion-resistant zinc anodes. Mater. Today Energy 2024, 40, 101513.

[56]

Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.

[57]

Wang, R.; Wu, Q. F.; Wu, M. J.; Zheng, J. X.; Cui, J.; Kang, Q.; Qi, Z. B.; Ma, J. D.; Wang, Z. C.; Liang, H. F. Interface engineering of Zn meal anodes using electrochemically inert Al2O3 protective nanocoatings. Nano Res. 2022, 15, 7227–7233.

[58]

Liu, C. X.; Xie, X. S.; Lu, B. G.; Zhou, J.; Liang, S. Q. Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 2021, 6, 1015–1033.

[59]

Verma, V.; Kumar, S.; Manalastas, W.; Srinivasan, M. Undesired reactions in aqueous rechargeable zinc ion batteries. ACS Energy Lett. 2021, 6, 1773–1785.

[60]

Yang, W. H.; Yang, Y.; Yang, H. J.; Zhou, H. S. Regulating water activity for rechargeable zinc-ion batteries: Progress and perspective. ACS Energy Lett. 2022, 7, 2515–2530.

[61]

Zhang, Y. J.; Chen, Z.; Qiu, H. Y.; Yang, W. H.; Zhao, Z. M.; Zhao, J. W.; Cui, G. L. Pursuit of reversible Zn electrochemistry: A time-honored challenge towards low-cost and green energy storage. NPG Asia Mater. 2020, 12, 4.

[62]

Lv, Y. Q.; Xiao, Y.; Ma, L. T.; Zhi, C. Y.; Chen, S. M. Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries. Adv. Mater. 2022, 34, 2106409.

[63]

Zhu, Y. Z.; Fan, J. J.; Zhang, S.; Feng, Z. H.; Liu, C.; Zhu, R. B.; Liu, Y. J.; Guan, P. Y.; Li, M. Y.; Han, Z. J. et al. Long-life flexible mild Ag-Zn fibrous battery with bifunctional gel electrolyte. Chem. Eng. J. 2024, 480, 148334.

[64]

Sun, C.; Zhang, W. D.; Qiu, D. P.; Tong, M. M.; Chen, Z. S.; Sun, S. H.; Lai, C.; Hou, Y. L. Practicable Zn metal batteries enabled by ultrastable ferromagnetic interface. Sci. Bull. 2023, 68, 2750–2759.

[65]

Wu, C. P.; Sun, C.; Ren, K. X.; Yang, F. L.; Du, Y. X.; Gu, X. X.; Wang, Q. H.; Lai, C. 2-methyl imidazole electrolyte additive enabling ultra-stable Zn anode. Chem. Eng. J. 2023, 452, 139465.

[66]

Zhu, Y. X.; Ge, M. Y.; Ma, F. C.; Wang, Q. H.; Huang, P.; Lai, C. Multifunctional electrolyte additives for better metal batteries. Adv. Funct. Mater. 2024, 34, 2301964.

[67]

Liu, J. W.; Li, C. X.; Lv, Q. L.; Chen, D. H.; Zhao, J. L.; Xia, X. D.; Wu, Z. X.; Lai, J. P.; Wang, L. Reconstruction of electric double layer on the anode interface by localized electronic structure engineering for aqueous Zn ion batteries. Adv. Energy Mater. 2024, 14, 2401118.

[68]

Lu, H. Y.; Hu, J. S.; Wei, X. J.; Zhang, K. Q.; Xiao, X.; Zhao, J. X.; Hu, Q.; Yu, J.; Zhou, G. M.; Xu, B. G. A recyclable biomass electrolyte towards green zinc-ion batteries. Nat. Commun. 2023, 14, 144435.

[69]

Chen, W. S.; Yu, H. P.; Lee, S. Y.; Wei, T.; Li, J.; Fan, Z. J. Nanocellulose: A promising nanomaterial for advanced electrochemical energy storage. Chem. Soc. Rev. 2018, 47, 2837–2872.

[70]

Sun, Z. H.; Fridrich, B.; De Santi, A.; Elangovan, S.; Barta, K. Bright side of lignin depolymerization: Toward new platform chemicals. Chem. Rev. 2018, 118, 614–678.

[71]

Wang, C. Y.; Yokota, T.; Someya, T. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem. Rev. 2021, 121, 2109–2146.

