AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (29 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Enhancing dark excitons in monolayer WSe2 via strain-induced hybridization with defect states

Siyu Zhang1,2,3Xing Xie3,4Junying Chen3,4Junnan Ding3,4Zongwen Liu5,6Jian-Tao Wang7,8,9Jun He3,4Xingwang Zhang1,2 ( )Yanping Liu3,4 ( )
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Institute of Quantum Physics, School of Physics, Central South University, Changsha 410083, China
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China
School of Physics and Technology, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Urumqi 830046, China
School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
Show Author Information

Graphical Abstract

This paper explores the enhancement of dark excitons in monolayer WSe2 through strain-induced hybridization with bright defect states, significantly increasing photoluminescence intensity and reducing linewidths. The findings highlight strain engineering as a promising technique to manipulate dark excitons, offering valuable insights for future optoelectronic applications.

Abstract

Dark excitons in group VI transition metal dichalcogenides (TMDCs) have garnered significant interest due to their extended charge lifetime, spin lifetime, and diffusion length compared to bright excitons, presenting exciting opportunities for quantum communication and optoelectronic devices. However, their optical insensitivity poses challenges for investigation and manipulation. Here, we employ a strain engineering approach to introduce localized strain in monolayer WSe2 using a substrate with prepatterned holes, resulting in the hybridization of dark excitons with bright defect states. This hybridization significantly enhances photoluminescence (PL) intensity and reduces the linewidths of dark excitons by orders of magnitude. Additionally, the hybridized states exhibit unique features in temperature-dependent and linearly polarized PL spectra, with stable localization across a broad excitation power range (up to 0.4 mW) and tunable circular polarization under a magnetic field (87% at −9 T). These findings underscore strain engineering as an effective method for enhancing dark excitons and provide new insights into exciton physics in TMDCs, paving the way for advanced optoelectronic technologies.

Electronic Supplementary Material

Download File(s)
7035_ESM.pdf (2.1 MB)

References

[1]

Schaibley, J. R.; Yu, H. Y.; Clark, G.; Rivera, P.; Ross, J. S.; Seyler, K. L.; Yao, W.; Xu, X. D. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.

[2]

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

[3]

Choi, J.; Lane, C.; Zhu, J. X.; Crooker, S. A. Asymmetric magnetic proximity interactions in MoSe2/CrBr3 van der waals heterostructures. Nat. Mater. 2023, 22, 305–310.

[4]

Liu, Y. P.; Gao, Y. J.; Zhang, S. Y.; He, J.; Yu, J.; Liu, Z. W. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695–2711.

[5]

Wu, B.; Zheng, H. H.; Li, S. F.; Wang, C. T.; Ding, J. N.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Effect of layered-coupling in twisted WSe2 moiré superlattices. Nano Res. 2023, 16, 3435–3442.

[6]

Wu, B.; Zheng, H. H.; Li, S. F.; Ding, J. N.; He, J.; Liu, Z. W.; Liu, Y. P. Enhanced interlayer neutral excitons and trions in MoSe2/MoS2/MoSe2 trilayer heterostructure. Nano Res. 2022, 15, 5640–5645.

[7]

Cao, L. K.; Zhong, J. H.; Yu, J.; Zeng, C.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W.; Liu, Y. P. Valley-polarized local excitons in WSe2/WS2 vertical heterostructures. Opt. Express 2020, 28, 22135–22143.

[8]

Zheng, H. H.; Wu, B.; Li, S. F.; He, J.; Chen, K. Q.; Liu, Z. W.; Liu, Y. P. Evidence for interlayer coupling and moiré excitons in twisted WS2/WS2 homostructure superlattices. Nano Res. 2023, 16, 3429–3434.

[9]

Malic, E.; Selig, M.; Feierabend, M.; Brem, S.; Christiansen, D.; Wendler, F.; Knorr, A.; Berghäuser, G. Dark excitons in transition metal dichalcogenides. Phys. Rev. Mater. 2018, 2, 014002.

[10]

MacNeill, D.; Heikes, C.; Mak, K. F.; Anderson, Z.; Kormányos, A.; Zólyomi, V.; Park, J.; Ralph, D. C. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 2015, 114, 037401.

[11]

Erkensten, D.; Brem, S.; Wagner, K.; Gillen, R.; Perea-Causín, R.; Ziegler, J. D.; Taniguchi, T.; Watanabe, K.; Maultzsch, J.; Chernikov, A. et al. Dark exciton-exciton annihilation in monolayer WSe2. Phys. Rev. B 2021, 104, L241406.

