A bow-tie nanoantenna (BNA) array is one of the nanostructures most suitable for maximizing the field enhancement effect by surface plasmon resonance (SPR). Among several applications, the BNA array can enhance the intensity of pump lasers, especially in high-order harmonic generation (HHG). In this study, the focused ion beam (FIB)-scanning electron microscopy AutoScript 4 toolkit was used to automate the entire process of FIB milling and reduce the time required, spending less than 3 h fabricating a large area of 50 μm × 50 μm, and at the same time improving the quality of the BNA array through internal object control. In addition, diamond, which has a thermal conductivity more than 90 times higher than sapphire, was used as a substrate for the BNA array. For the first time in the world, the BNA was not damaged even when exposed to a laser intensity of 1012 W/cm2 for a long time. Surface-enhanced Raman scattering (SERS) measurements were performed by combining 4-aminothiophenol (4-ATP) as a probe molecule in fabricated large-area BNA arrays, confirming the large electric field enhancement in the gap of BNA, and the calculated enhancement factor (EF) was 8.83 × 109. In addition, the electric field simulation and heat transfer simulation using the finite element method (FEM) showed a 250-fold increase in the electric field based on the input unit electric field (1 V/m), a 9 times faster heat diffusion rate for the diamond substrate than the sapphire substrate based on the fall time, and 67.5 times faster the heat diffusion rate for the diamond substrate than the sapphire substrate based on the stabilization time. Therefore, both the experimental and simulation results showed that the fabricated large-area BNA array can be applied to high-power HHG.
Wood, R. W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. Phys. Soc. London 1902, 18, 269–275.
Wood, R. W. XXVII. Diffraction gratings with controlled groove form and abnormal distribution of intensity. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 1912, 23, 310–317.
Kretschmann, E.; Raether, H. Notizen: Radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch. A 1968, 23A, 2135–2136.
Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. A Hadrons Nucl. 1968, 216, 398–410.
Stenberg, E.; Persson, B.; Roos, H.; Urbaniczky, C. Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J. Colloid Interface Sci. 1991, 143, 513–526.
Löfås, S.; Malmqvist, M.; Rönnberg, I.; Stenberg, E.; Liedberg, B.; Lundström, I. Bioanalysis with surface plasmon resonance. Sens. Actuators B Chem. 1991, 5, 79–84.
Liedberg, B.; Lundström, I.; Stenberg, E. Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sens. Actuators B Chem. 1993, 11, 63–72.
Jorgenson, R. C.; Yee, S. S. A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators B Chem. 1993, 12, 213–220.
Harris, R. D.; Wilkinson, J. S. Waveguide surface plasmon resonance sensors. Sens. Actuators B Chem. 1995, 29, 261–267.
Lyon, L. A.; Musick, M. D.; Natan, M. J. Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal. Chem. 1998, 70, 5177–5183.
Wessel, J. Surface-enhanced optical microscopy. J. Opt. Soc. Am. B 1985, 2, 1538–1541.
Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166.
Jeanmaire, D. L.; van Duyne, R. P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interf. Electrochem. 1977, 84, 1–20.
Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217.
Gersten, J.; Nitzan, A. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J. Chem. Phys. 1980, 73, 3023–3037.
Wokaun, A.; Gordon, J. P.; Liao, P. F. Radiation damping in surface-enhanced Raman scattering. Phys. Rev. Lett. 1982, 48, 957–960.
Meier, M.; Wokaun, A.; Liao, P. F. Enhanced fields on rough surfaces: Dipolar interactions among particles of sizes exceeding the Rayleigh limit. J. Opt. Soc. Am. B 1985, 2, 931–949.
Duan, H. G.; Hu, H. L.; Kumar, K.; Shen, Z. X.; Yang, J. K. W. Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps. ACS Nano 2011, 5, 7593–7600.
Duan, H. G.; Fernández-Domínguez, A. I.; Bosman, M.; Maier, S. A.; Yang, J. K. W. Nanoplasmonics: Classical down to the nanometer scale. Nano Lett. 2012, 12, 1683–1689.
Schuck, P. J.; Fromm, D. P.; Sundaramurthy, A.; Kino, G. S.; Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 2005, 94, 017402.
Muskens, O. L.; Giannini, V.; Sánchez-Gil, J. A.; Rivas, J. G. Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett. 2007, 7, 2871–2875.
Koh, A. L.; Fernández-Domínguez, A. I.; McComb, D. W.; Maier, S. A.; Yang, J. K. W. High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Nano Lett. 2011, 11, 1323–1330.
Kim, S.; Jin, J.; Kim, Y. J.; Park, I. Y.; Kim, Y.; Kim, S. W. High-harmonic generation by resonant plasmon field enhancement. Nature 2008, 453, 757–760.