[72]

Yang, Y. J.; Xiao, Y. Y.; Nie, X. X.; Yao, M.; Liang, H. F.; Yuan, D. Carbon materials in current zinc ion energy storage devices towards sustainability. Carbon Res. 2024, 3, 62.

[73]

Yang, L.; Li, J. Q.; Zhou, Y. C.; Yao, J. F. Towards high-performance supercapacitors with cellulose-based carbon for zinc-ion storage. J. Energy Storage 2022, 50, 104252.

[74]

Yu, P. F.; Zeng, Y.; Zeng, Y. X.; Dong, H. W.; Hu, H.; Liu, Y. L.; Zheng, M. T.; Xiao, Y.; Lu, X. H.; Liang, Y. R. Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture. Electrochim. Acta 2019, 327, 134999.

[75]

Zhao, L.; Jian, W. B.; Zhang, X. S.; Wen, F. W.; Zhu, J. H.; Huang, S.; Yin, J.; Lu, K.; Zhou, M. S.; Zhang, W. L. et al. Multi-scale self-templating synthesis strategy of lignin-derived hierarchical porous carbons toward high-performance zinc ion hybrid supercapacitors. J. Energy Storage 2022, 53, 105095.

[76]

Zhao, J. Q.; Wu, W. L.; Jia, X. W.; Xia, T.; Li, Q. Y.; Zhang, J.; Wang, Q. H.; Zhang, W.; Lu, C. H. High-value utilization of biomass waste: From garbage floating on the ocean to high-performance rechargeable Zn-MnO2 batteries with superior safety. J. Mater. Chem. A 2020, 8, 18198–18206.

[77]

Zeng, G. L.; Wang, Y. Q.; Lou, X. M.; Chen, H.; Jiang, S. H.; Zhou, W. Vanadium oxide/carbonized chestnut needle composites as cathode materials for advanced aqueous zinc-ion batteries. J. Energy Storage 2024, 77, 109859.

[78]

Jaikrajang, N.; Kao-Ian, W.; Muramatsu, T.; Chanajaree, R.; Yonezawa, T.; Al Balushi, Z. Y.; Kheawhom, S.; Cheacharoen, R. Impact of binder functional groups on controlling chemical reactions to improve stability of rechargeable zinc-ion batteries. ACS Appl. Energy Mater. 2021, 4, 7138–7147.

[79]

Yang, G. S.; Huang, J. L.; Wan, X. H.; Zhu, Y. C.; Liu, B. B.; Wang, J. W.; Hiralal, P.; Fontaine, O.; Guo, Y. Z.; Zhou, H. A low cost, wide temperature range, and high energy density flexible quasi-solid-state zinc-ion hybrid supercapacitors enabled by sustainable cathode and electrolyte design. Nano Energy 2021, 90, 106500.

[80]

Wang, H.; Wang, M.; Tang, Y. B. A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 2018, 13, 1–7.

[81]

He, L.; Liu, Y.; Li, C. Y.; Yang, D. Z.; Wang, W. G.; Yan, W. Q.; Zhou, W. B.; Wu, Z. X.; Wang, L. L.; Huang, Q. H. et al. A low-cost Zn-based aqueous supercapacitor with high energy density. ACS Appl. Energy Mater. 2019, 2, 5835–5842.

[82]

Li, Z. W.; Chen, D. H.; An, Y. F.; Chen, C. L.; Wu, L. Y.; Chen, Z. J.; Sun, Y.; Zhang, X. G. Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Mater. 2020, 28, 307–314.

[83]

Li, X.; Hu, J. D.; Wu, M.; Guo, C. C.; Bai, L.; Li, J. M.; Li, Y. W.; Luo, D. H.; Duan, J. M.; Li, X. L. et al. Fabrication and morphological effect of waxberry-like carbon for high-performance aqueous zinc-ion electrochemical storage. Carbon 2023, 205, 226–235.

[84]

Fan, W. J.; Ding, J.; Ding, J. N.; Zheng, Y. L.; Song, W. Q.; Lin, J. F.; Xiao, C. X.; Zhong, C.; Wang, H. L.; Hu, W. B. Identifying heteroatomic and defective sites in carbon with dual-ion adsorption capability for high energy and power zinc ion capacitor. Nano-Micro Lett. 2021, 13, 59.

