AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Vertically integrated security devices with physically unclonable function and random number generation

Jung-Woo Lee1,2,§ ( )Joon-Kyu Han3,§Seung-Il Kim1Ho-Young Maeng1Seong-Yun Yun1Joon-Ha Son1Sang-Won Lee1Yang-Kyu Choi1 ( )
School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
SK Hynix Inc., Icheon-si 17336, Republic of Korea
System Semiconductor Engineering and Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea

§ Jung-Woo Lee and Joon-Kyu Han contributed equally to this work.

Show Author Information

Graphical Abstract

Three-dimensional (3D)-integrated security chip was realized with random number generation (RNG) and physically unclonable function (PUF).

Abstract

Physically unclonable function (PUF) and random number generation (RNG) are commonly used security tools to protect sensitive information from external threats. This paper presents an approach to implement these tools based on three-dimensional monolithic and vertical integration, combining an overlying transistor for the PUF with an underlying transistor for RNG. The PUF was implemented using a polycrystalline silicon (poly-Si) thin-film transistor (TFT), while RNG was realized with a single crystalline silicon (sc-Si) field-effect transistor (FET). The poly-Si TFT for the PUF generates random keys across multiple devices, exhibiting variation of the threshold voltage due to different grain sizes and boundaries. This approach effectively doubles the encryption key capability by creating mirror bits in the source and drain of the poly-Si TFT. The sc-Si FET for RNG produces random numbers due to the stochastic behavior of iterative single transistor latching and unlatching, passing 15 NIST randomness tests. Integrating both security functions into a single chip can significantly reduce resource overhead in terms of hardware footprint and energy consumption, which is crucial in the era of mobile devices, edge computing, autonomous driving, and the Internet of Things.

Electronic Supplementary Material

Download File(s)
7045_ESM.pdf (1.6 MB)

References

[1]
Helfmeier, C.; Boit, C.; Nedospasov, D.; Seifert, J. P. Cloning physically unclonable functions. In Proceedings of 2013 IEEE International Symposium on Hardware-Oriented Security and Trust, Austin, USA, 2013.
[2]
Merli, D.; Schuster, D.; Stumpf, F.; Sigl, G. Side-channel analysis of PUFs and fuzzy extractors. In Proceedings of the 4th International Conference on Trust and Trustworthy Computing, Pittsburgh, USA, 2011, pp 33–47.
[3]

Standaert, O. X.; Peeters, E.; Rouvroy, G.; Quisquater, J. J. An overview of power analysis attacks against field programmable gate arrays. Proc. IEEE 2006, 94, 383–394.

[4]

Gao, Y. S.; Al-Sarawi, S. F.; Abbott, D. Physical unclonable functions. Nat. Electron. 2020, 3, 81–91.

[5]
Fischer, V.; Drutarovský, M. True random number generator embedded in reconfigurable hardware. In Proceedings of 4th International Workshop Cryptographic Hardware and Embedded Systems - CHES 2002, Redwood Shores, USA, 2003, pp 415–430.
[6]

Chen, A. Utilizing the variability of resistive random access memory to implement reconfigurable physical unclonable functions. IEEE Electron Device Lett. 2015, 36, 138–140.

[7]

Pang, Y. C.; Wu, H. Q.; Gao, B.; Deng, N.; Wu, D.; Liu, R.; Yu, S. M.; Chen, A.; Qian, H. Optimization of RRAM-based physical unclonable function with a novel differential read-out method. IEEE Electron Device Lett. 2017, 38, 168–171.

[8]

John, R. A.; Shah, N.; Vishwanath, S. K.; Ng, S. E.; Febriansyah, B.; Jagadeeswararao, M.; Chang, C. H.; Basu, A.; Mathews, N. Halide perovskite memristors as flexible and reconfigurable physical unclonable functions. Nat. Commun. 2021, 12, 3681.

[9]

Gao, B.; Lin, B. H.; Pang, Y. C.; Xu, F.; Lu, Y. Y.; Chiu, Y. C.; Liu, Z. W.; Tang, J. S.; Chang, M. F.; Qian, H. et al. Concealable physically unclonable function chip with a memristor array. Sci. Adv. 2022, 8, eabn7753.

[10]

Kim, M. S.; Moon, D. I.; Yoo, S. K.; Lee, S. H.; Choi, Y. K. Investigation of physically unclonable functions using flash memory for integrated circuit authentication. IEEE Trans. Nanotechnol. 2015, 14, 384–389.

