AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (22 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Enhancing output performance of triboelectric nanogenerator by increasing charge storage capacity of electrodes

Congcong HaoZekun WangMingzhe CaiShuaining ChengZhongxin WangCong ZhaiJuan CuiYongqiu Zheng ( )Chenyang Xue
Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
Show Author Information

Graphical Abstract

A high performance rotary triboelectric nanogenerator (HPR-TENG) based on a coplanar charge pumping strategy and polyvinyl chloride (PVC) film is developed. Due to its extraordinary electrical performance, HPR-TENG can not only serve as an energy supply for cutting-edge high-voltage breakdown sensor systems, but also has the potential to serve as an energy supply for high-pressure sterilization, high-pressure vacuum and water electrolysis.

Abstract

The practical application of rotating triboelectric nanogenerators is often limited by the wear of high-friction surface materials and low surface charge density. In addition to the charge pump replenishment strategy, suppressing charge decay is also crucial for increasing surface charge density. Here, we present a high performance rotary triboelectric nanogenerator (HPR-TENG) based on a coplanar charge pumping strategy and polyvinyl chloride (PVC) film. It has been demonstrated that applying PVC film to the surface of the storage electrode of the main TENG (M-TENG) significantly enhances the M-TENG’s output performance. Furthermore, the HPR-TENG with three layers of PVC film pasted achieved the best output performance, with a peak-to-peak output voltage of 2828 V, a peak-to-peak output current of 327 μA and a charge transfer of 0.81 μC at 500 rpm. In addition, the output improvement effects of different materials are ranked. the TENG with 3 layers of PVC film pasted on it has a maximum output power of 748 mW at a load resistance of 4 × 106 Ω. HPR-TENG’s output performance remains consistent after 100,000 cycles, which shows excellent stability. The excellent electrical performance of the HPR-TENG can be used as the energy supply for the tip high-voltage breakdown sensor system, which can achieve 14 breakdowns in 10 s. Due to its extraordinary electrical performance, HPR-TENG can not only serve as an energy supply for cutting-edge high-voltage breakdown sensor systems, but also has the potential to serve as an energy supply for high-pressure sterilization, high-pressure vacuum and water electrolysis.

Electronic Supplementary Material

Download File(s)
7039_ESM.pdf (338.2 KB)

References

[1]

Wang, Z. L. Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137.

[2]

Shi, Q. F.; Dong, B. W.; He, T. Y. Y.; Sun, Z. D.; Zhu, J. X.; Zhang, Z.; Lee, C. Progress in wearable electronics/photonics-moving toward the era of artificial intelligence and internet of things. InfoMat 2020, 2, 1131–1162.

[3]

Sengupta, D.; Romano, J.; Kottapalli, A. G. P. Electrospun bundled carbon nanofibers for skin-inspired tactile sensing, proprioception and gesture tracking applications. npj Flex. Electron. 2021, 5, 29.

[4]

Bai, Y.; Xu, L.; Lin, S. Q.; Luo, J. J.; Qin, H. F.; Han, K.; Wang, Z. L. Charge pumping strategy for rotation and sliding type triboelectric nanogenerators. Adv. Energy Mater. 2020, 10, 2000605.

[5]

Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.

[6]

Wang, Z. L. On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 2020, 68, 104272.

[7]

Yu, A. F.; Jiang, P.; Lin Wang, Z. Nanogenerator as self-powered vibration sensor. Nano Energy 2012, 1, 418–423.

[8]

Fan, F. R.; Tian, Z. Q.; Lin Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[9]

Zi, Y. L.; Wang, J.; Wang, S. H.; Li, S. M.; Wen, Z.; Guo, H. Y.; Wang, Z. L. Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 2016, 7, 10987.

[10]

Zhu, G.; Peng, B.; Chen, J.; Jing, Q. S.; Wang, Z. L. Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy 2015, 14, 126–138.

[11]

Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

[12]

Yang, Z.; Yang, Y. Y.; Wang, H.; Liu, F.; Lu, Y. J.; Ji, L. H.; Wang, Z. L.; Cheng, J. Charge pumping for sliding-mode triboelectric nanogenerator with voltage stabilization and boosted current. Adv. Energy Mater. 2021, 11, 2101147.

[13]

Wang, J. Y.; Pan, L.; Guo, H. Y.; Zhang, B. B.; Zhang, R. R.; Wu, Z. Y.; Wu, C. S.; Yang, L. J.; Liao, R. J.; Wang, Z. L. Rational structure optimized hybrid nanogenerator for highly efficient water wave energy harvesting. Adv. Energy Mater. 2019, 9, 1802892.

[14]

Zhang, H.; Quan, L. W.; Chen, J. K.; Xu, C. K.; Zhang, C. H.; Dong, S. R.; Lü, C. F.; Luo, J. K. A general optimization approach for contact-separation triboelectric nanogenerator. Nano Energy 2019, 56, 700–707.

