PDF (27.1 MB)
Collect
Submit Manuscript
Show Outline
Figures (4)

Research Article | Open Access

All-in-one iontronic device with memory, processing and power capabilities towards dust-sized computers

Dong Wang1Mingyang Wang1Zhihan Zhang1Jian Wang1Ziye Zhou1Peter To Lai2Xiaodong Huang1 ()
School of Integrated Circuits, Southeast University, Nanjing 210096, China
Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
Show Author Information

Graphical Abstract

View original image Download original image
An all-in-one dual-ion (Li+ and O2−) device that fuses memory, processing and on-chip power components is reported for autonomous and monolithically-integrated dust-sized computers. By electrically modulating the ion species and their amounts participating in the electrochemical processes, the complete memristor modes (including analog, volatile digital and nonvolatile digital types) and on-chip power modes can be created on demand in this single device.

Abstract

Fusion of memory, processing and power components enables creating autonomous and monolithically-integrated dust-sized computers for ubiquitous computing. However, this effort is limited by contradictory ion dynamics and performance variability of each component. Here we report an all-in-one dual-ion device that integrates memory, processing and power functionalities. By electrically modulating ion species (Li+ and O2−) and amounts participating in the electrochemistry, the complete memristor modes (including analog, volatile digital and nonvolatile digital types) and on-chip power modes are created on demand in this device. Because of their distinct properties, the roles of Li+ and O2− are easily distinguished and modulated by electrical operation for meeting the customized demand of each mode. Moreover, the homogeneous migration of Li+ ensures high uniformity of the Li+-based modes. The oxygen vacancy-based conductive filaments are finely defined by mechanical deformation through electrically controlling ion intercalation/deintercalation, thus guaranteeing high uniformity of the O2−-based modes. Both neuromorphic and logic in-memory computing are well demonstrated based on this all-in-one device.

Electronic Supplementary Material

Download File(s)
7043_ESM.pdf (5.4 MB)

References

[1]

Zhu, M. S.; Schmidt, O. G. Tiny robots and sensors need tiny batteries-here’s how to do it. Nature 2021, 589, 195–197.

[2]

Fischer, T.; Agarwal, A.; Hess, H. A smart dust biosensor powered by kinesin motors. Nat. Nanotechnol. 2009, 4, 162–166.

[3]

Piech, D. K.; Johnson, B. C.; Shen, K.; Ghanbari, M. M.; Li, K. Y.; Neely, R. M.; Kay, J. E.; Carmena, J. M.; Maharbiz, M. M.; Muller, R. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat. Biomed. Eng. 2020, 4, 207–222.

[4]

Li, Y.; Zhu, M. S.; Bandari, V. K.; Karnaushenko, D. D.; Karnaushenko, D.; Zhu, F.; Schmidt, O. G. On-chip batteries for dust-sized computers. Adv. Energy Mater. 2022, 12, 2103641.

[5]

Ma, J. C.; Quhe, R.; Zhang, W. L.; Yan, Y. P.; Tang, H. M.; Qu, Z.; Cheng, Y. P.; Schmidt, O. G.; Zhu, M. S. Zn microbatteries explore ways for integrations in intelligent systems. Small 2023, 19, 2300230.

[6]

Lee, Y.; Bandari, V. K.; Li, Z.; Medina-Sánchez, M.; Maitz, M. F.; Karnaushenko, D.; Tsurkan, M. V.; Karnaushenko, D. D.; Schmidt, O. G. Nano-biosupercapacitors enable autarkic sensor operation in blood. Nat. Commun. 2021, 12, 4967.

[7]

Lee, Y.; Bang, S.; Lee, I.; Kim, Y.; Kim, G.; Ghaed, M. H.; Pannuto, P.; Dutta, P.; Sylvester, D.; Blaauw, D. A modular 1 mm3 die-stacked sensing platform with low power i2c inter-die communication and multi-modal energy harvesting. IEEE J. Solid-State Circuits 2013, 48, 229–243.