[12]

Tang, Y. H.; Mak, K. F.; Shan, J. Long valley lifetime of dark excitons in single-layer WSe2. Nat. Commun. 2019, 10, 4047.

[13]

Mapara, V.; Barua, A.; Turkowski, V.; Trinh, M. T.; Stevens, C.; Liu, H. Z.; Nugera, F. A.; Kapuruge, N.; Gutierrez, H. R.; Liu, F. et al. Bright and dark exciton coherent coupling and hybridization enabled by external magnetic fields. Nano Lett. 2022, 22, 1680–1687.

[14]

Zhang, X. X.; Cao, T.; Lu, Z. G.; Lin, Y. C.; Zhang, F.; Wang, Y.; Li, Z. Q.; Hone, J. C.; Robinson, J. A.; Smirnov, D. et al. Magnetic brightening and control of dark excitons in monolayer WSe2. Nat. Nanotechnol. 2017, 12, 883–888.

[15]

Zhou, Y.; Scuri, G.; Wild, D. S.; High, A. A.; Dibos, A.; Jauregui, L. A.; Shu, C.; De Greve, K.; Pistunova, K.; Joe, A. Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface Plasmon polaritons. Nat. Nanotechnol. 2017, 12, 856–860.

[16]

Khelifa, R.; Shan, S. Y.; Moilanen, A. J.; Taniguchi, T.; Watanabe, K.; Novotny, L. WSe2 light-emitting device coupled to an h-BN waveguide. ACS Photonics 2023, 10, 1328–1333.

[17]

Zhang, C. D.; Chen, Y. X.; Johnson, A.; Li, M. Y.; Li, L. J.; Mende, P. C.; Feenstra, R. M.; Shih, C. K. Probing critical point energies of transition metal dichalcogenides: Surprising indirect gap of single layer WSe2. Nano Lett. 2015, 15, 6494–6500.

[18]

Aslan, B.; Deng, M. D.; Heinz, T. F. Strain tuning of excitons in monolayer WSe2. Phys. Rev. B 2018, 98, 115308.

[19]

López, P. H.; Heeg, S.; Schattauer, C.; Kovalchuk, S.; Kumar, A.; Bock, D. J.; Kirchhof, J. N.; Höfer, B.; Greben, K.; Yagodkin, D. et al. Strain control of hybridization between dark and localized excitons in a 2D semiconductor. Nat. Commun. 2022, 13, 7691.

[20]

Zhong, J. H.; Wu, B.; Madoune, Y.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. PdSe2/MoSe2 vertical heterojunction for self-powered photodetector with high performance. Nano Res. 2022, 15, 2489–2496.

[21]

Srivastava, A.; Sidler, M.; Allain, A. V.; Lembke, D. S.; Kis, A.; Imamoğlu, A. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 2015, 10, 491–496.

[22]

Yu, J.; Kuang, X. F.; Li, J. Z.; Zhong, J. H.; Zeng, C.; Cao, L. K.; Liu, Z. W.; Zeng, Z. X. S.; Luo, Z. Y.; He, T. C. et al. Giant nonlinear optical activity in two-dimensional palladium diselenide. Nat. Commun. 2021, 12, 1083.

[23]

Xie, X.; Ding, J. N.; Wu, B.; Zheng, H. H.; Li, S. F.; Wang, C. T.; He, J.; Liu, Z. W.; Wang, J. T.; Duan, J. A. et al. Observation of optical anisotropy and a linear dichroism transition in layered silicon phosphide. Nanoscale 2023, 15, 12388–12397.

[24]

Xie, X.; Ding, J. N.; Wu, B.; Zheng, H. H.; Li, S. F.; Wang, C. T.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Pressure-induced dynamic tuning of interlayer coupling in twisted WSe2/WSe2 homobilayers. Nano Lett. 2023, 23, 8833–8841.

[25]

Ripin, A.; Peng, R. M.; Zhang, X. W.; Chakravarthi, S.; He, M. H.; Xu, X. D.; Fu, K. M.; Cao, T.; Li, M. Tunable phononic coupling in excitonic quantum emitters. Nat. Nanotechnol. 2023, 18, 1020–1026.