[85]

Du, X. Y.; Ma, Y. P.; Xie, X. B.; Jiang, H. Y.; Sun, X. Q.; Yang, X. Y.; Zhang, Y. P.; Hou, C. X.; Du, W. Preparation of two-dimensional porous nitrogen-oxygen co-doped recycled yeast cell wall derived-carbon matrix for high-performance zinc ion supercapacitors. J. Energy Storage 2024, 82, 110428.

[86]

Wang, S. L.; Wang, Q.; Zeng, W.; Wang, M.; Ruan, L. M.; Ma, Y. N. A new free-standing aqueous zinc-ion capacitor based on MnO2-CNTs cathode and MXene anode. Nano-Micro Lett. 2019, 11, 70.

[87]

Ren, J. C.; Huang, Y. L.; Zhu, H.; Zhang, B. H.; Zhu, H. K.; Shen, S. H.; Tan, G. Q.; Wu, F.; He, H.; Lan, S. et al. Recent progress on MOF-derived carbon materials for energy storage. Carbon Energy 2020, 2, 176–202.

[88]

Wang, H. Y.; Ye, W. Q.; Yang, Y.; Zhong, Y. J.; Hu, Y. Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives. Nano Energy 2021, 85, 105942.

[89]

Zhao, X. J.; Hong, R. Z.; Lu, R. Y.; Chen, Y. J.; Yang, X. M. Sustainable synthesis of hierarchically porous hollow carbon spheres for enhanced zinc-ion hybrid supercapacitors. ACS Appl. Energy Mater. 2024, 7, 931–940.

[90]

Javed, M. S.; Asim, S.; Najam, T.; Khalid, M.; Hussain, I.; Ahmad, A.; Assiri, M. A.; Han, W. H. Recent progress in flexible Zn-ion hybrid supercapacitors: Fundamentals, fabrication designs, and applications. Carbon Energy 2023, 5, e271.

[91]

Wang, H.; Huang, J. X.; Wang, X. B.; Guo, Z. G.; Liu, W. M. In-situ construction of CNTs decorated titanium carbide on Ti mesh towards the synergetic improvement of energy storage properties for aqueous zinc ion capacitors. ChemElectroChem 2023, 10, e202201137.

[92]

Zhang, J. J.; Wu, X.; Luo, S. H. MOF-derived porous carbon for zinc-ion hybrid capacitors with ultra-high energy density and long cycling life. Batteries Supercaps 2024, 7, e202400205.

[93]

Wang, L.; Peng, M. K.; Chen, J. R.; Tang, X. N.; Li, L. B.; Hu, T.; Yuan, K.; Chen, Y. W. High energy and power zinc ion capacitors: A dual-ion adsorption and reversible chemical adsorption coupling mechanism. ACS Nano 2022, 16, 2877–2888.

[94]

Li, L.; Jiang, L. L.; Qing, Y.; Zeng, Y. X.; Zhang, Z.; Xiao, L.; Lu, X. H.; Wu, Y. Q. Manipulating nickel oxides in naturally derived cellulose nanofiber networks as robust cathodes for high-performance Ni-Zn batteries. J. Mater. Chem. A 2020, 8, 565–572.

[95]

Lv, W.; Shen, Z. L.; Li, X. D.; Meng, J. W.; Yang, W. J.; Ding, F.; Ju, X.; Ye, F.; Li, Y. M.; Lyu, X. F. et al. Discovering cathodic biocompatibility for aqueous Zn-MnO2 battery: An integrating biomass carbon strategy. Nano-Micro Lett 2024, 16, 109.

[96]

Patel, D.; Dharmesh, A.; Sharma, Y.; Rani, P.; Sharma, A. K. Hybrid electrolyte with biomass-derived carbon host for high-performance aqueous Zn-S battery. Chem. Eng. J. 2024, 479, 147722.

[97]

Wang, K. N.; Wang, J. W.; Zhang, Z. Q.; Zhang, W. L.; Fu, F.; Du, Y. P. Pitch-derived 3D amorphous carbon encapsulated sulfur-rich cathode for aqueous Zn-S batteries. Sci. China Chem. 2023, 66, 2711–2718.

