PDF (22.1 MB)
Collect
Submit Manuscript
Research Article | Open Access

Regulating the oxygen-atom configuration of carbon anode enabling extremely fast-charging potassium-ion hybrid capacitors

Daping Qiu1Yuehui Wang1Lulu Zhang1Hang Lei1Haizhou Ying1Jin Niu2Min Li2Xuelin Yang1,3()Feng Wang2 ()Ru Yang2 ()
Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
Show Author Information

Graphical Abstract

View original image Download original image
An oxygen-enriched carbon material with a tunable oxygen-atom configuration has been constructed as a fast-charging anode for potassium-ion hybrid capacitors.

Abstract

Metal-ion hybrid capacitors, such as potassium-ion hybrid capacitors (PIHCs), are regarded as promising fast-charging energy storage devices. However, the kinetics mismatch between the battery anode and the capacitive cathode restricts their fast-charging performance. Precisely constructing carbon anodes with enhanced kinetics is an innovative approach to address this challenge. Herein, using epigallocatechin gallate with high oxygen content as the precursor, oxygen-enriched carbon materials (OEC) with tunable C=O content are successfully synthesized. Effortlessly, the C=O content of OEC is regulated by adjusting the pyrolysis temperature. Serving as an anode for PIHCs, OEC-600 with the highest C=O content exhibits an attractive fast-charging specific capacity of 135.2 mAh·g−1 at 20 A·g−1, along with a superior fast-charging cycling stability. Combining theoretical calculations, comprehensive kinetics analysis and in-situ Raman, the positive effects of C=O on the potassium storage capability and reversibility of OEC-600 are revealed. Consequently, PIHCs assembled based on an OEC-600 anode deliver impressive energy/power density of 145.1 Wh·kg−1/45.9 kW·kg−1 and superior fast-charging cycling stability with 87.5% of capacity retention over 20,000 cycles at 5 A·g−1. This work is anticipated to provide an optional design concept toward the carbon anode for fast-charging PIHCs.

Electronic Supplementary Material

Download File(s)
7033_ESM.pdf (3 MB)

References

[1]

Gervillié-Mouravieff, C.; Boussard-Plédel, C.; Huang, J. Q.; Leau, C.; Blanquer, L. A.; Yahia, M. B.; Doublet, M. L.; Boles, S. T.; Zhang, X. H.; Adam, J. L. et al. Unlocking cell chemistry evolution with operando fibre optic infrared spectroscopy in commercial Na(Li)-ion batteries. Nat. Energy 2022, 7, 1157–1169.

[2]

Paul, P. P.; Thampy, V.; Cao, C. T.; Steinrück, H. G.; Tanim, T. R.; Dunlop, A. R.; Dufek, E. J.; Trask, S. E.; Jansen, A. N.; Toney, M. F. et al. Quantification of heterogeneous, irreversible lithium plating in extreme fast charging of lithium-ion batteries. Energy Environ. Sci. 2021, 14, 4979–4988.

[3]

Tu, S. B.; Zhang, B.; Zhang, Y.; Chen, Z. H.; Wang, X. C.; Zhan, R. M.; Ou, Y. T.; Wang, W. Y.; Liu, X. R.; Duan, X. R. et al. Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid–electrolyte interphase. Nat. Energy 2023, 8, 1365–1374.

[4]

Li, Y. Q.; Vasileiadis, A.; Zhou, Q.; Lu, Y. X.; Meng, Q. S.; Li, Y.; Ombrini, P.; Zhao, J. B.; Chen, Z.; Niu, Y. S. et al. Origin of fast charging in hard carbon anodes. Nat. Energy 2024, 9, 134–142.

[5]

Wang, R.; Wang, L.; Liu, R.; Li, X. Y.; Wu, Y. Z.; Ran, F. “Fast-charging” anode materials for lithium-ion batteries from perspective of ion diffusion in crystal structure. ACS Nano 2024, 18, 2611–2648.

[6]

Rudola, A.; Sayers, R.; Wright, C. J.; Barker, J. Opportunities for moderate-range electric vehicles using sustainable sodium-ion batteries. Nat. Energy 2023, 8, 215–218.

[7]

Sun, C. C.; Ji, X.; Weng, S. T.; Li, R. H.; Huang, X. T.; Zhu, C. N.; Xiao, X. Z.; Deng, T.; Fan, L. W.; Chen, L. X. et al. 50C fast-charge Li-ion batteries using a graphite anode. Adv. Mater. 2022, 34, 2206020.