[8]

Liu, A. T.; Hempel, M.; Yang, J. F.; Brooks, A. M.; Pervan, A.; Koman, V. B.; Zhang, G.; Kozawa, D.; Yang, S.; Goldman, D. I. et al. Colloidal robotics, Nat. Mater. 2023, 22, 1453–1462.

[9]

Li, Y. X.; Song, S. B.; Kim, H.; Nomoto, K.; Kim, H.; Sun, X. Y.; Hori, S.; Suzuki, K.; Matsui, N.; Hirayama, M. et al. A lithium superionic conductor for millimeter-thick battery electrode. Science 2023, 381, 50–53.

[10]

Kyeremateng, N. A.; Brousse, T.; Pech, D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 2017, 12, 7–15.

[11]

Li, J. C.; Ren, S. G.; Li, Y.; Yang, L.; Yu, Y. J.; Ni, R.; Zhou, H. J.; Bao, H.; He, Y. H.; Chen, J. et al. Sparse matrix multiplication in a record-low power self-rectifying memristor array for scientific computing. Sci. Adv. 2023, 9, eadf7474.

[12]

Zhang, W. B.; Yao, P.; Gao, B.; Liu, Q.; Wu, D.; Zhang, Q. T.; Li, Y. K.; Qin, Q.; Li, J. M.; Zhu, Z. H. et al. Edge learning using a fully integrated neuro-inspired memristor chip. Science 2023, 381, 1205–1211.

[13]
Fu, Y. Y.; Zhou, Y.; Huang, X. D.; Gao, B.; He, Y. H.; Li, Y.; Chai, Y.; Miao, X. S. Forming-free and annealing-free V/VO x/HfWO x/Pt device exhibiting reconfigurable threshold and resistive switching with high speed (< 30 ns) and high endurance (> 1012/> 1010). In Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2021, pp 12.6.1–12.6.4.
[14]

Yao, P.; Wu, H. Q.; Gao, B.; Tang, J. S.; Zhang, Q. T.; Zhang, W. Q.; Yang, J. J.; Qian, H. Fully hardware-implemented memristor convolutional neural network. Nature 2020, 577, 641–646.

[15]

Xu, G. H.; Zhang, M. L.; Mei, T. T.; Liu, W. C.; Wang, L.; Xiao, K. Nanofluidic ionic memristors. ACS Nano 2024, 18, 19423–19442.

[16]

Yan, Y. P.; Tang, H. M.; Qu, Z.; Zhang, W. L.; Schmidt, O. G.; Zhu, M. S. Dynamic switching and energy storage unified by electrochemical ion intercalation. Adv. Mater. Technol. 2023, 8, 2200466.

[17]

Li, T. M.; Xiao, K. Solid-state iontronic devices: Mechanisms and applications. Adv. Mater. Technol. 2022, 7, 2200205.

[18]

Mastragostino, M.; Soavi, F. Pseudocapacitive and ion-insertion materials: A bridge between energy storage, electronics and neuromorphic computing. ChemElectroChem 2021, 8, 2630–2633.

[19]

Li, Y.; Long, S. B.; Liu, Q.; Lv, H. B.; Liu, M. Resistive switching performance improvement via modulating nanoscale conductive filament, involving the application of two-dimensional layered materials. Small 2017, 13, 1604306.

[20]

Yang, Q.; Li, Q.; Liu, Z. X.; Wang, D. H.; Guo, Y.; Li, X. L.; Tang, Y. C.; Li, H. F.; Dong, B. B.; Zhi, C. Y. Dendrites in Zn-based batteries. Adv. Mater. 2020, 32, 2001854.

[21]

Li, Y. S.; Xiong, Y.; Zhai, B. X.; Yin, L.; Yu, Y. L.; Wang, H.; He, J. Ag-doped non-imperfection-enabled uniform memristive neuromorphic device based on van der Waals indium phosphorus sulfide. Sci. Adv. 2024, 10, eadk9474.

[22]

Yufit, V.; Tariq, F.; Eastwood, D. S.; Biton, M.; Wu, B.; Lee, P. D.; Brandon, N. P. Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule 2019, 3, 485–502.

