Fusion of memory, processing and power components enables creating autonomous and monolithically-integrated dust-sized computers for ubiquitous computing. However, this effort is limited by contradictory ion dynamics and performance variability of each component. Here we report an all-in-one dual-ion device that integrates memory, processing and power functionalities. By electrically modulating ion species (Li+ and O2−) and amounts participating in the electrochemistry, the complete memristor modes (including analog, volatile digital and nonvolatile digital types) and on-chip power modes are created on demand in this device. Because of their distinct properties, the roles of Li+ and O2− are easily distinguished and modulated by electrical operation for meeting the customized demand of each mode. Moreover, the homogeneous migration of Li+ ensures high uniformity of the Li+-based modes. The oxygen vacancy-based conductive filaments are finely defined by mechanical deformation through electrically controlling ion intercalation/deintercalation, thus guaranteeing high uniformity of the O2−-based modes. Both neuromorphic and logic in-memory computing are well demonstrated based on this all-in-one device.
Zhu, M. S.; Schmidt, O. G. Tiny robots and sensors need tiny batteries-here’s how to do it. Nature 2021, 589, 195–197.
Fischer, T.; Agarwal, A.; Hess, H. A smart dust biosensor powered by kinesin motors. Nat. Nanotechnol. 2009, 4, 162–166.
Piech, D. K.; Johnson, B. C.; Shen, K.; Ghanbari, M. M.; Li, K. Y.; Neely, R. M.; Kay, J. E.; Carmena, J. M.; Maharbiz, M. M.; Muller, R. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat. Biomed. Eng. 2020, 4, 207–222.
Li, Y.; Zhu, M. S.; Bandari, V. K.; Karnaushenko, D. D.; Karnaushenko, D.; Zhu, F.; Schmidt, O. G. On-chip batteries for dust-sized computers. Adv. Energy Mater. 2022, 12, 2103641.
Ma, J. C.; Quhe, R.; Zhang, W. L.; Yan, Y. P.; Tang, H. M.; Qu, Z.; Cheng, Y. P.; Schmidt, O. G.; Zhu, M. S. Zn microbatteries explore ways for integrations in intelligent systems. Small 2023, 19, 2300230.
Lee, Y.; Bandari, V. K.; Li, Z.; Medina-Sánchez, M.; Maitz, M. F.; Karnaushenko, D.; Tsurkan, M. V.; Karnaushenko, D. D.; Schmidt, O. G. Nano-biosupercapacitors enable autarkic sensor operation in blood. Nat. Commun. 2021, 12, 4967.
Lee, Y.; Bang, S.; Lee, I.; Kim, Y.; Kim, G.; Ghaed, M. H.; Pannuto, P.; Dutta, P.; Sylvester, D.; Blaauw, D. A modular 1 mm3 die-stacked sensing platform with low power i2c inter-die communication and multi-modal energy harvesting. IEEE J. Solid-State Circuits 2013, 48, 229–243.
Liu, A. T.; Hempel, M.; Yang, J. F.; Brooks, A. M.; Pervan, A.; Koman, V. B.; Zhang, G.; Kozawa, D.; Yang, S.; Goldman, D. I. et al. Colloidal robotics, Nat. Mater. 2023, 22, 1453–1462.
Li, Y. X.; Song, S. B.; Kim, H.; Nomoto, K.; Kim, H.; Sun, X. Y.; Hori, S.; Suzuki, K.; Matsui, N.; Hirayama, M. et al. A lithium superionic conductor for millimeter-thick battery electrode. Science 2023, 381, 50–53.
Kyeremateng, N. A.; Brousse, T.; Pech, D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 2017, 12, 7–15.
Li, J. C.; Ren, S. G.; Li, Y.; Yang, L.; Yu, Y. J.; Ni, R.; Zhou, H. J.; Bao, H.; He, Y. H.; Chen, J. et al. Sparse matrix multiplication in a record-low power self-rectifying memristor array for scientific computing. Sci. Adv. 2023, 9, eadf7474.
Zhang, W. B.; Yao, P.; Gao, B.; Liu, Q.; Wu, D.; Zhang, Q. T.; Li, Y. K.; Qin, Q.; Li, J. M.; Zhu, Z. H. et al. Edge learning using a fully integrated neuro-inspired memristor chip. Science 2023, 381, 1205–1211.
Yao, P.; Wu, H. Q.; Gao, B.; Tang, J. S.; Zhang, Q. T.; Zhang, W. Q.; Yang, J. J.; Qian, H. Fully hardware-implemented memristor convolutional neural network. Nature 2020, 577, 641–646.