[26]

Gelly, R. J.; Renaud, D.; Liao, X.; Pingault, B.; Bogdanovic, S.; Scuri, G.; Watanabe, K.; Taniguchi, T.; Urbaszek, B.; Park, H. et al. Probing dark exciton navigation through a local strain landscape in a WSe2 monolayer. Nat. Commun. 2022, 13, 232.

[27]

Moon, H.; Grosso, G.; Chakraborty, C.; Peng, C.; Taniguchi, T.; Watanabe, K.; Englund, D. Dynamic exciton funneling by local strain control in a monolayer semiconductor. Nano Lett. 2020, 20, 6791–6797.

[28]

Huang, J. N.; Hoang, T. B.; Mikkelsen, M. H. Probing the origin of excitonic states in monolayer WSe2. Sci. Rep. 2016, 6, 22414.

[29]

Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576–5580.

[30]

Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.

[31]

Hu, B. Q.; Xie, X.; Ouyang, X. Y.; Chen, J. Y.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Unveiling optical anisotropy in disrupted symmetry WSe2/SiP heterostructures. Nano Res. 2024, 17, 8585–8591.

[32]

Aivazian, G.; Gong, Z. R.; Jones, A. M.; Chu, R. L.; Yan, J.; Mandrus, D. G.; Zhang, C. W.; Cobden, D.; Yao, W.; Xu, X. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 2015, 11, 148–152.

[33]

Molas, M. R.; Slobodeniuk, A. O.; Kazimierczuk, T.; Nogajewski, K.; Bartos, M.; Kapuściński, P.; Oreszczuk, K.; Watanabe, K.; Taniguchi, T.; Faugeras, C. et al. Probing and manipulating valley coherence of dark excitons in monolayer WSe2. Phys. Rev. Lett. 2019, 123, 096803.

[34]

Zheng, H. H.; Wu, B.; Wang, C. T.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Yu, G. Q.; Duan, J. A.; Liu, Y. P. Enhanced valley polarization in WSe2/YIG heterostructures via interfacial magnetic exchange effect. Nano Res. 2023, 16, 10580–10586.

[35]

Linhart, L.; Paur, M.; Smejkal, V.; Burgdörfer, J.; Mueller, T.; Libisch, F. Localized intervalley defect excitons as single-photon emitters in WSe2. Phys. Rev. Lett. 2019, 123, 146401.

[36]

Greben, K.; Arora, S.; Harats, M. G.; Bolotin, K. I. Intrinsic and extrinsic defect-related excitons in TMDCs. Nano Lett. 2020, 20, 2544–2550.

[37]

Liu, E. F.; Van Baren, J.; Taniguchi, T.; Watanabe, K.; Chang, Y. C.; Lui, C. H. Valley-selective chiral phonon replicas of dark excitons and trions in monolayer WSe2. Phys. Rev. Res. 2019, 1, 032007.

[38]

Chakraborty, C.; Kinnischtzke, L.; Goodfellow, K. M.; Beams, R.; Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 2015, 10, 507–511.

[39]

Moon, H.; Bersin, E.; Chakraborty, C.; Lu, A. Y.; Grosso, G.; Kong, J.; Englund, D. Strain-correlated localized exciton energy in atomically thin semiconductors. ACS Photonics 2020, 7, 1135–1140.

[40]

Parto, K.; Azzam, S. I.; Banerjee, K.; Moody, G. Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 2021, 12, 3585.

[41]

Wang, Q. X.; Maisch, J.; Tang, F. F.; Zhao, D.; Yang, S.; Joos, R.; Portalupi, S. L.; Michler, P.; Smet, J. H. Highly polarized single photons from strain-induced quasi-1D localized excitons in WSe2. Nano Lett. 2021, 21, 7175–7182.

[42]

Wu, Z. T.; Ni, Z. H. Spectroscopic investigation of defects in two-dimensional materials. Nanophotonics 2017, 6, 1219–1237.

[43]

Yang, D. X.; Fan, X. L.; Zhang, F. X.; Hu, Y.; Luo, Z. F. Electronic and magnetic properties of defected monolayer WSe2 with vacancies. Nanoscale Res. Lett. 2019, 14, 192.

Nano Research
Article number: 94907035
Cite this article:
Zhang S, Xie X, Chen J, et al. Enhancing dark excitons in monolayer WSe2 via strain-induced hybridization with defect states. Nano Research, 2025, 18(1): 94907035. https://doi.org/10.26599/NR.2025.94907035
Topics:

420

Views

109

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 07 August 2024
Revised: 05 September 2024
Accepted: 13 September 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return