Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Dark excitons in group VI transition metal dichalcogenides (TMDCs) have garnered significant interest due to their extended charge lifetime, spin lifetime, and diffusion length compared to bright excitons, presenting exciting opportunities for quantum communication and optoelectronic devices. However, their optical insensitivity poses challenges for investigation and manipulation. Here, we employ a strain engineering approach to introduce localized strain in monolayer WSe2 using a substrate with prepatterned holes, resulting in the hybridization of dark excitons with bright defect states. This hybridization significantly enhances photoluminescence (PL) intensity and reduces the linewidths of dark excitons by orders of magnitude. Additionally, the hybridized states exhibit unique features in temperature-dependent and linearly polarized PL spectra, with stable localization across a broad excitation power range (up to 0.4 mW) and tunable circular polarization under a magnetic field (87% at −9 T). These findings underscore strain engineering as an effective method for enhancing dark excitons and provide new insights into exciton physics in TMDCs, paving the way for advanced optoelectronic technologies.
Schaibley, J. R.; Yu, H. Y.; Clark, G.; Rivera, P.; Ross, J. S.; Seyler, K. L.; Yao, W.; Xu, X. D. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.
Choi, J.; Lane, C.; Zhu, J. X.; Crooker, S. A. Asymmetric magnetic proximity interactions in MoSe2/CrBr3 van der waals heterostructures. Nat. Mater. 2023, 22, 305–310.
Liu, Y. P.; Gao, Y. J.; Zhang, S. Y.; He, J.; Yu, J.; Liu, Z. W. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695–2711.
Wu, B.; Zheng, H. H.; Li, S. F.; Wang, C. T.; Ding, J. N.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Effect of layered-coupling in twisted WSe2 moiré superlattices. Nano Res. 2023, 16, 3435–3442.
Wu, B.; Zheng, H. H.; Li, S. F.; Ding, J. N.; He, J.; Liu, Z. W.; Liu, Y. P. Enhanced interlayer neutral excitons and trions in MoSe2/MoS2/MoSe2 trilayer heterostructure. Nano Res. 2022, 15, 5640–5645.
Cao, L. K.; Zhong, J. H.; Yu, J.; Zeng, C.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W.; Liu, Y. P. Valley-polarized local excitons in WSe2/WS2 vertical heterostructures. Opt. Express 2020, 28, 22135–22143.
Zheng, H. H.; Wu, B.; Li, S. F.; He, J.; Chen, K. Q.; Liu, Z. W.; Liu, Y. P. Evidence for interlayer coupling and moiré excitons in twisted WS2/WS2 homostructure superlattices. Nano Res. 2023, 16, 3429–3434.
Malic, E.; Selig, M.; Feierabend, M.; Brem, S.; Christiansen, D.; Wendler, F.; Knorr, A.; Berghäuser, G. Dark excitons in transition metal dichalcogenides. Phys. Rev. Mater. 2018, 2, 014002.
MacNeill, D.; Heikes, C.; Mak, K. F.; Anderson, Z.; Kormányos, A.; Zólyomi, V.; Park, J.; Ralph, D. C. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 2015, 114, 037401.
Erkensten, D.; Brem, S.; Wagner, K.; Gillen, R.; Perea-Causín, R.; Ziegler, J. D.; Taniguchi, T.; Watanabe, K.; Maultzsch, J.; Chernikov, A. et al. Dark exciton-exciton annihilation in monolayer WSe2. Phys. Rev. B 2021, 104, L241406.
Tang, Y. H.; Mak, K. F.; Shan, J. Long valley lifetime of dark excitons in single-layer WSe2. Nat. Commun. 2019, 10, 4047.
Mapara, V.; Barua, A.; Turkowski, V.; Trinh, M. T.; Stevens, C.; Liu, H. Z.; Nugera, F. A.; Kapuruge, N.; Gutierrez, H. R.; Liu, F. et al. Bright and dark exciton coherent coupling and hybridization enabled by external magnetic fields. Nano Lett. 2022, 22, 1680–1687.
Zhang, X. X.; Cao, T.; Lu, Z. G.; Lin, Y. C.; Zhang, F.; Wang, Y.; Li, Z. Q.; Hone, J. C.; Robinson, J. A.; Smirnov, D. et al. Magnetic brightening and control of dark excitons in monolayer WSe2. Nat. Nanotechnol. 2017, 12, 883–888.
Zhou, Y.; Scuri, G.; Wild, D. S.; High, A. A.; Dibos, A.; Jauregui, L. A.; Shu, C.; De Greve, K.; Pistunova, K.; Joe, A. Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface Plasmon polaritons. Nat. Nanotechnol. 2017, 12, 856–860.
Khelifa, R.; Shan, S. Y.; Moilanen, A. J.; Taniguchi, T.; Watanabe, K.; Novotny, L. WSe2 light-emitting device coupled to an h-BN waveguide. ACS Photonics 2023, 10, 1328–1333.
Zhang, C. D.; Chen, Y. X.; Johnson, A.; Li, M. Y.; Li, L. J.; Mende, P. C.; Feenstra, R. M.; Shih, C. K. Probing critical point energies of transition metal dichalcogenides: Surprising indirect gap of single layer WSe2. Nano Lett. 2015, 15, 6494–6500.
Aslan, B.; Deng, M. D.; Heinz, T. F. Strain tuning of excitons in monolayer WSe2. Phys. Rev. B 2018, 98, 115308.
López, P. H.; Heeg, S.; Schattauer, C.; Kovalchuk, S.; Kumar, A.; Bock, D. J.; Kirchhof, J. N.; Höfer, B.; Greben, K.; Yagodkin, D. et al. Strain control of hybridization between dark and localized excitons in a 2D semiconductor. Nat. Commun. 2022, 13, 7691.
