Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Physically unclonable function (PUF) and random number generation (RNG) are commonly used security tools to protect sensitive information from external threats. This paper presents an approach to implement these tools based on three-dimensional monolithic and vertical integration, combining an overlying transistor for the PUF with an underlying transistor for RNG. The PUF was implemented using a polycrystalline silicon (poly-Si) thin-film transistor (TFT), while RNG was realized with a single crystalline silicon (sc-Si) field-effect transistor (FET). The poly-Si TFT for the PUF generates random keys across multiple devices, exhibiting variation of the threshold voltage due to different grain sizes and boundaries. This approach effectively doubles the encryption key capability by creating mirror bits in the source and drain of the poly-Si TFT. The sc-Si FET for RNG produces random numbers due to the stochastic behavior of iterative single transistor latching and unlatching, passing 15 NIST randomness tests. Integrating both security functions into a single chip can significantly reduce resource overhead in terms of hardware footprint and energy consumption, which is crucial in the era of mobile devices, edge computing, autonomous driving, and the Internet of Things.
Standaert, O. X.; Peeters, E.; Rouvroy, G.; Quisquater, J. J. An overview of power analysis attacks against field programmable gate arrays. Proc. IEEE 2006, 94, 383–394.
Gao, Y. S.; Al-Sarawi, S. F.; Abbott, D. Physical unclonable functions. Nat. Electron. 2020, 3, 81–91.
Chen, A. Utilizing the variability of resistive random access memory to implement reconfigurable physical unclonable functions. IEEE Electron Device Lett. 2015, 36, 138–140.
Pang, Y. C.; Wu, H. Q.; Gao, B.; Deng, N.; Wu, D.; Liu, R.; Yu, S. M.; Chen, A.; Qian, H. Optimization of RRAM-based physical unclonable function with a novel differential read-out method. IEEE Electron Device Lett. 2017, 38, 168–171.
John, R. A.; Shah, N.; Vishwanath, S. K.; Ng, S. E.; Febriansyah, B.; Jagadeeswararao, M.; Chang, C. H.; Basu, A.; Mathews, N. Halide perovskite memristors as flexible and reconfigurable physical unclonable functions. Nat. Commun. 2021, 12, 3681.
Gao, B.; Lin, B. H.; Pang, Y. C.; Xu, F.; Lu, Y. Y.; Chiu, Y. C.; Liu, Z. W.; Tang, J. S.; Chang, M. F.; Qian, H. et al. Concealable physically unclonable function chip with a memristor array. Sci. Adv. 2022, 8, eabn7753.
Kim, M. S.; Moon, D. I.; Yoo, S. K.; Lee, S. H.; Choi, Y. K. Investigation of physically unclonable functions using flash memory for integrated circuit authentication. IEEE Trans. Nanotechnol. 2015, 14, 384–389.
Yu, J. M.; Yun, G. J.; Kim, M. S.; Han, J. K.; Kim, D. J.; Choi, Y. K. A poly-crystalline silicon nanowire transistor with independently controlled double-gate for physically unclonable function by multi-states and self-destruction. Adv. Electron. Mater. 2021, 7, 2000989.
Jung, J. W.; Han, J. K.; Yu, J. M.; Lee, M. W.; Kim, M. S.; Lee, G. B.; Tcho, I. W.; Yun, S. Y.; Choi, Y. K. Concealable oscillation-based physical unclonable function with a single-transistor latch. IEEE Electron Device Lett. 2022, 43, 1359–1362.
Kim, D.; Im, S.; Kim, D.; Lee, H.; Choi, C.; Cho, J. H.; Ju, H.; Lim, J. A. Reconfigurable electronic physically unclonable functions based on organic thin-film transistors with multiscale polycrystalline entropy for highly secure cryptography primitives. Adv. Funct. Mater. 2023, 33, 2210367.
Bochard, N.; Bernard, F.; Fischer, V.; Valtchanov, B. True-randomness and pseudo-randomness in ring oscillator-based true random number generators. Int. J. Reconfigurable Comput. 2010, 2010, 879281.
Jiang, H.; Belkin, D.; Savel’ev, S. E.; Lin, S. Y.; Wang, Z. R.; Li, Y. N.; Joshi, S.; Midya, R.; Li, C.; Rao, M. Y. et al. A novel true random number generator based on a stochastic diffusive memristor. Nat. Commun. 2017, 8, 882.
