In-situ growth of perovskite single-crystal thin films (PeSCTFs) on the transport layer is crucial for achieving high-performance perovskite optoelectronic devices, such as solar cells, light emitting diodes, photodetectors, etc. However, in-situ growing PeSCTF on the transport layer with large-area, high-crystal-quality, and low-trap-density simultaneously remains challenging. This work proposes a method for in-situ growing large-area and low-trap-density MAPbBr3 SCTFs on the poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) transport layer with the assistance of cesium(I) bis(trifluoromethanesulfonyl)imide (CsTFSI) ionic liquid. After introducing the CsTFSI ionic liquid, the Cs+ ions enter the MAPbBr3 lattice, reducing the formation energy, and the coordination between the lone pair electrons of O in TFSI– and the empty orbital of Pb in MAPbBr3 passivates the dangling bond defects of Pb, facilitating the formation of MAPbBr3 SCTFs with high-crystal-quality. Moreover, the strong interaction between TFSI– and the substrate can enhance wettability and reduce the contact angle, thereby promoting faster solute diffusion and enabling the growth of larger-area MAPbBr3 SCTFs. Therefore, compared to the sample without CsTFSI addition, the MAPbBr3 SCTFs with CsTFSI addition exhibit better thermal stability, larger area (increased from 1.79 to 19.68 mm2, approximately a 10-fold increase), lower trap density (decreased from 6.86 × 1012 to 5.39 × 1012 cm–3), and higher carrier mobility (increased from 0.72 to 0.84 cm2∙V–1∙s–1). Moreover, the performance of the photodetector with CsTFSI, including responsivity, external quantum efficiency (EQE), detectivity, and response speed, also increased significantly. This work provides an effective method for the in-situ growth of PeSCTFs with large-area, high-crystal-quality, and low-trap-density simultaneously on the transport layer.
Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.
Lin, K. B.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245–248.
García de Arquer, F. P.; Armin, A.; Meredith, P.; Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2017, 2, 16100.
Zhu, H. M.; Fu, Y. P.; Meng, F.; Wu, X. X.; Gong, Z. Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636–642.
Zhang, L. X.; Mei, L. Y.; Wang, K. Y.; Lv, Y. H.; Zhang, S.; Lian, Y. X.; Liu, X. K.; Ma, Z. W.; Xiao, G. J.; Liu, Q. et al. Advances in the application of perovskite materials. Nano-Micro Lett. 2023, 15, 177.
Sutherland, B. R.; Sargent, E. H. Perovskite photonic sources. Nat. Photonics 2016, 10, 295–302.
Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750.
Li, C. L.; Ma, Y.; Xiao, Y. F.; Shen, L.; Ding, L. M. Advances in perovskite photodetectors. Infomat 2020, 2, 1247–1256.
Rong, Y. G.; Hu, Y.; Mei, A. Y.; Tan, H. R.; Saidaminov, M. I.; Seok, S. I.; McGehee, M. D.; Sargent, E. H.; Han, H. W. Challenges for commercializing perovskite solar cells. Science 2018, 361, eaat8235.
Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970.
Nie, W. Y.; Tsai, H.; Asadpour, R.; Blancon, J. C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522–525.
Dong, H. Y.; Zhang, L. X.; Zhang, W. H.; Wang, J. L.; Zhang, X. L.; Ding, L. M. Single crystals of perovskites. J. Semicond. 2022, 43, 120201.
Guo, Z.; Wan, Y.; Yang, M. J.; Snaider, J.; Zhu, K.; Huang, L. B. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 2017, 356, 59–62.
Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.
Lian, Z. P.; Yan, Q. F.; Gao, T. T.; Ding, J.; Lv, Q. R.; Ning, C. G.; Li, Q.; Sun, J. L. Perovskite CH3NH3PbI3(Cl) single crystals: Rapid solution growth, unparalleled crystalline quality, and low trap density toward 108 cm–3. J. Am. Chem. Soc. 2016, 138, 9409–9412.
Han, Q. F.; Bae, S. H.; Sun, P. Y.; Hsieh, Y. T.; Yang, Y.; Rim, Y. S.; Zhao, H. X.; Chen, Q.; Shi, W. Z.; Li, G. et al. Single crystal formamidinium lead iodide (FAPbI3): Insight into the structural, optical, and electrical properties. Adv. Mater. 2016, 28, 2253–2258.