[23]

Zhang, F.; Zhang, Y.; Li, L. L.; Mou, X.; Peng, H. N.; Shen, S. C.; Wang, M.; Xiao, K. H.; Ji, S. H.; Yi, D. et al. Nanoscale multistate resistive switching in WO3 through scanning probe induced proton evolution. Nat. Commun. 2023, 14, 3950.

[24]

Hai, Z. Y.; Akbari, M. K.; Wei, Z. H.; Xue, C. Y.; Xu, H. Y.; Hu, J.; Zhuiykov, S. Nano-thickness dependence of supercapacitor performance of the ALD-fabricated two-dimensional WO3. Electrochim. Acta 2017, 246, 625–633.

[25]

Zhou, F. C.; Zhou, Z.; Chen, J. W.; Choy, T. H.; Wang, J. L.; Zhang, N.; Lin, Z. Y.; Yu, S. M.; Kang, J. F.; Wong, H. S. P. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782.

[26]

Jia, Y. L.; Ma, Y. Advances in MoO3-based supercapacitors for electrochemical energy storage. J. Energy Storage 2024, 85, 111103.

[27]

Fuller, E. J.; Gabaly, F. E.; Léonard, F.; Agarwal, S.; Plimpton, S. J.; Jacobs-Gedrim, R. B.; James, C. D.; Marinella, M. J.; Talin, A. A. Li-ion synaptic transistor for low power analog computing. Adv. Mater. 2017, 29, 1604310.

[28]

Cheng, D. Y.; Wynn, T. A.; Wang, X. F.; Wang, S.; Zhang, M. H.; Shimizu, R.; Bai, S.; Nguyen, H.; Fang, C. C.; Kim, M. C. et al. Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy. Joule 2020, 4, 2484–2500.

[29]

Mantese, J. V.; Alcini, W. V. Platinum wire wedge bonding: A new IC and microsensor interconnect. J. Electron. Mater. 1988, 17, 285–289.

[30]

Rakhtsaum, G. Platinum alloys: A selective review of the available literature. Platinum Met. Rev. 2013, 57, 202–213.

[31]

Lee, S.; Kwon, J. Y.; Yoon, D.; Cho, H.; You, J.; Kang, Y. T.; Choi, D.; Hwang, W. Bendability optimization of flexible optical nanoelectronics via neutral axis engineering. Nanoscale Res. Lett. 2012, 7, 256.

[32]

Lee, S.; Guo, L. J. Bioinspired toughening mechanisms in a multilayer transparent conductor structure. ACS Appl. Mater. Interfaces 2022, 14, 7440–7449.

[33]

Zhu, Y. T.; Gonzalez-Rosillo, J. C.; Balaish, M.; Hood, Z. D.; Kim, K. J.; Rupp, J. L. M. Lithium-film ceramics for solid-state lithionic devices. Nat. Rev. Mater. 2021, 6, 313–331.

[34]

Han, S. Y.; Lee, C.; Lewis, J. A.; Yeh, D.; Liu, Y.; Lee, H. W.; McDowell, M. T. Stress evolution during cycling of alloy-anode solid-state batteries. Joule 2021, 5, 2450–2465.

[35]

Rao, M. Y.; Tang, H.; Wu, J. B.; Song, W. H.; Zhang, M.; Yin, W. B.; Zhuo, Y.; Kiani, F.; Chen, B.; Jiang, X. Q. et al. Thousands of conductance levels in memristors integrated on CMOS. Nature 2023, 615, 823–829.

[36]

Wan, Z. N.; Mohammad, H.; Zhao, Y. Q.; Darling, R. B.; Anantram, M. P. Bipolar resistive switching characteristics of thermally evaporated V2O5 thin films. IEEE Electron Device Lett. 2018, 39, 1290–1293.