[98]

Zhao, S. F.; Wu, X. S.; Zhang, J. L.; Li, C. J.; Cui, Z. X.; Hu, W. H.; Ma, R. G.; Li, C. M. Biomass-derived porous carbon with single-atomic cobalt toward high-performance aqueous zinc-sulfur batteries at room temperature. Journal of Energy Chemistry 2024, 95, 325–335.

[99]

Wang, X. R.; Wang, Y. L.; Naveed, A.; Li, G. T.; Zhang, H. W.; Zhou, Y.; Dou, A. C.; Su, M. R.; Liu, Y. J.; Guo, R. Q. et al. Magnesium ion doping and micro-structural engineering assist NH4V4O10 as a high-performance aqueous zinc ion battery cathode. Adv. Funct. Mater. 2023, 33, 2306205.

[100]

Liu, Y.; Liu, Y.; Wu, X.; Cho, Y. R. General carbon modification avenue to construct highly stable V2O5 electrodes for aqueous zinc-ion batteries. ACS Sustainable Chem. Eng. 2023, 11, 13298–13305.

[101]

Cheng, H. H.; Zhang, Y.; Cai, X. X.; Liu, C. F.; Wang, Z. W.; Ye, H.; Pan, Y. L.; Jia, D. Z.; Lin, H. Boosting zinc storage performance of Li3VO4 cathode material for aqueous zinc ion batteries via carbon-incorporation: A study combining theory and experiment. Small 2024, 20, 2305762.

[102]

Yang, W.; Yang, Z.; Wang, J.; Lu, W.; Wang, W. H. A bean catching double pigeons: Sonication assisted modification of Nb2C MXenes composites by O-doping porous biomass-carbons for supercapacitors and zinc-ion batteries. J. Energy Storage 2023, 65, 107334.

[103]

Huang, H. J.; Yun, J. W.; Feng, H.; Tian, T.; Xu, J. W.; Li, D. L.; Xia, X.; Yang, Z. H.; Zhang, W. X. Towards high-performance zinc anode for zinc ion hybrid capacitor: Concurrently tailoring hydrodynamic stability, zinc deposition and solvation structure via electrolyte additive. Energy Storage Mater. 2023, 55, 857–866.

[104]

Li, X.; Yao, H.; Li, Y. H.; Liu, X. J.; Yuan, D.; Chen, Y. Q.; Wong, M. W.; Zhang, Y. Z.; Zhang, H. T. Cellulose-complexing strategy induced surface regulation towards ultrahigh utilization rate of Zn. J. Mater. Chem. A 2023, 11, 14720–14727.

[105]

Yang, W.; Yang, W.; Zeng, J. M.; Chen, Y. L.; Huang, Y. F.; Liu, J.; Gan, J. Y.; Li, T. Z.; Zhang, H.; Zhong, L. X. et al. Biopolymer-based gel electrolytes for electrochemical energy storage: Advances and prospects. Prog. Mater. Sci. 2024, 144, 101264.

[106]

Chen, M. F.; Chen, J. Z.; Zhou, W. J.; Han, X.; Yao, Y. G.; Wong, C. P. Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO2 batteries. Adv. Mater. 2021, 33, 2007559.

[107]

Zhang, Q. C.; Li, C. W.; Li, Q. L.; Pan, Z. H.; Sun, J.; Zhou, Z. Y.; He, B.; Man, P.; Xie, L. Y.; Kang, L. X. et al. Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett. 2019, 19, 4035–4042.

[108]

Zhang, X. F.; Ma, X. F.; Hou, T.; Guo, K. C.; Yin, J. Y.; Wang, Z. G.; Shu, L.; He, M.; Yao, J. F. Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels. Angew. Chem., Int. Ed. 2019, 58, 7366–7370.

[109]

Tang, Y.; Liu, C. X.; Zhu, H. R.; Xie, X. S.; Gao, J. W.; Deng, C. B.; Han, M. M.; Liang, S. Q.; Zhou, J. Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 2020, 27, 109–116.

[110]

Xie, X. S.; Li, J. J.; Xing, Z. Y.; Lu, B. G.; Liang, S. Q.; Zhou, J. Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 2023, 10, nwac281.