Sivis, M.; Duwe, M.; Abel, B.; Ropers, C. Nanostructure-enhanced atomic line emission. Nature 2012, 485, E1–E2.
Sivis, M.; Duwe, M.; Abel, B.; Ropers, C. Extreme-ultraviolet light generation in plasmonic nanostructures. Nat. Phys. 2013, 9, 304–309.
Pfullmann, N.; Waltermann, C.; Noack, M.; Rausch, S.; Nagy, T.; Reinhardt, C.; Kovačev, M.; Knittel, V.; Bratschitsch, R.; Akemeier, D. et al. Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation. New J. Phys. 2013, 15, 093027.
Kollmann, H.; Piao, X. J.; Esmann, M.; Becker, S. F.; Hou, D. C.; Huynh, C.; Kautschor, L. O.; Bösker, G.; Vieker, H.; Beyer, A. et al. Toward plasmonics with nanometer precision: Nonlinear optics of helium-ion milled gold nanoantennas. Nano Lett. 2014, 14, 4778–4784.
Kim, M. K.; Sim, H.; Yoon, S. J.; Gong, S. H.; Ahn, C. W.; Cho, Y. H.; Lee, Y. H. Squeezing photons into a point-like space. Nano Lett. 2015, 15, 4102–4107.
Yoon, S. J.; Lee, J.; Han, S.; Kim, C. K.; Ahn, C. W.; Kim, M. K.; Lee, Y. H. Non-fluorescent nanoscopic monitoring of a single trapped nanoparticle via nonlinear point sources. Nat. Commun. 2018, 9, 2218.
Wang, B.; Singh, S. C.; Lu, H. Y.; Guo, C. L. Design of aluminum bowtie nanoantenna array with geometrical control to tune LSPR from UV to Near-IR for optical sensing. Plasmonics 2020, 15, 609–621.
Crozier, K. B.; Sundaramurthy, A.; Kino, G. S.; Quate, C. F. Optical antennas: Resonators for local field enhancement. J. Appl. Phys. 2003, 94, 4632–4642.
Wang, Q. G.; Liu, L. J.; Wang, Y. F.; Liu, P.; Jiang, H. W.; Xu, Z.; Ma, Z.; Oren, S.; Chow, E. K. C.; Lu, M. et al. Tunable optical nanoantennas incorporating bowtie nanoantenna arrays with stimuli-responsive polymer. Sci. Rep. 2016, 5, 18567.
Kaniber, M.; Schraml, K.; Regler, A.; Bartl, J.; Glashagen, G.; Flassig, F.; Wierzbowski, J.; Finley, J. J. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method. Sci. Rep. 2016, 6, 23203.
Feng, L.; Ma, R. P.; Wang, Y. D.; Xu, D. R.; Xiao, D. Y.; Liu, L. X.; Lu, N. Silver-coated elevated bowtie nanoantenna arrays: Improving the near-field enhancement of gap cavities for highly active surface-enhanced Raman scattering. Nano Res. 2015, 8, 3715–3724.
Laible, F.; Gollmer, D. A.; Dickreuter, S.; Kern, D. P.; Fleischer, M. Continuous reversible tuning of the gap size and plasmonic coupling of bow tie nanoantennas on flexible substrates. Nanoscale 2018, 10, 14915–14922.
Pacheco-Peña, V.; Alves, R. A.; Navarro-Cía, M. From symmetric to asymmetric bowtie nanoantennas: Electrostatic conformal mapping perspective. Nanophotonics 2020, 9, 1177–1187.
Hu, H.; Tao, W.; Laible, F.; Maurer, T.; Adam, P. M.; Horneber, A.; Fleischer, M. Spectral exploration of asymmetric bowtie nanoantennas. Micro Nano Eng. 2022, 17, 100166.
Xiong, Y.; Hu, H. T.; Zhang, T. Z.; Xu, Y. H.; Gao, F.; Chen, W.; Zheng, G. C.; Zhang, S. P.; Xu, H. X. Quantitative and sensitive detection of alpha fetoprotein in serum by a plasmonic sensor. Nanophotonics 2022, 11, 4821–4829.
Pei, H.; Peng, W. F.; Zhang, J. L.; Zhao, J. X.; Qi, J. L.; Yu, C. J.; Li, J.; Wei, Y. Surface-enhanced photoluminescence and Raman spectroscopy of single molecule confined in coupled Au bowtie nanoantenna. Nanotechnology 2024, 35, 155201.
Li, S.; Tan, W. Y.; Liu, S. X.; Liu, G. Q.; Wang, Y.; Chen, J.; Tang, C. J.; Du, W.; Liu, Z. Q. Efficient photothermal therapy with spatially localized high-temperature generation by refractory absorber. Appl. Phys. Lett. 2023, 123, 131701.