[37]

Göhlert, T.; Siles, P. F.; Päßler, T.; Sommer, R.; Baunack, S.; Oswald, S.; Schmidt, O. G. Ultra-thin all-solid-state micro-supercapacitors with exceptional performance and device flexibility. Nano Energy 2017, 33, 387–392.

[38]

Wang, Y. L.; Zhang, Y.; Wang, G. L.; Shi, X. W.; Qiao, Y. D.; Liu, J. M.; Liu, H. G.; Ganesh, A.; Li, L. Direct graphene-carbon nanotube composite ink writing all-solid-state flexible microsupercapacitors with high areal energy density. Adv. Funct. Mater. 2020, 30, 1907284.

[39]

Chang, Y. K.; Sun, X. H.; Ma, M. D.; Mu, C. P.; Li, P. H.; Li, L.; Li, M. Z.; Nie, A. M.; Xiang, J. Y.; Zhao, Z. S. et al. Application of hard ceramic materials B4C in energy storage: Design B4C@C core-shell nanoparticles as electrodes for flexible all-solid-state micro-supercapacitors with ultrahigh cyclability. Nano Energy 2020, 75, 104947.

[40]

Ma, C.; Rangasamy, E.; Liang, C. D.; Sakamoto, J.; More, K. L.; Chi, M. F. Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li+/H+ exchange in aqueous solutions. Angew. Chem., Int. Ed. 2015, 54, 129–133.

[41]

Park, S.; You, M. J.; Byeon, Y. S.; Song, C. H.; Oh, S. M.; Kim, J. H.; Park, M. S. Stabilizing the surface of Li2NiO2 cathode additive by coating amorphous niobium oxy-carbide for lithium-ion batteries. Mater. Today Energy 2023, 36, 101351.

[42]

Gowda, S. R.; Brunet, A.; Wallraff, G. M.; McCloskey, B. D. Implications of CO2 contamination in rechargeable nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 2013, 4, 276–279.

[43]

Huo, Y. J.; Lee, C. C. The growth and stress vs. strain characterization of the silver solid solution phase with indium. J. Alloys Compd. 2016, 661, 372–379.

[44]

Ertorer, O.; Topping, T.; Li, Y.; Moss, W.; Lavernia, E. J. Enhanced tensile strength and high ductility in cryomilled commercially pure titanium. Scr. Mater. 2009, 60, 586–589.

[45]

Sarkar, S.; Thangadurai, V. Critical current densities for high-performance all-solid-state Li-metal batteries: Fundamentals, mechanisms, interfaces, materials, and applications. ACS Energy Lett. 2022, 7, 1492–1527.

[46]

Kim, K. M.; Zhang, J. M.; Graves, C.; Yang, J. J.; Choi, B. J.; Hwang, C. S.; Li, Z. Y.; Williams, R. S. Low-power, self-rectifying, and forming-free memristor with an asymmetric programing voltage for a high-density crossbar application. Nano Lett. 2016, 16, 6724–6732.

[47]

Lee, S. H.; Cheong, S.; Cho, J. M.; Ghenzi, N.; Shin, D. H.; Jang, Y. H.; Han, J.; Park, T. W.; Kim, D. Y.; Shim, S. K. et al. In-materia annealing and combinatorial optimization based on vertical memristive array. Adv. Mater. 2024, 36, 2410191.

[48]

Wan, Z. N.; Darling, R. B.; Majumdar, A.; Anantram, M. P. A forming-free bipolar resistive switching behavior based on ITO/V2O5/ITO structure. Appl. Phys. Lett. 2017, 111, 041601.

[49]

Sacchetto, D.; Gaillardon, P. E.; Zervas, M.; Carrara, S.; De Micheli, G.; Leblebici, Y. Applications of multi-terminal memristive devices: A review. IEEE Circuits Syst. Mag. 2013, 13, 23–41.

Nano Research
Article number: 94907043
Cite this article:
Wang D, Wang M, Zhang Z, et al. All-in-one iontronic device with memory, processing and power capabilities towards dust-sized computers. Nano Research, 2025, 18(1): 94907043. https://doi.org/10.26599/NR.2025.94907043
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return