Zhong, J. H.; Wu, B.; Madoune, Y.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. PdSe2/MoSe2 vertical heterojunction for self-powered photodetector with high performance. Nano Res. 2022, 15, 2489–2496.
Srivastava, A.; Sidler, M.; Allain, A. V.; Lembke, D. S.; Kis, A.; Imamoğlu, A. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 2015, 10, 491–496.
Yu, J.; Kuang, X. F.; Li, J. Z.; Zhong, J. H.; Zeng, C.; Cao, L. K.; Liu, Z. W.; Zeng, Z. X. S.; Luo, Z. Y.; He, T. C. et al. Giant nonlinear optical activity in two-dimensional palladium diselenide. Nat. Commun. 2021, 12, 1083.
Xie, X.; Ding, J. N.; Wu, B.; Zheng, H. H.; Li, S. F.; Wang, C. T.; He, J.; Liu, Z. W.; Wang, J. T.; Duan, J. A. et al. Observation of optical anisotropy and a linear dichroism transition in layered silicon phosphide. Nanoscale 2023, 15, 12388–12397.
Xie, X.; Ding, J. N.; Wu, B.; Zheng, H. H.; Li, S. F.; Wang, C. T.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Pressure-induced dynamic tuning of interlayer coupling in twisted WSe2/WSe2 homobilayers. Nano Lett. 2023, 23, 8833–8841.
Ripin, A.; Peng, R. M.; Zhang, X. W.; Chakravarthi, S.; He, M. H.; Xu, X. D.; Fu, K. M.; Cao, T.; Li, M. Tunable phononic coupling in excitonic quantum emitters. Nat. Nanotechnol. 2023, 18, 1020–1026.
Gelly, R. J.; Renaud, D.; Liao, X.; Pingault, B.; Bogdanovic, S.; Scuri, G.; Watanabe, K.; Taniguchi, T.; Urbaszek, B.; Park, H. et al. Probing dark exciton navigation through a local strain landscape in a WSe2 monolayer. Nat. Commun. 2022, 13, 232.
Moon, H.; Grosso, G.; Chakraborty, C.; Peng, C.; Taniguchi, T.; Watanabe, K.; Englund, D. Dynamic exciton funneling by local strain control in a monolayer semiconductor. Nano Lett. 2020, 20, 6791–6797.
Huang, J. N.; Hoang, T. B.; Mikkelsen, M. H. Probing the origin of excitonic states in monolayer WSe2. Sci. Rep. 2016, 6, 22414.
Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576–5580.
Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.
Hu, B. Q.; Xie, X.; Ouyang, X. Y.; Chen, J. Y.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Unveiling optical anisotropy in disrupted symmetry WSe2/SiP heterostructures. Nano Res. 2024, 17, 8585–8591.
Aivazian, G.; Gong, Z. R.; Jones, A. M.; Chu, R. L.; Yan, J.; Mandrus, D. G.; Zhang, C. W.; Cobden, D.; Yao, W.; Xu, X. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 2015, 11, 148–152.
Molas, M. R.; Slobodeniuk, A. O.; Kazimierczuk, T.; Nogajewski, K.; Bartos, M.; Kapuściński, P.; Oreszczuk, K.; Watanabe, K.; Taniguchi, T.; Faugeras, C. et al. Probing and manipulating valley coherence of dark excitons in monolayer WSe2. Phys. Rev. Lett. 2019, 123, 096803.
Zheng, H. H.; Wu, B.; Wang, C. T.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Yu, G. Q.; Duan, J. A.; Liu, Y. P. Enhanced valley polarization in WSe2/YIG heterostructures via interfacial magnetic exchange effect. Nano Res. 2023, 16, 10580–10586.
Linhart, L.; Paur, M.; Smejkal, V.; Burgdörfer, J.; Mueller, T.; Libisch, F. Localized intervalley defect excitons as single-photon emitters in WSe2. Phys. Rev. Lett. 2019, 123, 146401.
Greben, K.; Arora, S.; Harats, M. G.; Bolotin, K. I. Intrinsic and extrinsic defect-related excitons in TMDCs. Nano Lett. 2020, 20, 2544–2550.
Liu, E. F.; Van Baren, J.; Taniguchi, T.; Watanabe, K.; Chang, Y. C.; Lui, C. H. Valley-selective chiral phonon replicas of dark excitons and trions in monolayer WSe2. Phys. Rev. Res. 2019, 1, 032007.
Chakraborty, C.; Kinnischtzke, L.; Goodfellow, K. M.; Beams, R.; Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 2015, 10, 507–511.
Moon, H.; Bersin, E.; Chakraborty, C.; Lu, A. Y.; Grosso, G.; Kong, J.; Englund, D. Strain-correlated localized exciton energy in atomically thin semiconductors. ACS Photonics 2020, 7, 1135–1140.
Parto, K.; Azzam, S. I.; Banerjee, K.; Moody, G. Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 2021, 12, 3585.
Wang, Q. X.; Maisch, J.; Tang, F. F.; Zhao, D.; Yang, S.; Joos, R.; Portalupi, S. L.; Michler, P.; Smet, J. H. Highly polarized single photons from strain-induced quasi-1D localized excitons in WSe2. Nano Lett. 2021, 21, 7175–7182.
Wu, Z. T.; Ni, Z. H. Spectroscopic investigation of defects in two-dimensional materials. Nanophotonics 2017, 6, 1219–1237.
Yang, D. X.; Fan, X. L.; Zhang, F. X.; Hu, Y.; Luo, Z. F. Electronic and magnetic properties of defected monolayer WSe2 with vacancies. Nanoscale Res. Lett. 2019, 14, 192.
420
Views
109
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).