[111]

Zhang, B. Y.; Qin, L. P.; Fang, Y.; Chai, Y. Z.; Xie, X. S.; Lu, B. G.; Liang, S. Q.; Zhou, J. Tuning Zn2+ coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode. Sci. Bull. 2022, 67, 955–962.

[112]

Liu, Q.; Chen, R. P.; Xu, L.; Liu, Y.; Dai, Y. H.; Huang, M.; Mai, L. Steric molecular combing effect enables ultrafast self-healing electrolyte in quasi-solid-state zinc-ion batteries. ACS Energy Lett. 2022, 7, 2825–2832.

[113]

Cao, G. H.; Zhao, L.; Ji, X. W.; Peng, Y. Y.; Yu, M. M.; Wang, X. Y.; Li, X. Y.; Ran, F. “Salting out” in Hofmeister effect enhancing mechanical and electrochemical performance of amide-based hydrogel electrolytes for flexible zinc-ion battery. Small 2023, 19, 2207610.

[114]

Sun, L.; Yao, Y. Q.; Dai, L. X.; Jiao, M. L.; Ding, B. F.; Yu, Q. M.; Tang, J.; Liu, B. L. Sustainable and high-performance Zn dual-ion batteries with a hydrogel-based water-in-salt electrolyte. Energy Storage Mater. 2022, 47, 187–194.

[115]

Li, C. P.; Xie, X. S.; Liu, H.; Wang, P. J.; Deng, C. B.; Lu, B. G.; Zhou, J.; Liang, S. Q. Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. 2022, 9, nwab177.

[116]

Yang, L. Y.; Song, L.; Feng, Y.; Cao, M. J.; Zhang, P. C.; Zhang, X. F.; Yao, J. F. Zinc ion trapping in a cellulose hydrogel as a solid electrolyte for a safe and flexible supercapacitor. J. Mater. Chem. A 2020, 8, 12314–12318.

[117]

Dong, H. B.; Li, J. W.; Zhao, S. Y.; Jiao, Y. D.; Chen, J. T.; Tan, Y. S.; Brett, D. J. L.; He, G. J.; Parkin, I. P. Investigation of a biomass hydrogel electrolyte naturally stabilizing cathodes for zinc-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 745–754.

[118]

Liu, Q. Q.; Xia, C. F.; He, C. H.; Guo, W.; Wu, Z. P.; Li, Z.; Zhao, Q.; Xia, B. Y. Dual-network structured hydrogel electrolytes engaged solid-state rechargeable Zn-air/iodide hybrid batteries. Angew. Chem., Int. Ed. 2022, 61, e202210567.

[119]

Almenara, N.; Gueret, R.; Huertas-Alonso, A. J.; Veettil, U. T.; Sipponen, M. H.; Lizundia, E. Lignin-chitosan gel polymer electrolytes for stable Zn electrodeposition. ACS Sustainable Chem. Eng. 2023, 11, 2283–2294.

[120]

Zhang, S. L.; Yu, N. S.; Zeng, S.; Zhou, S. S.; Chen, M. H.; Di, J. T.; Li, Q. W. An adaptive and stable bio-electrolyte for rechargeable Zn-ion batteries. J. Mater. Chem. A 2018, 6, 12237–12243.

[121]

Huang, Y.; Zhang, J. Y.; Liu, J. W.; Li, Z. X.; Jin, S. Y.; Li, Z. G.; Zhang, S. D.; Zhou, H. Flexible and stable quasi-solid-state zinc ion battery with conductive guar gum electrolyte. Mater. Today Energy 2019, 14, 100349.

[122]

Han, Q.; Chi, X. W.; Zhang, S. M.; Liu, Y. Z.; Zhou, B.; Yang, J. H.; Liu, Y. Durable, flexible self-standing hydrogel electrolytes enabling high-safety rechargeable solid-state zinc metal batteries. J. Mater. Chem. A 2018, 6, 23046–23054.

[123]

Li, H. F.; Han, C. P.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J. et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 2018, 11, 941–951.

[124]

Yang, Z. F.; Zhang, Q.; Wu, T. Q.; Li, Q. K.; Shi, J. M.; Gan, J. Q.; Xiang, S. E.; Wang, H.; Hu, C.; Tang, Y. G. et al. Thermally healable electrolyte–electrode interface for sustainable quasi-solid zinc-ion batteries. Angew. Chem., Int. Ed. 2024, 63, e202317457.

