Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The practical application of rotating triboelectric nanogenerators is often limited by the wear of high-friction surface materials and low surface charge density. In addition to the charge pump replenishment strategy, suppressing charge decay is also crucial for increasing surface charge density. Here, we present a high performance rotary triboelectric nanogenerator (HPR-TENG) based on a coplanar charge pumping strategy and polyvinyl chloride (PVC) film. It has been demonstrated that applying PVC film to the surface of the storage electrode of the main TENG (M-TENG) significantly enhances the M-TENG’s output performance. Furthermore, the HPR-TENG with three layers of PVC film pasted achieved the best output performance, with a peak-to-peak output voltage of 2828 V, a peak-to-peak output current of 327 μA and a charge transfer of 0.81 μC at 500 rpm. In addition, the output improvement effects of different materials are ranked. the TENG with 3 layers of PVC film pasted on it has a maximum output power of 748 mW at a load resistance of 4 × 106 Ω. HPR-TENG’s output performance remains consistent after 100,000 cycles, which shows excellent stability. The excellent electrical performance of the HPR-TENG can be used as the energy supply for the tip high-voltage breakdown sensor system, which can achieve 14 breakdowns in 10 s. Due to its extraordinary electrical performance, HPR-TENG can not only serve as an energy supply for cutting-edge high-voltage breakdown sensor systems, but also has the potential to serve as an energy supply for high-pressure sterilization, high-pressure vacuum and water electrolysis.
Wang, Z. L. Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137.
Shi, Q. F.; Dong, B. W.; He, T. Y. Y.; Sun, Z. D.; Zhu, J. X.; Zhang, Z.; Lee, C. Progress in wearable electronics/photonics-moving toward the era of artificial intelligence and internet of things. InfoMat 2020, 2, 1131–1162.
Sengupta, D.; Romano, J.; Kottapalli, A. G. P. Electrospun bundled carbon nanofibers for skin-inspired tactile sensing, proprioception and gesture tracking applications. npj Flex. Electron. 2021, 5, 29.
Bai, Y.; Xu, L.; Lin, S. Q.; Luo, J. J.; Qin, H. F.; Han, K.; Wang, Z. L. Charge pumping strategy for rotation and sliding type triboelectric nanogenerators. Adv. Energy Mater. 2020, 10, 2000605.
Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.
Wang, Z. L. On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 2020, 68, 104272.
Yu, A. F.; Jiang, P.; Lin Wang, Z. Nanogenerator as self-powered vibration sensor. Nano Energy 2012, 1, 418–423.
Fan, F. R.; Tian, Z. Q.; Lin Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.
Zi, Y. L.; Wang, J.; Wang, S. H.; Li, S. M.; Wen, Z.; Guo, H. Y.; Wang, Z. L. Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 2016, 7, 10987.
Zhu, G.; Peng, B.; Chen, J.; Jing, Q. S.; Wang, Z. L. Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy 2015, 14, 126–138.
Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.
Yang, Z.; Yang, Y. Y.; Wang, H.; Liu, F.; Lu, Y. J.; Ji, L. H.; Wang, Z. L.; Cheng, J. Charge pumping for sliding-mode triboelectric nanogenerator with voltage stabilization and boosted current. Adv. Energy Mater. 2021, 11, 2101147.
Wang, J. Y.; Pan, L.; Guo, H. Y.; Zhang, B. B.; Zhang, R. R.; Wu, Z. Y.; Wu, C. S.; Yang, L. J.; Liao, R. J.; Wang, Z. L. Rational structure optimized hybrid nanogenerator for highly efficient water wave energy harvesting. Adv. Energy Mater. 2019, 9, 1802892.
Zhang, H.; Quan, L. W.; Chen, J. K.; Xu, C. K.; Zhang, C. H.; Dong, S. R.; Lü, C. F.; Luo, J. K. A general optimization approach for contact-separation triboelectric nanogenerator. Nano Energy 2019, 56, 700–707.
Hao, C. C.; Wang, Z. K.; Cai, M. Z.; Liu, T. S.; Zhai, C.; Cui, J.; Zheng, Y. Q.; Xue, C. Y. High-performance coaxial reversal rotational triboelectric nanogenerator based on charge pumping strategy driving tip high voltage breakdown. Nano Energy 2024, 128, 109857.