Aziza, H.; Postel-Pellerin, J.; Bazzi, H.; Canet, P.; Moreau, M.; Marca, V. D.; Harb, A. True random number generator integration in a resistive RAM memory array using input current limitation. IEEE Trans. Nanotechnol. 2020, 19, 214–222.
Mulaosmanovic, H.; Mikolajick, T.; Slesazeck, S. Random number generation based on ferroelectric switching. IEEE Electron Device Lett. 2018, 39, 135–138.
Sun, B.; Ranjan, S.; Zhou, G. D.; Guo, T.; Du, C.; Wei, L.; Zhou, Y. N.; Wu, Y. A. A true random number generator based on ionic liquid modulated memristors. ACS Appl. Electron. Mater. 2021, 3, 2380–2388.
Chien, Y. C.; Xiang, H.; Wang, J. Z.; Shi, Y. F.; Fong, X.; Ang, K. W. Attack resilient true random number generators using ferroelectric-enhanced stochasticity in 2D transistor. Small 2023, 19, 2302842.
Rai, V. K.; Tripathy, S.; Mathew, J. Design and analysis of reconfigurable cryptographic primitives: TRNG and PUF. J. Hardw. Syst. Secur. 2021, 5, 247–259.
Satpathy, S. K.; Mathew, S. K.; Kumar, R.; Suresh, V.; Anders, M. A.; Kaul, H.; Agarwal, A.; Hsu, S.; Krishnamurthy, R. K.; De, V. An all-digital unified physically unclonable function and true random number generator featuring self-calibrating hierarchical von Neumann extraction in 14-nm tri-gate CMOS. IEEE J. Solid-State Circuits 2019, 54, 1074–1085.
Han, J. K.; Lee, J. W.; Kim, Y.; Kim, Y. B.; Yun, S. Y.; Lee, S. W.; Yu, J. M.; Lee, K. J.; Myung, H.; Choi, Y. K. 3D neuromorphic hardware with single thin-film transistor synapses over single thin-body transistor neurons by monolithic vertical integration. Adv. Sci. 2023, 10, 2302380.
Han, J. K.; Lee, J. W.; Kim, Y. B.; Yun, S. Y.; Yu, J. M.; Lee, K. J.; Choi, Y. K. Vertically integrated CMOS ternary logic device with low static power consumption and high packing density. ACS Appl. Mater. Interfaces 2023, 15, 51429–51434.
Plimmer, S. A.; David, J. P. R.; Jacob, B.; Rees, G. J. Impact ionization probabilities as functions of two-dimensional space and time. J. Appl. Phys. 2001, 89, 2742–2751.
Bonani, F.; Ghione, G. Generation-recombination noise modelling in semiconductor devices through population or approximate equivalent current density fluctuations. Solid-State Electron. 1999, 43, 285–295.
Kimura, M.; Inoue, S.; Shimoda, T.; Eguchi, T. Dependence of polycrystalline silicon thin-film transistor characteristics on the grain-boundary location. J. Appl. Phys. 2001, 89, 596–600.
Ho, C. H.; Panagopoulos, G.; Roy, K. A physical model for grain-boundary-induced threshold voltage variation in polysilicon thin-film transistors. IEEE Trans. Electron Devices 2012, 59, 2396–2402.
Chung, C. C.; Lin, H.; Lin, Y. T. A novel high-speed sense amplifier for Bi-NOR flash memories. IEEE J. Solid-State Circuits 2005, 40, 515–522.
Rührmair, U.; Sölter, J.; Sehnke, F.; Xu, X. L.; Mahmoud, A.; Stoyanova, V.; Dror, G.; Schmidhuber, J.; Burleson, W.; Devadas, S. PUF modeling attacks on simulated and silicon data. IEEE Trans. Inform. Forensics Secur. 2013, 8, 1876–1891.
Cai, Y.; Ghose, S.; Haratsch, E. F.; Luo, Y. X.; Mutlu, O. Error characterization, mitigation, and recovery in flash-memory-based solid-state drives. Proc. IEEE 2017, 105, 1666–1704.
336
Views
84
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).