Xu, G. H.; Zhang, M. L.; Mei, T. T.; Liu, W. C.; Wang, L.; Xiao, K. Nanofluidic ionic memristors. ACS Nano 2024, 18, 19423–19442.
Yan, Y. P.; Tang, H. M.; Qu, Z.; Zhang, W. L.; Schmidt, O. G.; Zhu, M. S. Dynamic switching and energy storage unified by electrochemical ion intercalation. Adv. Mater. Technol. 2023, 8, 2200466.
Li, T. M.; Xiao, K. Solid-state iontronic devices: Mechanisms and applications. Adv. Mater. Technol. 2022, 7, 2200205.
Mastragostino, M.; Soavi, F. Pseudocapacitive and ion-insertion materials: A bridge between energy storage, electronics and neuromorphic computing. ChemElectroChem 2021, 8, 2630–2633.
Li, Y.; Long, S. B.; Liu, Q.; Lv, H. B.; Liu, M. Resistive switching performance improvement via modulating nanoscale conductive filament, involving the application of two-dimensional layered materials. Small 2017, 13, 1604306.
Yang, Q.; Li, Q.; Liu, Z. X.; Wang, D. H.; Guo, Y.; Li, X. L.; Tang, Y. C.; Li, H. F.; Dong, B. B.; Zhi, C. Y. Dendrites in Zn-based batteries. Adv. Mater. 2020, 32, 2001854.
Li, Y. S.; Xiong, Y.; Zhai, B. X.; Yin, L.; Yu, Y. L.; Wang, H.; He, J. Ag-doped non-imperfection-enabled uniform memristive neuromorphic device based on van der Waals indium phosphorus sulfide. Sci. Adv. 2024, 10, eadk9474.
Yufit, V.; Tariq, F.; Eastwood, D. S.; Biton, M.; Wu, B.; Lee, P. D.; Brandon, N. P. Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule 2019, 3, 485–502.
Zhang, F.; Zhang, Y.; Li, L. L.; Mou, X.; Peng, H. N.; Shen, S. C.; Wang, M.; Xiao, K. H.; Ji, S. H.; Yi, D. et al. Nanoscale multistate resistive switching in WO3 through scanning probe induced proton evolution. Nat. Commun. 2023, 14, 3950.
Hai, Z. Y.; Akbari, M. K.; Wei, Z. H.; Xue, C. Y.; Xu, H. Y.; Hu, J.; Zhuiykov, S. Nano-thickness dependence of supercapacitor performance of the ALD-fabricated two-dimensional WO3. Electrochim. Acta 2017, 246, 625–633.
Zhou, F. C.; Zhou, Z.; Chen, J. W.; Choy, T. H.; Wang, J. L.; Zhang, N.; Lin, Z. Y.; Yu, S. M.; Kang, J. F.; Wong, H. S. P. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782.
Jia, Y. L.; Ma, Y. Advances in MoO3-based supercapacitors for electrochemical energy storage. J. Energy Storage 2024, 85, 111103.
Fuller, E. J.; Gabaly, F. E.; Léonard, F.; Agarwal, S.; Plimpton, S. J.; Jacobs-Gedrim, R. B.; James, C. D.; Marinella, M. J.; Talin, A. A. Li-ion synaptic transistor for low power analog computing. Adv. Mater. 2017, 29, 1604310.
Cheng, D. Y.; Wynn, T. A.; Wang, X. F.; Wang, S.; Zhang, M. H.; Shimizu, R.; Bai, S.; Nguyen, H.; Fang, C. C.; Kim, M. C. et al. Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy. Joule 2020, 4, 2484–2500.
Mantese, J. V.; Alcini, W. V. Platinum wire wedge bonding: A new IC and microsensor interconnect. J. Electron. Mater. 1988, 17, 285–289.
Rakhtsaum, G. Platinum alloys: A selective review of the available literature. Platinum Met. Rev. 2013, 57, 202–213.
Lee, S.; Kwon, J. Y.; Yoon, D.; Cho, H.; You, J.; Kang, Y. T.; Choi, D.; Hwang, W. Bendability optimization of flexible optical nanoelectronics via neutral axis engineering. Nanoscale Res. Lett. 2012, 7, 256.
Lee, S.; Guo, L. J. Bioinspired toughening mechanisms in a multilayer transparent conductor structure. ACS Appl. Mater. Interfaces 2022, 14, 7440–7449.
Zhu, Y. T.; Gonzalez-Rosillo, J. C.; Balaish, M.; Hood, Z. D.; Kim, K. J.; Rupp, J. L. M. Lithium-film ceramics for solid-state lithionic devices. Nat. Rev. Mater. 2021, 6, 313–331.