[15]

Hao, C. C.; Wang, Z. K.; Cai, M. Z.; Liu, T. S.; Zhai, C.; Cui, J.; Zheng, Y. Q.; Xue, C. Y. High-performance coaxial reversal rotational triboelectric nanogenerator based on charge pumping strategy driving tip high voltage breakdown. Nano Energy 2024, 128, 109857.

[16]

Bai, S. M.; Cui, J.; Zheng, Y. Q.; Li, G.; Liu, T. S.; Liu, Y. B.; Hao, C. C.; Xue, C. Y. Electromagnetic-triboelectric energy harvester based on vibration-to-rotation conversion for human motion energy exploitation. Appl. Energy 2023, 329, 120292.

[17]

Wang, H.; Shi, M. Y.; Zhu, K.; Su, Z. M.; Cheng, X. L.; Song, Y.; Chen, X. X.; Liao, Z. Q.; Zhang, M.; Zhang, H. X. High performance triboelectric nanogenerators with aligned carbon nanotubes. Nanoscale 2016, 8, 18489–18494.

[18]

Xu, J.; Zou, Y. J.; Nashalian, A.; Chen, J. Leverage surface chemistry for high-performance triboelectric nanogenerators. Front. Chem. 2020, 8, 577327.

[19]

Wang, Z. K.; Hao, C. C.; Cai, M. Z.; Cui, J.; Zheng, Y. Q.; Xue, C. Y. A highoutput PDMS-MXene/gelatin triboelectric nanogenerator with the petal surface-microstructure. Nano Res. 2024, 17, 4151–4162.

[20]

Wang, J.; Wu, C. S.; Dai, Y. J.; Zhao, Z. H.; Wang, A.; Zhang, T. J.; Wang, Z. L. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun. 2017, 8, 88.

[21]

Wang, J.; Zhang, B. F.; Zhao, Z. H.; Gao, Y. K.; Liu, D.; Liu, X. R.; Yang, P. Y.; Guo, Z. T.; Wang, Z. L.; Wang, J. Boosting the charge density of triboelectric nanogenerator by suppressing air breakdown and dielectric charge leakage. Adv. Energy Mater. 2024, 14, 2303874.

[22]

Lv, S. B.; Li, H. Y.; Xie, Y. Y.; Zhang, B. B.; Liu, B. C.; Yang, J.; Guo, H. Y.; Yang, Z. B.; Lin, Z. M. High-performance and durable rotational triboelectric nanogenerator leveraging soft-contact coplanar charge pumping strategy. Adv. Energy Mater. 2023, 13, 2301832.

[23]

Feng, H. Q.; Bai, Y.; Qiao, L.; Li, Z.; Wang, E. G.; Chao, S. Y.; Qu, X. C.; Cao, Y.; Liu, Z.; Han, X. et al. An ultra-simple charge supplementary strategy for high performance rotary triboelectric nanogenerators. Small 2021, 17, 2101430.

[24]

Xu, L.; Bu, T. Z.; Yang, X. D.; Zhang, C.; Wang, Z. L. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy 2018, 49, 625–633.

[25]

Wang, H. M.; Xu, L.; Bai, Y.; Wang, Z. L. Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat. Commun. 2020, 11, 4203.

[26]

Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.

[27]

Lin, Z. M.; Zhang, B. B.; Xie, Y. Y.; Wu, Z. Y.; Yang, J.; Wang, Z. L. Elastic-connection and soft-contact triboelectric nanogenerator with superior durability and efficiency. Adv. Funct. Mater. 2021, 31, 2105237.

[28]

Liu, T. S.; Cui, J.; Zheng, Y. Q.; Bai, S. M.; Hao, C. C.; Xue, C. Y. A self-powered inert-gas sensor based on gas ionization driven by a triboelectric nanogenerator. Nano Energy 2023, 106, 108083.

[29]

Wang, R.; Cui, J.; Liu, Y. B.; Liu, D.; Du, C. H.; Yan, S. B.; Zheng, Y. Q.; Xue, C. Y. Multi-pulse triboelectric nanogenerator based on micro-gap corona discharge for enhancement of output performance. Energy 2022, 244, 122588.

[30]

Zheng, Y. Q.; Liu, T. S.; Cui, J.; Zhang, Z. X.; Du, C. H.; Gao, X.; Chu, C. Q.; Xue, C. Y. High performance triboelectric nanogenerator with needle tips discharge for gas detection applications. Sens. Actuators A: Phys. 2023, 362, 114613.

Nano Research
Article number: 94907039
Cite this article:
Hao C, Wang Z, Cai M, et al. Enhancing output performance of triboelectric nanogenerator by increasing charge storage capacity of electrodes. Nano Research, 2025, 18(1): 94907039. https://doi.org/10.26599/NR.2025.94907039
Topics:

401

Views

45

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 24 August 2024
Revised: 13 September 2024
Accepted: 18 September 2024
Published: 24 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return