AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Machine learning driven rational design of dual atom catalysts on graphene for carbon dioxide electroreduction

Dongxu Jiao1Xinyi Li1Mingzi Sun2Lin Liu1Jinchang Fan1Jingxiang Zhao3Bolong Huang2 ( )Xiaoqiang Cui1 ( )
State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, and Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
Show Author Information

Graphical Abstract

This work offers a fast machine learning approach based on theoretical calculations to predict the most electroactive and stable dual-atom catalysts (DACs) on carbon support for CO2 reduction reactions, facilitating rapid screening of high-performance dual-atom catalysts.

Abstract

The development of high-performance atomic catalysts for the carbon dioxide reduction reaction (CO2RR) is a time-consuming process due to the complexity of the reaction mechanism and the uncertainty of the active site. Herein, we have proposed combining density functional theory (DFT) and machine learning (ML) to investigate the potential of topological graphene-based dual-atom catalysts (DACs) as CO2RR electrocatalysts. By analyzing the ML results, we identify the number of d-orbital electrons in the active site as a key factor influencing the CO2RR catalytic activity. Additionally, we propose a simple descriptor to measure the CO2RR activity of these DACs. Our findings provide plausible explanations for the synergistic interactions between bimetallic atoms in CO2RR and allow us to screen the homogeneous Ni-Ni pair as the most promising dual-atom catalysts. This work offers a fast ML approach based on limited DFT calculations to predict the most electroactive and stable DACs on carbon support for CO2RR, facilitating rapid screening of high-performance dual-atom catalysts.

Electronic Supplementary Material

Download File(s)
7044_ESM.pdf (2.1 MB)

References

[1]

Zhou, K. B.; Wang, X.; Sun, X. M.; Peng, Q.; Li, Y. D. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal. 2005, 229, 206–212.

[2]

Sun, M. Z.; Wong, H. H.; Wu, T.; Lu, Q. Y.; Lu, L.; Chan, C. H.; Chen, B. A.; Dougherty, A. W.; Huang, B. L. Double-dependence correlations in graphdiyne-supported atomic catalysts to promote CO2RR toward the generation of C2 products. Adv. Energy Mater. 2023, 13, 2203858.

[3]

Chen, Z. W.; Gariepy, Z.; Chen, L. X.; Yao, X.; Anand, A.; Liu, S. J.; Tetsassi Feugmo, C. G.; Tamblyn, I.; Singh, C. V. Machine-learning-driven high-entropy alloy catalyst discovery to circumvent the scaling relation for CO2 reduction reaction. ACS Catal. 2022, 12, 14864–14871.

[4]

Zhu, Q.; Gu, Y. M.; Liang, X. Y.; Wang, X. Z.; Ma, J. A machine learning model to predict CO2 reduction reactivity and products transferred from metal-zeolites. ACS Catal. 2022, 12, 12336–12348.

[5]

Ding, H.; Shi, Y. W.; Li, Z. Y.; Wang, S.; Liang, Y. J.; Feng, H. S.; Deng, Y.; Song, X.; Pu, P. X.; Zhang, X. Active learning accelerating to screen dual-metal-site catalysts for electrochemical carbon dioxide reduction reaction. ACS Appl. Mater. Inter. 2023, 15, 12986–12997.

[6]

Ding, C.; Lu, X. X.; Tao, B.; Yang, L. Q.; Xu, X. Y.; Tang, L. Q.; Chi, H. Q.; Yang, Y.; Meira, D. M.; Wang, L. et al. Interlayer spacing regulation by single-atom indium δ +-N4 on carbon nitride for boosting CO2/CO photo-conversion. Adv. Funct. Mater. 2023, 33, 2302824.

[7]

Hu, S.; Qiao, P. Z.; Yi, X. L.; Lei, Y. M.; Hu, H. L.; Ye, J. H.; Wang, D. F. Selective photocatalytic reduction of CO2 to CO mediated by silver single atoms anchored on tubular carbon nitride. Angew. Chem., Int. Ed. 2023, 62, e202304585.