[125]

Wang, J. W.; Huang, Y.; Liu, B. B.; Li, Z. X.; Zhang, J. Y.; Yang, G. S.; Hiralal, P.; Jin, S. Y.; Zhou, H. Flexible and anti-freezing zinc-ion batteries using a guar-gum/sodium-alginate/ethylene-glycol hydrogel electrolyte. Energy Storage Mater. 2021, 41, 599–605.

[126]

Zhou, J. J.; Zhang, R. H.; Xu, R.; Li, Y.; Tian, W.; Gao, M.; Wang, M.; Li, D. W.; Liang, X.; Xie, L. et al. Super-assembled hierarchical cellulose aerogel-gelatin solid electrolyte for implantable and biodegradable zinc ion battery. Adv. Funct. Mater. 2022, 32, 2111406.

[127]

Xiang, Z. P.; Li, Y. Y.; Cheng, X. J.; Yang, C.; Wang, K. P.; Zhang, Q.; Wang, L. Lean-water hydrogel electrolyte with improved ion conductivity for dendrite-free zinc-ion batteries. Chem. Eng. J. 2024, 490, 151524.

[128]

Liu, X. J.; Li, X.; Yang, X. T.; Lu, J. Q.; Zhang, X.; Yuan, D.; Zhang, Y. Z. Influence of water on gel electrolytes for zinc-ion batteries. Chem.—Asian J. 2023, 18, e202201280.

[129]

Kang, Q.; Zhuang, Z. C.; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.

[130]

Wang, Y. H.; Zhang, Y. G.; Yu, W. Y.; Chen, F.; Ma, T. Y.; Huang, H. W. Single-atom catalysts for energy conversion. J. Mater. Chem. A 2023, 11, 2568–2594.

[131]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Yang, H. J.; Luo, L. X.; Xu, J.; Wang, J.; Guan, Q. H.; Zhu, H.; Zuo, Y. Z. et al. Engineering a dynamic solvent-phobic liquid electrolyte interphase for long-life lithium metal batteries. Adv. Mater. 2024, 36, 2308799.

[132]

Yang, X. P.; Wu, W. L.; Liu, Y. Z.; Lin, Z. R.; Sun, X. Q. Chitosan modified filter paper separators with specific ion adsorption to inhibit side reactions and induce uniform Zn deposition for aqueous Zn batteries. Chem. Eng. J. 2022, 450, 137902.

[133]

Zhou, W. J.; Chen, M. F.; Tian, Q. H.; Chen, J. Z.; Xu, X. W.; Wong, C. P. Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Mater. 2022, 44, 57–65.

[134]

Yuan, D.; Manalastas, W.; Zhang, L. P.; Chan, J. J.; Meng, S. Z.; Chen, Y. Q.; Srinivasan, M. Lignin@Nafion membranes forming Zn solid-electrolyte interfaces enhance the cycle life for rechargeable zinc-ion batteries. ChemSusChem 2019, 12, 4889–4900.

[135]

Qin, H. Y.; Chen, W. J.; Kuang, W.; Hu, N.; Zhang, X. Y.; Weng, H. F.; Tang, H.; Huang, D.; Xu, J.; He, H. B. A nature-inspired separator with water-confined and kinetics-boosted effects for sustainable and high-utilization Zn metal batteries. Small 2023, 19, 2300130.

[136]

Huang, Z. E.; Yang, S. C.; Zhang, Y.; Zhang, Y. X.; Xue, R. R.; Ma, Y.; Wang, Z. H. Ultrathin reed membranes: Nature’s intimate ion-regulation skins safeguarding zinc metal anodes in aqueous batteries. Adv. Energy Mater. 2024, 14, 2400033.

[137]

Ou, Z. N.; Liu, Q. N.; Wang, Y. X.; Wu, G. J. Biomass carbon modified zinc anode for rechargeable aqueous batteries. Int. J. Electrochem. Sci. 2022, 17, 220924.

[138]

Wang, J. H.; Chen, L. F.; Dong, W. X.; Zhang, K. L.; Qu, Y. F.; Qian, J. W.; Yu, S. H. Three-dimensional zinc-seeded carbon nanofiber architectures as lightweight and flexible hosts for a highly reversible zinc metal anode. ACS Nano 2023, 17, 19087–19097.