[11]

Yu, J. M.; Yun, G. J.; Kim, M. S.; Han, J. K.; Kim, D. J.; Choi, Y. K. A poly-crystalline silicon nanowire transistor with independently controlled double-gate for physically unclonable function by multi-states and self-destruction. Adv. Electron. Mater. 2021, 7, 2000989.

[12]

Jung, J. W.; Han, J. K.; Yu, J. M.; Lee, M. W.; Kim, M. S.; Lee, G. B.; Tcho, I. W.; Yun, S. Y.; Choi, Y. K. Concealable oscillation-based physical unclonable function with a single-transistor latch. IEEE Electron Device Lett. 2022, 43, 1359–1362.

[13]

Kim, D.; Im, S.; Kim, D.; Lee, H.; Choi, C.; Cho, J. H.; Ju, H.; Lim, J. A. Reconfigurable electronic physically unclonable functions based on organic thin-film transistors with multiscale polycrystalline entropy for highly secure cryptography primitives. Adv. Funct. Mater. 2023, 33, 2210367.

[14]
Tsoi, K. H.; Leung, K. H.; Leong, P. H. W. Compact FPGA-based true and pseudo random number generators. In Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, Napa, USA, 2003.
[15]

Bochard, N.; Bernard, F.; Fischer, V.; Valtchanov, B. True-randomness and pseudo-randomness in ring oscillator-based true random number generators. Int. J. Reconfigurable Comput. 2010, 2010, 879281.

[16]
Yang, J. G.; Lin, Y. Y.; Fu, Y. R.; Xue, X. Y.; Chen, B. A. A small area and low power true random number generator using write speed variation of oxidebased RRAM for IoT security application. In Proceedings of 2017 IEEE International Symposium on Circuits and Systems, Baltimore, USA, 2017.
[17]

Jiang, H.; Belkin, D.; Savel’ev, S. E.; Lin, S. Y.; Wang, Z. R.; Li, Y. N.; Joshi, S.; Midya, R.; Li, C.; Rao, M. Y. et al. A novel true random number generator based on a stochastic diffusive memristor. Nat. Commun. 2017, 8, 882.

[18]

Aziza, H.; Postel-Pellerin, J.; Bazzi, H.; Canet, P.; Moreau, M.; Marca, V. D.; Harb, A. True random number generator integration in a resistive RAM memory array using input current limitation. IEEE Trans. Nanotechnol. 2020, 19, 214–222.

[19]

Mulaosmanovic, H.; Mikolajick, T.; Slesazeck, S. Random number generation based on ferroelectric switching. IEEE Electron Device Lett. 2018, 39, 135–138.

[20]
Brown, J.; Gao, R.; Ji, Z. G.; Chen, J. Z.; Wu, J. X.; Zhang, J. F.; Zhou, B.; Shi, Q.; Crowford, J.; Zhang, W. D. A low-power and high-speed true random number generator using generated RTN. In Proceedings of 2018 IEEE Symposium on VLSI Technology, Honolulu, USA, 2018.
[21]

Sun, B.; Ranjan, S.; Zhou, G. D.; Guo, T.; Du, C.; Wei, L.; Zhou, Y. N.; Wu, Y. A. A true random number generator based on ionic liquid modulated memristors. ACS Appl. Electron. Mater. 2021, 3, 2380–2388.

[22]

Chien, Y. C.; Xiang, H.; Wang, J. Z.; Shi, Y. F.; Fong, X.; Ang, K. W. Attack resilient true random number generators using ferroelectric-enhanced stochasticity in 2D transistor. Small 2023, 19, 2302842.

[23]

Rai, V. K.; Tripathy, S.; Mathew, J. Design and analysis of reconfigurable cryptographic primitives: TRNG and PUF. J. Hardw. Syst. Secur. 2021, 5, 247–259.