Liu, Y. C.; Zhang, Y. X.; Yang, Z.; Feng, J. S.; Xu, Z.; Li, Q. X.; Hu, M. X.; Ye, H. C.; Zhang, X.; Liu, M. et al. Low-temperature-gradient crystallization for multi-inch high-quality perovskite single crystals for record performance photodetectors. Mater. Today 2019, 22, 67–75.
Li, Y. L.; Ding, L. M. Single-crystal perovskite devices. Sci. Bull. 2021, 66, 214–218.
Chen, Y. X.; Ge, Q. Q.; Shi, Y.; Liu, J.; Xue, D. J.; Ma, J. Y.; Ding, J.; Yang, H. J.; Hu, J. S.; Wan, L. J. General space-confined on-substrate fabrication of thickness-adjustable hybrid perovskite single-crystalline thin films. J. Am. Chem. Soc. 2016, 138, 16196–16199.
Gu, Z. K.; Huang, Z. D.; Li, C.; Li, M. Z.; Song, Y. L. A general printing approach for scalable growth of perovskite single-crystal films. Sci. Adv. 2018, 4, eaat2390.
Yang, Z. Q.; Deng, Y. H.; Zhang, X. W.; Wang, S.; Chen, H. Z.; Yang, S.; Khurgin, J.; Fang, N. X.; Zhang, X.; Ma, R. M. High-performance single-crystalline perovskite thin-film photodetector. Adv. Mater. 2018, 30, 1704333.
Kelso, M. V.; Mahenderkar, N. K.; Chen, Q. Z.; Tubbesing, J. Z.; Switzer, J. A. Spin coating epitaxial films. Science 2019, 364, 166–169.
Xiao, X.; Dai, J.; Fang, Y. J.; Zhao, J. J.; Zheng, X. P.; Tang, S.; Rudd, P. N.; Zeng, X. C.; Huang, J. S. Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Lett. 2018, 3, 684–688.
Peng, W.; Wang, L. F.; Murali, B.; Ho, K. T.; Bera, A.; Cho, N.; Kang, C. F.; Burlakov, V. M.; Pan, J.; Sinatra, L. et al. Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells. Adv. Mater. 2016, 28, 3383–3390.
Zhumekenov, A. A.; Burlakov, V. M.; Saidaminov, M. I.; Alofi, A.; Haque, A.; Turedi, B.; Davaasuren, B.; Dursun, I.; Cho, N.; El-Zohry, A. M. et al. The role of surface tension in the crystallization of metal halide perovskites. ACS Energy Lett. 2017, 2, 1782–1788.
Wang, K.; Wu, C. C.; Yang, D.; Jiang, Y. Y.; Priya, S. Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano 2018, 12, 4919–4929.
Liu, Y.; Dong, Q. F.; Fang, Y. J.; Lin, Y. Z.; Deng, Y. H.; Huang, J. S. Fast growth of thin MAPbI3 crystal wafers on aqueous solution surface for efficient lateral-structure perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1807707.
Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Graetzel, M.; Nazeeruddin, M. K.; Bolink, H. J. Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 2014, 8, 128–132.
Po, R.; Carbonera, C.; Bernardi, A.; Camaioni, N. The role of buffer layers in polymer solar cells. Energy Environ. Sci. 2011, 4, 285–310.
Lei, Y. S.; Chen, Y. M.; Zhang, R. Q.; Li, Y. H.; Yan, Q. Z.; Lee, S.; Yu, Y. G.; Tsai, H.; Choi, W.; Wang, K. P. et al. A fabrication process for flexible single-crystal perovskite devices. Nature 2020, 583, 790–795.
Rao, H. S.; Li, W. G.; Chen, B. X.; Kuang, D. B.; Su, C. Y. In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband-photodetectors. Adv. Mater. 2017, 29, 1602639.
Tang, X. B.; Chen, W.; Wu, D.; Gao, A. J.; Li, G. M.; Sun, J. Y.; Yi, K. Y.; Wang, Z. J.; Pang, G. T.; Yang, H. C. et al. In situ growth of all-inorganic perovskite single crystal arrays on electron transport layer. Adv. Sci. 2020, 7, 1902767.
