Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Metal-ion hybrid capacitors, such as potassium-ion hybrid capacitors (PIHCs), are regarded as promising fast-charging energy storage devices. However, the kinetics mismatch between the battery anode and the capacitive cathode restricts their fast-charging performance. Precisely constructing carbon anodes with enhanced kinetics is an innovative approach to address this challenge. Herein, using epigallocatechin gallate with high oxygen content as the precursor, oxygen-enriched carbon materials (OEC) with tunable C=O content are successfully synthesized. Effortlessly, the C=O content of OEC is regulated by adjusting the pyrolysis temperature. Serving as an anode for PIHCs, OEC-600 with the highest C=O content exhibits an attractive fast-charging specific capacity of 135.2 mAh∙g−1 at 20 A∙g−1, along with a superior fast-charging cycling stability. Combining theoretical calculations, comprehensive kinetics analysis and in-situ Raman, the positive effects of C=O on the potassium storage capability and reversibility of OEC-600 are revealed. Consequently, PIHCs assembled based on an OEC-600 anode deliver impressive energy/power density of 145.1 Wh∙kg−1/45.9 kW∙kg−1 and superior fast-charging cycling stability with 87.5% of capacity retention over 20,000 cycles at 5 A∙g−1. This work is anticipated to provide an optional design concept toward the carbon anode for fast-charging PIHCs.
301
Views
36
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
© The author(s) 2025
This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made.
See https://creativecommons.org/licenses/by/4.0/