PDF (19.2 MB)
Collect
Submit Manuscript
Research Article | Open Access

Excellent microwave absorption performance of polyphenol-metal coordination derived magnetic porous carbon spheres

Jing Dang1()Panbo Liu2
China AVIC the First Aircraft Institute, Yanliang 710089, China
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
Show Author Information

Graphical Abstract

View original image Download original image
Magnetic porous carbon spheres prepared by the formaldehyde-assisted ligand cross-linking strategy exhibit lightweight and efficient microwave absorption properties.

Abstract

Electromagnetic synergy and porous characteristics are two dominant factors in realizing light-weight and high-efficient microwave absorption performance. In this paper, a formaldehyde-assisted metal-ligand crosslinking strategy and a subsequent pyrolysis process are employed to synthesize magnetic porous carbon spheres with the electromagnetic synergy and porous characteristics, in which metal ions are tightly anchored in poly-(tannin acid) spheres because of the strong chelation coordination between them. The chemical composition of magnetic particles and the microwave absorption performance of the derived magnetic porous carbon spheres can be manipulated by adjusting the metal ions. Benefiting from the cooperative effects of porous structure, matched impedance, the electromagnetic synergistic enhancement between magnetic particles and carbon matrix, as well as the improved interfacial polarization caused by the large number of hetero-interfaces, both the microwave absorption intensity and the effective absorption bandwidths are significantly enhanced for magnetic porous carbon spheres, such as Co-PCSs and CoNi-PCSs, compared with PCSs. With 15 wt.% filler loading, the maximum reflection loss of CoNi-PCSs is −51 dB at 2.2 mm and the effective bandwidth is 7.2 GHz at 2.9 mm. Furthermore, this study provides the theoretical theory for the design and development of light-weight and highly efficient microwave absorption materials.

References

[1]

Xiang, Z.; Shi, Y. Y.; Zhu, X. J.; Cai, L.; Lu, W. Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 2021, 13, 150.

[2]

Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

[3]

Xu, H. X.; Zhang, G. Z.; Wang, Y.; Wang, Y. R.; Wang, H. L.; Huang, Y.; Liu, P. B. Heteroatoms-doped carbon nanocages with enhanced dipolar and defective polarization toward light-weight microwave absorbers. Nano Res. 2022, 15, 8705–8713.

[4]

Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

[5]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[6]

Liu, P. B.; Gao, S.; Liu, X. D.; Huang, Y.; He, W. J.; Li, Y. T. Rational construction of hierarchical hollow CuS@CoS2 nanoboxes with heterogeneous interfaces for high-efficiency microwave absorption materials. Compos. Part, B: Eng. 2020, 192, 107992.

[7]

Sun, M. X.; Wang, D. R.; Xiong, Z. M.; Zhang, Z. W.; Qin, L.; Chen, C. C.; Wu, F.; Liu, P. B. Multi-dimensional Ni@C-CoNi composites with strong magnetic interaction toward superior microwave absorption. J. Mater. Sci. Technol. 2022, 130, 176–183.

[8]

Liu, P. B.; Gao, S.; Wang, Y.; Zhou, F. T.; Huang, Y.; Luo, J. H. Metal-organic polymer coordination materials derived Co/N-doped porous carbon composites for frequency-selective microwave absorption. Compos. Part, B: Eng. 2020, 202, 108406.

[9]

Wang, F. Y.; Liu, Y. L.; Zhao, H. H.; Cui, L. R.; Gai, L. X.; Han, X. J.; Du, Y. C. Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics. Chem. Eng. J. 2022, 450, 138160.

[10]

Liu, D. W.; Yang, L.; Wang, F. Y.; Zhang, H.; Liu, J.; Lv, T.; Zhao, H. J.; Du, Y. C. Hierarchical carbon nanotubes@Ni/C foams for high-performance microwave absorption. Carbon 2022, 196, 867–876.

[11]

Wu, Y.; Zhao, Y.; Zhou, M.; Tan, S. J.; Peymanfar, R.; Aslibeiki, B.; Ji, G. B. Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 2022, 14, 171.

[12]

Zhao, H. H.; Xu, X. Z.; Wang, Y. H.; Fan, D. G.; Liu, D. W.; Lin, K. F.; Xu, P.; Han, X. J.; Du, Y. C. Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 2020, 16, 2003407.

[13]

Ding, D.; Wang, Y.; Li, X. D.; Qiang, R.; Xu, P.; Chu, W. L.; Han, X. J.; Du, Y. C. Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 2017, 111, 722–732.

[14]

Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

[15]

Zhang, X. C.; Li, B.; Xu, J.; Zhang, X.; Shi, Y. N.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Metal ions confined in periodic pores of MOFs to embed single-metal atoms within hierarchically porous carbon nanoflowers for high-performance electromagnetic wave absorption. Adv. Funct. Mater. 2023, 33, 2210456.