Yang, J. K. W.; Cord, B.; Duan, H. G.; Berggren, K. K.; Klingfus, J.; Nam, S. W.; Kim, K. B.; Rooks, M. J. Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography. J. Vac. Sci. Technol. B 2009, 27, 2622–2627.
Tisch, J. W. G.; Ditmire, T.; Fraser, D. J.; Hay, N.; Mason, M. B.; Springate, E.; Marangos, J. P.; Hutchinson, M. H. R. Investigation of high-harmonic generation from xenon atom clusters. J. Phys. B: At. Mol. Opt. Phys. 1997, 30, L709–L714.
Vozzi, C.; Nisoli, M.; Caumes, J. P.; Sansone, G.; Stagira, S.; De Silvestri, S.; Vecchiocattivi, M.; Bassi, D.; Pascolini, M.; Poletto, L. et al. Cluster effects in high-order harmonics generated by ultrashort light pulses. Appl. Phys. Lett. 2005, 86, 111121.
Park, H.; Wang, Z.; Xiong, H.; Schoun, S. B.; Xu, J. L.; Agostini, P.; DiMauro, L. F. Size-dependent high-order harmonic generation in rare-gas clusters. Phys. Rev. Lett. 2014, 113, 263401.
Tao, Y.; Hagmeijer, R.; Bastiaens, H. M. J.; Goh, S. J.; van der Slot, P. J. M.; Biedron, S. G.; Milton, S. V.; Boller, K. J. Cluster size dependence of high-order harmonic generation. New J. Phys. 2017, 19, 083017.
Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.
Phillip, H. R.; Taft, E. A. Kramers-kronig analysis of reflectance data for diamond. Phys. Rev. 1964, 136, A1445–A1448.
Malitson, I. H.; Dodge, M. J. Refractive index and birefringence of synthetic sapphire. J. Opt. Soc. Am. 1972, 62, 1405.
Cahill, D. G.; Lee, S. M.; Selinder, T. I. Thermal conductivity of κ-Al2O3 α-Al2O3 wear-resistant coatings. J. Appl. Phys. 1998, 83, 5783–5786.
Chen, Q. J.; Song, C. W.; Zhang, H. J.; Huang, Y. D., Li, G.; Du, K. Study on the surface morphology formation mechanism of femtosecond laser processing gold. Opt. Laser Technol. 2024, 169, 110048.
Kim, I.; Mun, J.; Hwang, W.; Yang, Y.; Rho, J. Capillary-force-induced collapse lithography for controlled plasmonic nanogap structures. Microsyst. Nanoeng. 2020, 6, 65.
Kim, I.; Mun, J.; Baek, K. M.; Kim, M.; Hao, C. L.; Qiu, C. W.; Jung, Y. S.; Rho, J. Cascade domino lithography for extreme photon squeezing. Mater. Today 2020, 39, 89–97.
Tiwari, N. R.; Liu, M. Y.; Kulkarni, S.; Fang, Y. Study of adsorption behavior of aminothiophenols on gold nanorods using surface-enhanced Raman spectroscopy. J. Nanophotonics 2011, 5, 053513.
Hu, X. G.; Wang, T.; Wang, L.; Dong, S. J. Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition. J. Phys. Chem. C 2007, 111, 6962–6969.
Xiao, N.; Yu, C. X. Rapid-response and highly sensitive noncross-linking colorimetric nitrite sensor using 4-aminothiophenol modified gold nanorods. Anal. Chem. 2010, 82, 3659–3663.
Zhang, W. Q.; Rahmani, M.; Niu, W. X.; Ravaine, S.; Hong, M. H.; Lu, X. M. Tuning interior nanogaps of double-shelled Au/Ag nanoboxes for surface-enhanced Raman scattering. Sci. Rep. 2014, 5, 8382.
May, P. W.; Smith, J. A.; Rosser, K. N. 785 nm Raman spectroscopy of CVD diamond films. Diam. Relat. Mater. 2008, 17, 199–203.
Sallam, M. O.; Vandenbosch, G. A. E.; Gielen, G.; Soliman, E. A. Integral equations formulation of plasmonic transmission lines. Opt. Express 2014, 22, 22388–22402.
Qayoom, T.; Najeeb-ud-din, H. Effective index approximation based analytical modeling and two dimensional numerical investigation of surface and bulk sensitivity in optimized hybrid nanostructured plasmonic gratings with miniaturized footprints. Opt. Quant. Electron. 2023, 55, 302.
Kim, Y. S.; Moon, B.; Kim, C.; Ju, B. K.; Lee, J. H.; Jhon, Y. M. Optimizing high harmonic generation in hollow-core gas cell considering variation of gas density. Opt. Laser Technol. 2022, 149, 107803.