[8]

Lu, L. L.; Lu, Y. Y.; Zhu, Z. X.; Shao, J. X.; Yao, H. B.; Wang, S. G.; Zhang, T. W.; Ni, Y.; Wang, X. X.; Yu, S. H. Extremely fast-charging lithium ion battery enabled by dual-gradient structure design. Sci. Adv. 2022, 8, eabm6624.

[9]

Zhao, W. Q.; Lei, S. Y.; Li, J. X.; Jiang, F.; Wu, T. J.; Yang, Y.; Sun, W.; Ji, X. B.; Ge, P. Modulating internal coordination configurations for high-density atomic antimony toward advanced fast-charging sodium-ion batteries. Adv. Energy Mater. 2024, 14, 2304431.

[10]

Zhao, S. Q.; Li, G. H.; Zhang, B. H.; Li, T. M.; Luo, M. C.; Sun, B.; Wang, G. X.; Guo, S. J. Technological roadmap for potassium-ion hybrid capacitors. Joule 2024, 8, 922–943.

[11]

Cai, P.; Wang, K. L.; Wang, T. Q.; Li, H. M.; Zhou, M.; Wang, W.; Jiang, K. Comprehensive insights into potassium-ion capacitors: Mechanisms, materials, devices and future perspectives. Adv. Energy Mater. 2024, 14, 2401183.

[12]

Le Comte, A.; Reynier, Y.; Vincens, C.; Leys, C.; Azaïs, P. First prototypes of hybrid potassium-ion capacitor (KIC): An innovative, cost-effective energy storage technology for transportation applications. J. Power Sources 2017, 363, 34–43.

[13]

Liu, X.; Elia, G. A.; Qin, B. S.; Zhang, H.; Ruschhaupt, P.; Fang, S.; Varzi, A.; Passerini, S. High-power Na-ion and K-ion hybrid capacitors exploiting cointercalation in graphite negative electrodes. ACS Energy Lett. 2019, 4, 2675–2682.

[14]

Li, H. X.; Gong, Y.; Zhou, H. H.; Li, J.; Yang, K.; Mao, B. Y.; Zhang, J. C.; Shi, Y.; Deng, J. H.; Mao, M. X. et al. Ampere-hour-scale soft-package potassium-ion hybrid capacitors enabling 6-minute fast-charging. Nat. Commun. 2023, 14, 6407.

[15]

Qiu, D. P.; Guan, J. Y.; Li, M.; Kang, C. H.; Wei, J. Y.; Li, Y.; Xie, Z. Y.; Wang, F.; Yang, R. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv. Funct. Mater. 2019, 29, 1903496.

[16]

Liu, Z. Y.; Peng, H.; Xie, X.; Wang, X.; Hou, W. B.; Miao, W. X.; Tao, B.; Ma, G. F.; Lei, Z. Q. Coupling of reasonable micro-defect structure and multiple chemisorption sites for boosting the K+ storage capacity in dual-carbon potassium ion hybrid capacitors. Energy Storage Mater. 2024, 65, 103100.

[17]

Yu, L.; He, X. Y.; Peng, B.; Wang, W. T.; Wan, G. L.; Ma, X. Y.; Zeng, S. Y.; Zhang, G. Q. Constructing ion diffusion highway in strongly coupled WSe2-carbon hybrids enables superior energy storage performance. Matter 2023, 6, 1604–1621.

[18]

Liu, S. D.; Kang, L.; Zhang, J.; Jun, S. C.; Yamauchi, Y. Carbonaceous anode materials for non-aqueous sodium- and potassium-ion hybrid capacitors. ACS Energy Lett. 2021, 6, 4127–4154.

[19]

Lu, X. Y.; Zhou, J. J.; Huang, L.; Peng, H. D.; Xu, J. L.; Liu, G. P.; Shi, C. L.; Sun, Z. PP. Low-temperature carbonized N/O/S-tri-doped hard carbon for fast and stable K-ions storage. Adv. Energy Mater. 2024, 14, 2303081.

[20]

Jiang, J. M.; Chen, Z. Y.; Chen, Y. X.; Zhuang, Q. C.; Ju, Z. C.; Zhang, X. G. Engineering local graphitic domains to balance defect active site and electronic conduction ability in coal-derived carbon anode for superior potassium ions storage. Adv. Funct. Mater. 2024, 34, 2402416.

[21]

Yang, Y. H.; Zhou, J.; Rao, A. M.; Lu, B. A. Bio-inspired carbon electrodes for metal-ion batteries. Nanoscale 2024, 16, 5893–5902.

[22]

Wu, L. C.; Fu, H. W.; Lyu, W.; Cha, L. M.; Rao, A. M.; Guo, K. K.; Zhou, J.; Wen, S. C.; Lu, B. A. Rational regulation of high-voltage stability in potassium layered oxide cathodes. ACS Nano 2024, 18, 13415–13427.