[16]

Liu, P. Z.; Gao, T. D.; He, W. J.; Liu, P. B. Electrospinning of hierarchical carbon fibers with multi-dimensional magnetic configurations toward prominent microwave absorption. Carbon 2023, 202, 244–253.

[17]

Wang, H. Y.; Sun, X. B.; Wang, G. S. A MXene-modulated 3D crosslinking network of hierarchical flower-like MOF derivatives towards ultra-efficient microwave absorption properties. J. Mater. Chem. A 2021, 9, 24571–24581.

[18]

Zhang, Y.; Yang, Z. H.; Li, M.; Yang, L. J.; Liu, J. C.; Ha, Y.; Wu, R. B. Heterostructured CoFe@C@MnO2 nanocubes for efficient microwave absorption. Chem. Eng. J. 2020, 382, 123039.

[19]

Wu, Z. C.; Tian, K.; Huang, T.; Hu, W.; Xie, F. F.; Wang, J. J.; Su, M. X.; Li, L. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 2018, 10, 11108–11115.

[20]

Wang, H. G.; Meng, F. B.; Li, J. Y.; Li, T.; Chen, Z. J.; Luo, H. B.; Zhou, Z. W. Carbonized Design of hierarchical porous carbon/Fe3O4@Fe derived from loofah sponge to achieve tunable high-performance microwave absorption. ACS Sustainable Chem. Eng. 2018, 6, 11801–11810.

[21]

Xiang, Z.; Song, Y. M.; Xiong, J.; Pan, Z. B.; Wang, X.; Liu, L.; Liu, R.; Yang, H. W.; Lu, W. Enhanced electromagnetic wave absorption of nanoporous Fe3O4 @ carbon composites derived from metal-organic frameworks. Carbon 2019, 142, 20–31.

[22]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[23]

Ge, C. Q.; Wang, L. Y.; Liu, G. Research progress in carbon-based/carbonyl iron composite microwave absorption materials. J. Mater. Eng. 2019, 47, 43–54.

[24]

Xiang, L. L.; Qi, X. S.; Rao, Y. C.; Wang, L.; Gong, X.; Chen, Y. L.; Peng, Q.; Zhong, W. A simple strategy to develop heterostructured carbon paper/Co nanoparticles composites with lightweight, tunable and broadband microwave absorption. Mater. Today Phys. 2023, 34, 101030.

[25]

Wen, C. Y.; Li, X.; Zhang, R. X.; Xu, C. Y.; You, W. B.; Liu, Z. W.; Zhao, B.; Che, R. C. High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2T x MXene@Ni microspheres. ACS Nano 2021, 16, 1150–1159.

[26]

Zhao, T. B.; Jia, Z. R.; Zhang, Y.; Wu, G. L. Multiphase molybdenum carbide doped carbon hollow sphere engineering: The superiority of unique double-shell structure in microwave absorption. Small 2023, 19, 2206323.

[27]

Du, Z. B.; Shi, S. Q.; Chen, Y. B.; Chu, H. R.; Yang, C. Research progress in dielectric graphene microwave absorbing composites. J. Mater. Eng. 2022, 50, 74–84.

[28]

Zhong, X.; He, M. K.; Zhang, C. Y.; Guo, Y. Q.; Hu, J. W.; Gu, J. W. Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 2024, 34, 2313544.

[29]

Li, C.; Peng, Q.; Qi, X. S.; Chen, Y. L.; Gong, X.; Wang, X.; Deng, C. Y.; Zhong, W.; Du, Y. W. Morphology optimization strategy of flower-like CoNi2S4/Co9S8@MoS2 core@shell nanocomposites to achieve extraordinary microwave absorption performances. J. Colloid Interface Sci. 2022, 606, 1128–1139.

[30]

Zhang, Z. W.; Cai, Z. H.; Wang, Z. Y.; Peng, Y. L.; Xia, L.; Ma, S. P.; Yin, Z. Z.; Huang, Y. A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 2021, 13, 56.

[31]
He, M. K.; Hu, J. W.; Yan, H.; Zhong, X.; Zhang, Y. L.; Liu, P. B.; Kong, J.; Gu, J. W. Shape Anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202316691.
[32]

Wang, H. Y.; Sun, X. B.; Yang, S. H.; Zhao, P. Y.; Zhang, X. J.; Wang, G. S.; Huang, Y. 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 2021, 13, 206.

[33]

He, Z. Z.; Xu, H. X.; Shi, L. Z.; Ren, X. R.; Kong, J.; Liu, P. B. Hierarchical Co2P/CoS2@C@MoS2 composites with hollow cavity and multiple phases toward wideband electromagnetic wave absorption. Small 2024, 20, 2306253.

Nano Research
Article number: 94907038
Cite this article:
Dang J, Liu P. Excellent microwave absorption performance of polyphenol-metal coordination derived magnetic porous carbon spheres. Nano Research, 2025, 18(4): 94907038. https://doi.org/10.26599/NR.2025.94907032
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return