Zhao, L. Y.; Gao, Y.; Su, M.; Shang, Q. Y.; Liu, Z.; Li, Q.; Wei, Q.; Li, M. L.; Fu, L.; Zhong, Y. G. et al. Vapor-phase incommensurate heteroepitaxy of oriented single-crystal CsPbBr3 on GaN: Toward integrated optoelectronic applications. Acs Nano 2019, 13, 10085–10094.
Liu, Y. C.; Ren, X. D.; Zhang, J.; Yang, Z.; Yang, D.; Yu, F. Y.; Sun, J. K.; Zhao, C. M.; Yao, Z.; Wang, B. et al. 120 mm single-crystalline perovskite and wafers: Towards viable applications. Sci. China Chem. 2017, 60, 1367–1376.
Wang, K.; Wu, C. C.; Hou, Y. C.; Yang, D.; Priya, S. Monocrystalline perovskite wafers/thin films for photovoltaic and transistor applications. J. Mater. Chem. A 2019, 7, 24661–24690.
Chen, Y. M.; Lei, Y. S.; Li, Y. H.; Yu, Y. G.; Cai, J. Z.; Chiu, M. H.; Rao, R.; Gu, Y.; Wang, C. F.; Choi, W. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 2020, 577, 209–215.
Liu, Y. C.; Zhang, Y. X.; Yang, Z.; Ye, H. C.; Feng, J. S.; Xu, Z.; Zhang, X.; Munir, R.; Liu, J.; Zuo, P. et al. Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors. Nat. Commun. 2018, 9, 5302.
Cheng, X.; Yang, S.; Cao, B. Q.; Tao, X. T.; Chen, Z. L. Single crystal perovskite solar cells: Development and perspectives. Adv. Funct. Mater. 2020, 30, 1905021.
Li, L. Y.; Liu, J. X.; Zeng, M. Q.; Fu, L. Space-confined growth of metal halide perovskite crystal films. Nano Res. 2021, 14, 1609–1624.
Dunlap-Shohl, W. A.; Zhou, Y. Y.; Padture, N. P.; Mitzi, D. B. Synthetic approaches for halide perovskite thin films. Chem. Rev. 2019, 119, 3193–3295.
Tang, X. B.; Wang, Z. J.; Wu, D.; Wu, Z. H.; Ren, Z. W.; Li, R. X.; Liu, P.; Mei, G. D.; Sun, J. Y.; Yu, J. H. et al. In situ growth mechanism for high-quality hybrid perovskite single-crystal thin films with high area to thickness ratio: Looking for the sweet spot. Adv. Sci. 2022, 9, 2104788.
Yao, F.; Peng, J. L.; Li, R. M.; Li, W. J.; Gui, P. B.; Li, B. R.; Liu, C.; Tao, C.; Lin, Q. Q.; Fang, G. J. Room-temperature liquid diffused separation induced crystallization for high-quality perovskite single crystals. Nat. Commun. 2020, 11, 1194.
Ma, L.; Yan, Z. G.; Zhou, X. Y.; Pi, Y. Q.; Du, Y. P.; Huang, J.; Wang, K. W.; Wu, K.; Zhuang, C. Q.; Han, X. D. A polymer controlled nucleation route towards the generalized growth of organic-inorganic perovskite single crystals. Nat. Commun. 2021, 12, 2023.
Wang, Z. J.; Shan, C. W.; Liu, C. X.; Tang, X. B.; Luo, D. F.; Tang, H. D.; Song, Z. L.; Wang, J. W.; Ren, Z. W.; Ma, J. R. et al. In situ growth of perovskite single-crystal thin films with low trap density. Cell Rep. Phys. Sci. 2023, 4, 101363.
Hutter, E. M.; Muscarella, L. A.; Wittmann, F.; Versluis, J.; McGovern, L.; Bakker, H. J.; Woo, Y. W.; Jung, Y. K.; Walsh, A.; Ehrler, B. Thermodynamic stabilization of mixed-halide perovskites against phase segregation. Cell Rep. Phys. Sci. 2020, 1, 100120.