[24]
Xiao, Y.; Hsieh, E. R.; Chung, S. S.; Chen, T. R.; Huang, S. A.; Chen, T. J.; Cheng, O. Novel concept of the transistor variation directed toward the circuit implementation of physical unclonable function (PUF) and true-random-number generator (TRNG). In Proceedings of 2019 IEEE International Electron Devices Meeting, San Francisco, USA, 2019.
[25]
Ding, Q. T.; Jiang, H. J.; Li, J.; Liu, C.; Yu, J.; Chen, P.; Zhao, Y. L.; Ding, Y. X.; Gong, T. C.; Yang, J. G. et al. Unified 0.75pJ/Bit TRNG and attack resilient 2F2/Bit PUF for robust hardware security solutions with 4-layer stacking 3D NbO x threshold switching array. In Proceedings of 2021 IEEE International Electron Devices Meeting, San Francisco, USA, 2021.
[26]
Taneja, S.; Rajanna, V. K.; Alioto M. 36.1 unified in-memory dynamic TRNG and multi-bit static PUF entropy generation for ubiquitous hardware security. In Proceedings of 2021 IEEE International Solid-State Circuits Conference, San Francisco, USA, 2021.
[27]

Satpathy, S. K.; Mathew, S. K.; Kumar, R.; Suresh, V.; Anders, M. A.; Kaul, H.; Agarwal, A.; Hsu, S.; Krishnamurthy, R. K.; De, V. An all-digital unified physically unclonable function and true random number generator featuring self-calibrating hierarchical von Neumann extraction in 14-nm tri-gate CMOS. IEEE J. Solid-State Circuits 2019, 54, 1074–1085.

[28]
Batude, P.; Vinet, M.; Previtali, B.; Tabone, C.; Xu, C.; Mazurier, J.; Weber, O.; Andrieu, F.; Tosti, L.; Brevard, L. et al. Advances, challenges and opportunities in 3D CMOS sequential integration. In Proceedings of 2011 International Electron Devices Meeting, Washington, USA, 2011.
[29]

Han, J. K.; Lee, J. W.; Kim, Y.; Kim, Y. B.; Yun, S. Y.; Lee, S. W.; Yu, J. M.; Lee, K. J.; Myung, H.; Choi, Y. K. 3D neuromorphic hardware with single thin-film transistor synapses over single thin-body transistor neurons by monolithic vertical integration. Adv. Sci. 2023, 10, 2302380.

[30]

Han, J. K.; Lee, J. W.; Kim, Y. B.; Yun, S. Y.; Yu, J. M.; Lee, K. J.; Choi, Y. K. Vertically integrated CMOS ternary logic device with low static power consumption and high packing density. ACS Appl. Mater. Interfaces 2023, 15, 51429–51434.

[31]

Plimmer, S. A.; David, J. P. R.; Jacob, B.; Rees, G. J. Impact ionization probabilities as functions of two-dimensional space and time. J. Appl. Phys. 2001, 89, 2742–2751.

[32]

Bonani, F.; Ghione, G. Generation-recombination noise modelling in semiconductor devices through population or approximate equivalent current density fluctuations. Solid-State Electron. 1999, 43, 285–295.

[33]

Kimura, M.; Inoue, S.; Shimoda, T.; Eguchi, T. Dependence of polycrystalline silicon thin-film transistor characteristics on the grain-boundary location. J. Appl. Phys. 2001, 89, 596–600.

[34]

Ho, C. H.; Panagopoulos, G.; Roy, K. A physical model for grain-boundary-induced threshold voltage variation in polysilicon thin-film transistors. IEEE Trans. Electron Devices 2012, 59, 2396–2402.

[35]

Chung, C. C.; Lin, H.; Lin, Y. T. A novel high-speed sense amplifier for Bi-NOR flash memories. IEEE J. Solid-State Circuits 2005, 40, 515–522.

[36]

Rührmair, U.; Sölter, J.; Sehnke, F.; Xu, X. L.; Mahmoud, A.; Stoyanova, V.; Dror, G.; Schmidhuber, J.; Burleson, W.; Devadas, S. PUF modeling attacks on simulated and silicon data. IEEE Trans. Inform. Forensics Secur. 2013, 8, 1876–1891.

[37]

Cai, Y.; Ghose, S.; Haratsch, E. F.; Luo, Y. X.; Mutlu, O. Error characterization, mitigation, and recovery in flash-memory-based solid-state drives. Proc. IEEE 2017, 105, 1666–1704.

Nano Research
Article number: 94907045
Cite this article:
Lee J-W, Han J-K, Kim S-I, et al. Vertically integrated security devices with physically unclonable function and random number generation. Nano Research, 2025, 18(1): 94907045. https://doi.org/10.26599/NR.2025.94907045
Topics:

336

Views

84

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 12 July 2024
Revised: 19 September 2024
Accepted: 23 September 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return