[8]

Jiang, J. W.; Wang, X. F.; Guo, H. Enhanced interfacial charge transfer/separation by lspr-induced defective semiconductor toward high CO2RR performance. Small 2023, 19, 2301280.

[9]

Miao, Q. Y.; Lu, C. B.; Xu, Q.; Yang, S.; Liu, M. H.; Liu, S. J.; Yu, C. B.; Zhuang, X. D.; Jiang, Z.; Zeng, G. F. CoN2O2 sites in carbon nanosheets by template-pyrolysis of COFs for CO2RR. Chem. Eng. J. 2022, 450, 138427.

[10]

Sun, M. Z.; Wong, H. H.; Wu, T.; Dougherty, A. W.; Huang, B. L. Stepping out of transition metals: Activating the dual atomic catalyst through main group elements. Adv. Energy Mater. 2021, 11, 2101404.

[11]

Mu, S. J.; Lu, H. L.; Wu, Q. B.; Li, L.; Zhao, R. J.; Long, C.; Cui, C. H. Hydroxyl radicals dominate reoxidation of oxide-derived cu in electrochemical CO2 reduction. Nat. Commun. 2022, 13, 3694.

[12]

Hai, G. T.; Xue, X. D.; Feng, S. H.; Ma, Y. W.; Huang, X. B. High-throughput computational screening of metal-organic frameworks as high-performance electrocatalysts for CO2RR. ACS Catal. 2022, 12, 15271–15281.

[13]

Lei, Q.; Huang, L.; Yin, J.; Davaasuren, B.; Yuan, Y. Y.; Dong, X. L.; Wu, Z. P.; Wang, X. Q.; Yao, K. X.; Lu, X. et al. Structural evolution and strain generation of derived-Cu catalysts during CO2 electroreduction. Nat. Commun. 2022, 13, 4857.

[14]

Xie, W. B.; Xu, J. S.; Md Idros, U.; Katsuhira, J.; Fuki, M.; Hayashi, M.; Yamanaka, M.; Kobori, Y.; Matsubara, R. Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy. Nat. Chem. 2023, 15, 794–802.

[15]

Timoshenko, J.; Bergmann, A.; Rettenmaier, C.; Herzog, A.; Arán-Ais, R. M.; Jeon, H. S.; Haase, F. T.; Hejral, U.; Grosse, P.; Kühl, S. et al. Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses. Nat. Catal. 2022, 5, 259–267.

[16]

Shi, R.; Guo, J. H.; Zhang, X. R.; Waterhouse, G. I. N.; Han, Z. J.; Zhao, Y. X.; Shang, L.; Zhou, C.; Jiang, L.; Zhang, T. R. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 2020, 11, 3028.

[17]

Xie, H.; Wang, T. Y.; Liang, J. S.; Li, Q.; Sun, S. H. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 2018, 21, 41–54.

[18]

Xiong, L. K.; Zhang, X.; Chen, L.; Deng, Z.; Han, S.; Chen, Y. F.; Zhong, J.; Sun, H.; Lian, Y. B.; Yang, B. Y. et al. Geometric modulation of local CO flux in Ag@Cu2O nanoreactors for steering the CO2RR pathway toward high-efficacy methane production. Adv. Mater. 2021, 33, 2101741.

[19]

Zeng, J. C.; Zhang, W. B.; Yang, Y.; Li, D.; Yu, X.; Gao, Q. S. Pd–Ag alloy electrocatalysts for CO2 reduction: Composition tuning to break the scaling relationship. ACS Appl. Mater. Inter. 2019, 11, 33074–33081.

[20]

Su, X. S.; Sun, Y. M.; Jin, L.; Zhang, L.; Yang, Y.; Kerns, P.; Liu, B.; Li, S. Z.; He, J. Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products. Appl. Catal. B: Environ. 2020, 269, 118800.