[23]

Qiu, D. P.; Hou, Y. L. Carbon materials toward efficient potassium storage: Rational design, performance evaluation and potassium storage mechanism. Green Energy Environ. 2023, 8, 115–140.

[24]

Yuan, F.; Li, Y. N.; Wang, Y. Q.; Li, Z. J.; Wang, Q. J.; Sun, H. L.; Zhang, D.; Wang, W.; Wang, B. Cobalt nanoparticles synergize with oxygen-containing functional groups to realize fast and stable potassium storage for carbon anode. Adv. Funct. Mater. 2023, 33, 2304753.

[25]

Deng, W. T.; Cao, Y. J.; Yuan, G. M.; Liu, G. G.; Zhang, X.; Xia, Y. Y. Realizing improved sodium-ion storage by introducing carbonyl groups and closed micropores into a biomass-derived hard carbon anode. ACS Appl. Mater. Interfaces 2021, 13, 47728–47739.

[26]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 16, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016.
[27]

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

[28]

Krupkova, O.; Ferguson, S. J.; Wuertz-Kozak, K. Stability of (–)-epigallocatechin gallate and its activity in liquid formulations and delivery systems. J. Nutr. Biochem. 2016, 37, 1–12.

[29]

Yan, Y.; Cui, Y. B.; Wang, Q. Y.; Che, Z. X.; Liu, T.; Li, A. R.; Zhou, W. Mg-doped CaCO3 nanoarchitectures assembled by (44¯1¯) high-index facets for efficient trace removal of Pb(II). Rare Met. 2023, 42, 525–535.

[30]

Shahzadi, I.; Islam, M.; Saeed, H.; Shahzadi, A.; Haider, J.; Haider, A.; Imran, M.; Rathore, H. A.; Ul-Hamid, A.; Nabgan, W. et al. Facile synthesis of copolymerized cellulose grafted hydrogel doped calcium oxide nanocomposites with improved antioxidant activity for anti-arthritic and controlled release of doxorubicin for anti-cancer evaluation. Int. J. Biol. Macromol. 2023, 235, 123874.

[31]

Hou, Z. D.; Jiang, M. W.; Lei, D.; Zhang, X.; Gao, Y. Y.; Wang, J. G. Regulation of pseudographitic carbon domain to boost sodium energy storage. Nano Res. 2024, 17, 5188–5196.

[32]

Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742.

[33]

Oh, J. A. S.; Deysher, G.; Ridley, P.; Chen, Y. T.; Cheng, D. Y.; Cronk, A.; Ham, S. Y.; Tan, D. H. S.; Jang, J.; Nguyen, L. H. B. et al. High-performing all-solid-state sodium-ion batteries enabled by the presodiation of hard carbon. Adv. Energy Mater. 2023, 13, 2300776.

[34]

Qiu, D. P.; Zhao, W. T.; Zhang, B.; Ahsan, M. T.; Wang, Y. H.; Zhang, L. L.; Yang, X. L.; Hou, Y. L. Ni-single atoms modification enabled kinetics enhanced and ultra-stable hard carbon anode for sodium-ion batteries. Adv. Energy Mater. 2024, 14, 2400002.

[35]

Zheng, Z.; Hu, S. J.; Yin, W. J.; Peng, J.; Wang, R.; Jin, J.; He, B. B.; Gong, Y. S.; Wang, H. W.; Fan, H. J. CO2-etching creates abundant closed pores in hard carbon for high-plateau-capacity sodium storage. Adv. Energy Mater. 2024, 14, 2303064.

[36]

Lian, J. B.; Subburam, G.; El-Khodary, S. A.; Zhang, K.; Zou, B. B.; Wang, J.; Wang, C.; Ma, J. M.; Wu, X. J. Critical role of aromatic C(sp2)–H in boosting lithium-ion storage. J. Am. Chem. Soc. 2024, 146, 8110–8119.

[37]

Deng, H. L.; Wang, L.; Li, S. Y.; Zhang, M.; Wang, T.; Zhou, J.; Chen, M. X.; Chen, S.; Cao, J. H.; Zhang, Q. S. et al. Radial pores in nitrogen/oxygen dual-doped carbon nanospheres anode boost high-power and ultrastable potassium-ion batteries. Adv. Funct. Mater. 2021, 31, 2107246.

[38]

Yue, W. C.; Yu, Z. S.; Man, Y.; Zhang, X. K.; Li, J. J.; Liu, H. Y.; Ma, X. Q. Synthesis of natural oxygen-doped bamboo-derived hierarchical micro-mesoporous composite carbon materials using a green activation strategy. J. Energy Storage 2024, 90, 111871.