Han, S. Y.; Lee, C.; Lewis, J. A.; Yeh, D.; Liu, Y.; Lee, H. W.; McDowell, M. T. Stress evolution during cycling of alloy-anode solid-state batteries. Joule 2021, 5, 2450–2465.
Rao, M. Y.; Tang, H.; Wu, J. B.; Song, W. H.; Zhang, M.; Yin, W. B.; Zhuo, Y.; Kiani, F.; Chen, B.; Jiang, X. Q. et al. Thousands of conductance levels in memristors integrated on CMOS. Nature 2023, 615, 823–829.
Wan, Z. N.; Mohammad, H.; Zhao, Y. Q.; Darling, R. B.; Anantram, M. P. Bipolar resistive switching characteristics of thermally evaporated V2O5 thin films. IEEE Electron Device Lett. 2018, 39, 1290–1293.
Göhlert, T.; Siles, P. F.; Päßler, T.; Sommer, R.; Baunack, S.; Oswald, S.; Schmidt, O. G. Ultra-thin all-solid-state micro-supercapacitors with exceptional performance and device flexibility. Nano Energy 2017, 33, 387–392.
Wang, Y. L.; Zhang, Y.; Wang, G. L.; Shi, X. W.; Qiao, Y. D.; Liu, J. M.; Liu, H. G.; Ganesh, A.; Li, L. Direct graphene-carbon nanotube composite ink writing all-solid-state flexible microsupercapacitors with high areal energy density. Adv. Funct. Mater. 2020, 30, 1907284.
Chang, Y. K.; Sun, X. H.; Ma, M. D.; Mu, C. P.; Li, P. H.; Li, L.; Li, M. Z.; Nie, A. M.; Xiang, J. Y.; Zhao, Z. S. et al. Application of hard ceramic materials B4C in energy storage: Design B4C@C core-shell nanoparticles as electrodes for flexible all-solid-state micro-supercapacitors with ultrahigh cyclability. Nano Energy 2020, 75, 104947.
Ma, C.; Rangasamy, E.; Liang, C. D.; Sakamoto, J.; More, K. L.; Chi, M. F. Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li+/H+ exchange in aqueous solutions. Angew. Chem., Int. Ed. 2015, 54, 129–133.
Park, S.; You, M. J.; Byeon, Y. S.; Song, C. H.; Oh, S. M.; Kim, J. H.; Park, M. S. Stabilizing the surface of Li2NiO2 cathode additive by coating amorphous niobium oxy-carbide for lithium-ion batteries. Mater. Today Energy 2023, 36, 101351.
Gowda, S. R.; Brunet, A.; Wallraff, G. M.; McCloskey, B. D. Implications of CO2 contamination in rechargeable nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 2013, 4, 276–279.
Huo, Y. J.; Lee, C. C. The growth and stress vs. strain characterization of the silver solid solution phase with indium. J. Alloys Compd. 2016, 661, 372–379.
Ertorer, O.; Topping, T.; Li, Y.; Moss, W.; Lavernia, E. J. Enhanced tensile strength and high ductility in cryomilled commercially pure titanium. Scr. Mater. 2009, 60, 586–589.
Sarkar, S.; Thangadurai, V. Critical current densities for high-performance all-solid-state Li-metal batteries: Fundamentals, mechanisms, interfaces, materials, and applications. ACS Energy Lett. 2022, 7, 1492–1527.
Kim, K. M.; Zhang, J. M.; Graves, C.; Yang, J. J.; Choi, B. J.; Hwang, C. S.; Li, Z. Y.; Williams, R. S. Low-power, self-rectifying, and forming-free memristor with an asymmetric programing voltage for a high-density crossbar application. Nano Lett. 2016, 16, 6724–6732.
Lee, S. H.; Cheong, S.; Cho, J. M.; Ghenzi, N.; Shin, D. H.; Jang, Y. H.; Han, J.; Park, T. W.; Kim, D. Y.; Shim, S. K. et al. In-materia annealing and combinatorial optimization based on vertical memristive array. Adv. Mater. 2024, 36, 2410191.
Wan, Z. N.; Darling, R. B.; Majumdar, A.; Anantram, M. P. A forming-free bipolar resistive switching behavior based on ITO/V2O5/ITO structure. Appl. Phys. Lett. 2017, 111, 041601.
Sacchetto, D.; Gaillardon, P. E.; Zervas, M.; Carrara, S.; De Micheli, G.; Leblebici, Y. Applications of multi-terminal memristive devices: A review. IEEE Circuits Syst. Mag. 2013, 13, 23–41.