[21]

Jiang, Y. Q.; Sung, Y.; Choi, C.; Joo Bang, G.; Hong, S.; Tan, X. Y.; Wu, T. S.; Soo, Y. L., Xiong, P.; Li, M. M. J. et al. Single-atom molybdenum-N3 sites for selective hydrogenation of CO2 to CO. Angew. Chem., Int. Ed. 2022, 61, e202203836.

[22]

Tang, Y. N.; Zhang, H. Q.; Chen, W. G.; Li, Z. H.; Liu, Z. Y.; Teng, D.; Dai, X. Q. Modulating geometric, electronic, gas sensing and catalytic properties of single-atom pd supported on divacancy and n-doped graphene sheets. Appl. Surf. Sci. 2020, 508, 145245.

[23]

Cheng, D. F.; Zhao, Z. J.; Zhang, G.; Yang, P. P.; Li, L. L.; Gao, H.; Liu, S. H.; Chang, X.; Chen, S.; Wang, T. et al. The nature of active sites for carbon dioxide electroreduction over oxide-derived copper catalysts. Nat. Commun. 2021, 12, 395.

[24]

Zhang, W. Y.; Chao, Y. G.; Zhang, W. S.; Zhou, J. H.; Lv, F.; Wang, K.; Lin, F. X.; Luo, H.; Li, J.; Tong, M. P. et al. Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv. Mater. 2021, 33, 2102576.

[25]

Ying, Y. R.; Luo, X.; Qiao, J. L.; Huang, H. T. “More is different:” synergistic effect and structural engineering in double-atom catalysts. Adv. Funct. Mater. 2021, 31, 2007423.

[26]

He, T. W.; Santiago, A. R. P.; Kong, Y. C.; Ahsan, M. A.; Luque, R.; Du, A. J.; Pan, H. Atomically dispersed heteronuclear dual-atom catalysts: A new rising star in atomic catalysis. Small 2022, 18, 2106091.

[27]

Wang, J.; Zhao, C. X.; Liu, J. N.; Song, Y. W.; Huang, J. Q.; Li, B. Q. Dual-atom catalysts for oxygen electrocatalysis. Nano Energy 2022, 104, 107927.

[28]

Rehman, F.; Kwon, S.; Musgrave, C. B.; Tamtaji, M.; Goddard, W. A.; Luo, Z. T. High-throughput screening to predict highly active dual-atom catalysts for electrocatalytic reduction of nitrate to ammonia. Nano Energy 2022, 103, 107866.

[29]

Chen, T. T.; Li, W. L.; Li, J.; Wang, L. S. [La(η x -B x )La] ( x = 7–9): A new class of inverse sandwich complexes. Chem. Sci. 2019, 10, 2534–2542.

[30]

Li, W. L.; Chen, T. T.; Xing, D. H.; Chen, X.; Li, J.; Wang, L. S. Observation of highly stable and symmetric lanthanide octa-boron inverse sandwich complexes. Proc. Natl. Acad. Sci. USA 2018, 115, E6972–E6977.

[31]

Lu, X. Q.; Zhao, X. N.; Mu, Y. W.; Li, S. D. Lanthanide/actinide boride nanoclusters and nanomaterials based on boron frameworks consisting of conjoined B n rings ( n = 7–9). Phys. Chem. Chem. Phys. 2022, 24, 21078–21084.

[32]

Yu, L. K.; Li, F. Y.; Huang, J. S.; Sumpter, B. G.; Mustain, W. E.; Chen, Z. F. Double-atom catalysts featuring inverse sandwich structure for CO2 reduction reaction: A synergetic first-principles and machine learning investigation. ACS Catal. 2023, 13, 9616–9628.

[33]

Wan, X. H.; Zhang, Z. F.; Niu, H.; Yin, Y. H.; Kuai, C. G.; Wang, J.; Shao, C.; Guo, Y. Z. Machine-learning-accelerated catalytic activity predictions of transition metal phthalocyanine dual-metal-site catalysts for CO2 reduction. J. Phys. Chem. Lett. 2021, 12, 6111–6118.