[39]

Barton, T. J.; Bull, L. M.; Klemperer, W. G.; Loy, D. A.; McEnaney, B.; Misono, M.; Monson, P. A.; Pez, G.; Scherer, G. W.; Vartuli, J. C. et al. Tailored porous materials. Chem. Mater. 1999, 11, 2633–2656.

[40]

Kim, H. S.; Cook, J. B.; Lin, H.; Ko, J. S.; Tolbert, S. H.; Ozolins, V.; Dunn, B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3− x . Nat. Mater. 2017, 16, 454–460.

[41]

Zhang, M.; Liu, X. X.; Ji, T. Y.; Li, Y.; Sheng, D. W.; Li, S. D.; Ren, P. P.; Shen, Z. X. High-performance sodium storage for cobalt phosphide composite array electrodes. Rare Met. 2024, 43, 3724–3734.

[42]

Zhang, Y. X.; Chen, Y. Z. Y.; Jiang, Y.; Wang, J.; Zheng, X. Y.; Han, B.; Xia, K. S.; Gao, Q.; Cai, Z.; Zhou, C. G. et al. Construction of VS2/VO x heterostructure via hydrolysis-oxidation coupling reaction with superior sodium storage properties. Adv. Funct. Mater. 2023, 33, 2212785.

[43]

Xu, C. R.; Mu, J. L.; Zhou, T.; Tian, S.; Gao, P. B.; Yin, G. C.; Zhou, J.; Li, F. Surface redox pseudocapacitance boosting vanadium nitride for high-power and ultra-stable potassium-ion capacitors. Adv. Funct. Mater. 2022, 32, 2206501.

[44]

Xie, W.; Zhang, Q. F.; Song, S.; Cheng, X. L.; Yang, Y.; Wang, L. L.; Ouyang, X. P.; Xie, S. H.; Huang, J. Y. High S-doped amorphous carbon/carbon quantum dots coupled micro-frame for highly efficient potassium storage. J. Colloid Interface Sci. 2023, 652, 1522–1532.

[45]

Zhang, B. C.; Liu, S.; Li, H. C.; Wang, D.; Kang, W. P.; Sun, D. F. Confined assembly of hydrated vanadium oxide into hollow mesoporous carbon nanospheres for fast and stable K+ storage capability. Small 2023, 19, 2208228.

[46]

Xu, Y. F.; Li, Y. H.; Wang, T. S.; Liu, Q. S.; Fang, X. R.; Ding, X. T.; Chen, Z. Y.; Zhang, C. L.; Niu, H. T.; Zhou, H. et al. Dual strategies of interface engineering and core–shell structure improve potassium storage performance. Chem. Eng. J. 2024, 479, 147848.

[47]

Xiong, Y.; Zhang, Y. F.; Zhu, C. L.; Yang, L.; Liang, H. Y.; Shi, J.; Chen, J. W.; Tian, W. Q.; Liu, S.; Li, Z. et al. Carbon cathode with heteroatom doping and ultrahigh surface area enabling enhanced capacitive behavior for potassium-ion hybrid capacitors. Rare Met. 2024, 43, 2136–2149.

[48]

Wang, K. F.; Sun, F.; Zhang, B. R.; Wu, D. Y.; Wang, H.; Gao, J. H.; Zhao, G. B. Nitrogen-doped hollow carbon nanoparticles with optimized multiscale nanostructures via dolomite-assisted chemical vapor deposition for high-performance potassium-ion capacitor. Carbon 2023, 214, 118318.

[49]

Ouyang, Y. J.; Li, P.; Ma, Y.; Wei, J. W.; Tian, W. Q.; Chen, J. W.; Shi, J.; Zhu, Y.; Wu, J. Y.; Wang, H. L. Thermal induced conversion of CoFe prussian blue analogs nanocubes wrapped by doped carbon network exhibiting fast and stable potassium ion storage as anode. Small 2024, 20, 2308484.

[50]

Zhong, L.; Qiu, X. Q.; Yang, S. S.; Sun, S. R.; Chen, L. H.; Zhang, W. L. Supermolecule-regulated synthesis strategy of general biomass-derived highly nitrogen-doped carbons toward potassium-ion hybrid capacitors with enhanced performances. Energy Storage Mater. 2023, 61, 102887.

Nano Research
Article number: 94907033
Cite this article:
Qiu D, Wang Y, Zhang L, et al. Regulating the oxygen-atom configuration of carbon anode enabling extremely fast-charging potassium-ion hybrid capacitors. Nano Research, 2025, 18(1): 94907033. https://doi.org/10.26599/NR.2025.94907033
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return