Chen, Y. N.; He, M. H.; Peng, J. J.; Sun, Y.; Liang, Z. Q. Structure and growth control of organic-inorganic halide perovskites for optoelectronics: From polycrystalline films to single crystals. Adv. Sci. 2016, 3, 1500392.
Nakada, K.; Matsumoto, Y.; Shimoi, Y.; Yamada, K.; Furukawa, Y. Temperature-dependent evolution of Raman spectra of methylammonium lead halide perovskites, CH3NH3PbX3 (X = I, Br). Molecules 2019, 24, 626.
Liu, Y. C.; Zhang, Y. X.; Zhu, X. J.; Feng, J. S.; Spanopoulos, I.; Ke, W. J.; He, Y. H.; Ren, X. D.; Yang, Z.; Xiao, F. W. et al. Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging. Adv. Mater. 2021, 33, 2006010.
Guo, Y. L.; Sato, W.; Shoyama, K.; Halim, H.; Itabashi, Y.; Shang, R.; Nakamura, E. Citric acid modulated growth of oriented lead perovskite crystals for efficient solar cells. J. Am. Chem. Soc. 2017, 139, 9598–9604.
Zhao, Y. X.; Zhu, K. Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 2016, 45, 655–689.
Stoumpos, C. C.; Kanatzidis, M. G. The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc. Chem. Res. 2015, 48, 2791–2802.
Zhang, C. Y.; Wang, Y. B.; Lin, X. S.; Wu, T. H.; Han, Q. F.; Zhang, Y. Q.; Han, L. Y. Effects of a site doping on the crystallization of perovskite films. J. Mater. Chem. A 2021, 9, 1372–1394.
Sun, Y. Q.; Mao, L.; Yang, T.; Zhang, H.; Shi, J. H.; Tan, Q. C.; Li, F. M.; Zeng, P.; Gong, J.; Liu, Z. X. et al. Ionic liquid modified polymer intermediate layer for improved charge extraction toward efficient and stable perovskite/silicon tandem solar cells. Small 2024, 20, 2308553.
Tian, C. M.; Wu, T. H.; Zhao, Y.; Zhou, X. L.; Li, B.; Han, X. F.; Li, K. R.; Hou, C. Y.; Li, Y. G.; Wang, H. Z. et al. Anion-stabilized precursor inks toward efficient and reproducible air-processed perovskite solar cells. Adv. Energy Mater. 2024, 14, 2303666.
Liu, Y. C.; Sun, J. K.; Yang, Z.; Yang, D.; Ren, X. D.; Xu, H.; Yang, Z. P.; Liu, S. Z. 20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors. Adv. Opt. Mater. 2016, 4, 1829–1837.
You, P.; Li, G. J.; Tang, G. Q.; Cao, J. P.; Yan, F. Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy Environ. Sci. 2020, 13, 1187–1196.
Guerrero, A.; Bisquert, J.; Garcia-Belmonte, G. Impedance spectroscopy of metal halide perovskite solar cells from the perspective of equivalent circuits. Chem. Rev. 2021, 121, 14430–14484.
Wang, K.; Yang, D.; Wu, C. C.; Shapter, J.; Priya, S. Mono-crystalline perovskite photovoltaics toward ultrahigh efficiency. Joule 2019, 3, 311–316.
Lei, Y. S.; Chen, Y. M.; Xu, S. Single-crystal halide perovskites: Opportunities and challenges. Matter 2021, 4, 2266–2308.
Li, J. Y.; Han, Z. Y.; Gu, Y.; Yu, D. J.; Liu, J. X.; Hu, D. W.; Xu, X. B.; Zeng, H. B. Perovskite single crystals: Synthesis, optoelectronic properties, and application. Adv. Funct. Mater. 2021, 31, 2008684.
Fang, Y. J.; Dong, Q. F.; Shao, Y. C.; Yuan, Y. B.; Huang, J. S. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 2015, 9, 679–686.
Lou, Y. J.; Zhang, S. S.; Gu, Z. K.; Wang, N.; Wang, S. H.; Zhang, Y. Q.; Song, Y. L. Perovskite single crystals: Dimensional control, optoelectronic properties, and applications. Mater. Today 2023, 62, 225–250.
Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.
Kresse, G.; Furthmüller, J. Efficiency of ab- initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.