[34]

Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

[35]

Tang, T. M.; Wang, Z. L.; Guan, J. Q. Optimizing the electrocatalytic selectivity of carbon dioxide reduction reaction by regulating the electronic structure of single-atom M–N–C materials. Adv. Funct. Mater. 2022, 32, 2111504.

[36]

Lai, W. C.; Qiao, Y.; Zhang, J. W.; Lin, Z. Q.; Huang, H. W. Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction. Energy Environ. Sci. 2022, 15, 3603–3629.

[37]

Guo, X. Y.; Gu, J. X.; Lin, S. R.; Zhang, S. L.; Chen, Z. F.; Huang, S. P. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J. Am. Chem. Soc. 2020, 142, 5709–5721.

[38]

Song, X.; Li, Z. H.; Sheng, L.; Xiao, N. Asymmetrical radial strain energy strategy of M–N–SWCNT single atom catalysts for highly efficient hydrogen evolution: A high-throughput DFT study. Appl. Surf. Sci. 2023, 639, 158225.

[39]

Saha, P.; Amanullah, S.; Dey, A. Selectivity in electrochemical CO2 reduction. Acc. Chem. Res. 2022, 55, 134–144.

[40]

Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106.

[41]

Hassan, A.; Anis, I.; Shafi, S.; Assad, A.; Rasool, A.; Khanam, R.; Bhat, G. A.; Krishnamurty, S.; Dar, M. A. First-principles investigation of the electrocatalytic reduction of CO2 on zirconium-based single-, double-, and triple-atom catalysts anchored on a graphitic carbon nitride monolayer. ACS Appl. Nano Mater. 2022, 5, 15409–15417.

[42]

Ren, M. M.; Guo, X. Y.; Zhang, S. L.; Huang, S. P. Design of graphdiyne and holey graphyne-based single atom catalysts for CO2 reduction with interpretable machine learning. Adv. Funct. Mater. 2023, 33, 2213543.

[43]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[44]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[45]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[46]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[47]

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

[48]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[49]

Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

[50]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[51]

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

[52]

Chen, A.; Zhang, X.; Chen, L. T.; Yao, S.; Zhou, Z. A machine learning model on simple features for CO2 reduction electrocatalysts. J. Phys. Chem. C 2020, 124, 22471–22478.

[53]

Seko, A.; Maekawa, T.; Tsuda, K.; Tanaka, I. Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids. Phys. Rev. B 2014, 89, 054303.

[54]

Jiao, D. X.; Zhang, D. T.; Wang, D. W.; Fan, J. C.; Ma, X. C.; Zhao, J. X.; Zheng, W. T.; Cui, X. Q. Applying machine-learning screening of single transition metal atoms anchored on N-doped γ-graphyne for carbon monoxide electroreduction toward C1 products. Nano Res. 2023, 16, 11511–11520.

[55]

Yang, L.; Fan, J. K.; Xiao, B. B.; Zhu, W. H. Unveiling “sabatier principle” for electrocatalytic nitric oxide reduction on single cluster catalysts: A DFT and machine learning guideline. Chem. Eng. J. 2023, 468, 143823.

[56]

Abraham, B. M.; Sinha, P.; Halder, P.; Singh, J. K. Fusing a machine learning strategy with density functional theory to hasten the discovery of 2D mxene-based catalysts for hydrogen generation. J. Mater. Chem. A 2023, 11, 8091–8100.

Nano Research
Article number: 94907044
Cite this article:
Jiao D, Li X, Sun M, et al. Machine learning driven rational design of dual atom catalysts on graphene for carbon dioxide electroreduction. Nano Research, 2025, 18(1): 94907044. https://doi.org/10.26599/NR.2025.94907044
Topics:

582

Views

152

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 August 2024
Revised: 18 September 2024
Accepted: 19 September 2024
Published: 24 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return