Bai, S. M.; Cui, J.; Zheng, Y. Q.; Li, G.; Liu, T. S.; Liu, Y. B.; Hao, C. C.; Xue, C. Y. Electromagnetic-triboelectric energy harvester based on vibration-to-rotation conversion for human motion energy exploitation. Appl. Energy 2023, 329, 120292.
Wang, H.; Shi, M. Y.; Zhu, K.; Su, Z. M.; Cheng, X. L.; Song, Y.; Chen, X. X.; Liao, Z. Q.; Zhang, M.; Zhang, H. X. High performance triboelectric nanogenerators with aligned carbon nanotubes. Nanoscale 2016, 8, 18489–18494.
Xu, J.; Zou, Y. J.; Nashalian, A.; Chen, J. Leverage surface chemistry for high-performance triboelectric nanogenerators. Front. Chem. 2020, 8, 577327.
Wang, Z. K.; Hao, C. C.; Cai, M. Z.; Cui, J.; Zheng, Y. Q.; Xue, C. Y. A highoutput PDMS-MXene/gelatin triboelectric nanogenerator with the petal surface-microstructure. Nano Res. 2024, 17, 4151–4162.
Wang, J.; Wu, C. S.; Dai, Y. J.; Zhao, Z. H.; Wang, A.; Zhang, T. J.; Wang, Z. L. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun. 2017, 8, 88.
Wang, J.; Zhang, B. F.; Zhao, Z. H.; Gao, Y. K.; Liu, D.; Liu, X. R.; Yang, P. Y.; Guo, Z. T.; Wang, Z. L.; Wang, J. Boosting the charge density of triboelectric nanogenerator by suppressing air breakdown and dielectric charge leakage. Adv. Energy Mater. 2024, 14, 2303874.
Lv, S. B.; Li, H. Y.; Xie, Y. Y.; Zhang, B. B.; Liu, B. C.; Yang, J.; Guo, H. Y.; Yang, Z. B.; Lin, Z. M. High-performance and durable rotational triboelectric nanogenerator leveraging soft-contact coplanar charge pumping strategy. Adv. Energy Mater. 2023, 13, 2301832.
Feng, H. Q.; Bai, Y.; Qiao, L.; Li, Z.; Wang, E. G.; Chao, S. Y.; Qu, X. C.; Cao, Y.; Liu, Z.; Han, X. et al. An ultra-simple charge supplementary strategy for high performance rotary triboelectric nanogenerators. Small 2021, 17, 2101430.
Xu, L.; Bu, T. Z.; Yang, X. D.; Zhang, C.; Wang, Z. L. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy 2018, 49, 625–633.
Wang, H. M.; Xu, L.; Bai, Y.; Wang, Z. L. Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat. Commun. 2020, 11, 4203.
Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.
Lin, Z. M.; Zhang, B. B.; Xie, Y. Y.; Wu, Z. Y.; Yang, J.; Wang, Z. L. Elastic-connection and soft-contact triboelectric nanogenerator with superior durability and efficiency. Adv. Funct. Mater. 2021, 31, 2105237.
Liu, T. S.; Cui, J.; Zheng, Y. Q.; Bai, S. M.; Hao, C. C.; Xue, C. Y. A self-powered inert-gas sensor based on gas ionization driven by a triboelectric nanogenerator. Nano Energy 2023, 106, 108083.
Wang, R.; Cui, J.; Liu, Y. B.; Liu, D.; Du, C. H.; Yan, S. B.; Zheng, Y. Q.; Xue, C. Y. Multi-pulse triboelectric nanogenerator based on micro-gap corona discharge for enhancement of output performance. Energy 2022, 244, 122588.
Zheng, Y. Q.; Liu, T. S.; Cui, J.; Zhang, Z. X.; Du, C. H.; Gao, X.; Chu, C. Q.; Xue, C. Y. High performance triboelectric nanogenerator with needle tips discharge for gas detection applications. Sens. Actuators A: Phys. 2023, 362, 114613.
401
Views
45
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).