[139]

Zheng, W. J.; Xie, H. B.; Zhu, L.; Zhou, H.; Zhang, K. Elaborate artificial construction of porous biomass carbon interfacial layer on the surface of zinc anode toward high performance aqueous zinc-ion batteries. J. Energy Storage 2024, 76, 109808.

[140]

Shin, J.; Lee, J.; Kim, Y.; Park, Y.; Kim, M.; Choi, J. W. Highly reversible, grain-directed zinc deposition in aqueous zinc ion batteries. Adv. Energy Mater. 2021, 11, 2100676.

[141]

Yang, Y.; Hua, H. M.; Lv, Z. H.; Zhang, M. H.; Liu, C. Y.; Wen, Z. P.; Xie, H. D.; He, W. D.; Zhao, J. B.; Li, C. C. Reconstruction of electric double layer for long-life aqueous zinc metal batteries. Adv. Funct. Mater. 2023, 33, 2212446.

[142]

Yang, J. Q.; Qiu, M. J.; Zhu, M. N.; Weng, C. C.; Li, Y.; Sun, P.; Mai, W.; Xu, M.; Pan, L. K.; Li, J. L. Biomacromolecule guiding construction of effective interface layer for ultra-stable zinc anode. Energy Storage Mater. 2024, 67, 103287.

[143]

Zhang, P. F.; Wu, Z. Z.; Zhang, S. J.; Liu, L. Y.; Tian, Y. H.; Dou, Y. H.; Lin, Z.; Zhang, S. Q. Tannin acid induced anticorrosive film toward stable Zn-ion batteries. Nano Energy 2022, 102, 107721.

[144]

Deng, C. B.; Li, Y.; Liu, S. J.; Yang, J. L.; Huang, B. L.; Liu, J. P.; Huang, J. Q. Nature-inspired interfacial engineering for highly stable Zn metal anodes. Energy Storage Mater. 2023, 58, 279–286.

[145]

Jin, H. R.; Dai, S. M.; Zhu, Z. H.; Luo, Y. X.; Qi, B.; Liu, K. S.; Wu, T.; Zhuang, X. Y.; Zhou, J.; Huang, L. Crystal water boosted Zn2+ transfer kinetics in artificial solid electrolyte interphase for high-rate and durable zn anodes. ACS Appl. Energy Mater. 2022, 5, 10581–10590.

[146]

Chen, X. H.; Shi, X. D.; Ruan, P. C.; Tang, Y.; Sun, Y. Y.; Wong, W. Y.; Lu, B. G.; Zhou, J. Construction of an artificial interfacial layer with porous structure toward stable zinc-metal anodes. Small Sci. 2023, 3, 2300007.

[147]

Liu, H. W.; Chen, C. Y.; Yang, H.; Wang, Y.; Zou, L. L.; Wei, Y. S.; Jiang, J. L.; Guo, J. C.; Shi, W.; Xu, Q. et al. A zinc-dual-halogen battery with a molten hydrate electrolyte. Adv. Mater. 2020, 32, 2004553.

[148]

Yin, J.; Zhang, W. L.; Wang, W. X.; Alhebshi, N. A.; Salah, N.; Alshareef, H. N. Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes. Adv. Energy Mater. 2020, 10, 2001705.

[149]

Liu, Z. X.; Chen, Z. Z.; Lei, S. R.; Lu, B. G.; Liang, S. Q.; Li, J. J.; Zhou, J. Validating operating stability and biocompatibility toward safer zinc-based batteries. Adv. Mater. 2024, 36, 2308836.

[150]

Lu, Y. Y.; Li, Z. W.; Bai, Z. Y.; Mi, H. Y.; Ji, C. C.; Pang, H.; Yu, C.; Qiu, J. S. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy 2019, 66, 104132.

Nano Research
Article number: 94907031
Cite this article:
Yang X, Nie X, Tang C, et al. Biomass materials for zinc-based sustainable and green energy storage devices: Strategy and mechanism. Nano Research, 2025, 18(1): 94907031. https://doi.org/10.26599/NR.2025.94907031
Topics:

425

Views

45

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 06 August 2024
Revised: 01 September 2024
Accepted: 12 September 2024
Published: 24 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return