PDF (23.6 MB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Research Article | Open Access

An ionic liquid assisted in-situ growth of large-area and high-crystal-quality perovskite single-crystal thin films

Min Liao1,§Zhaojin Wang1,§Chengwei Shan1,§Dengfeng Luo1,2Zhongyuan Guan1Qingqian Wang1,4Hongmei Zhu1Zhulu Song1Dan Wu3()Aung Ko Ko Kyaw1 ()Kai Wang1 ()
Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Peng Cheng Laboratory, Shenzhen 518055, China
College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, China

§ Min Liao, Zhaojin Wang, and Chengwei Shan contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
After introducing the cesium(I) bis(trifluoromethanesulfonyl)imide (CsTFSI) ionic liquid, the Cs+ ions enter the MAPbBr3 lattice, reducing the formation energy, and the coordination between the lone pair electrons of O in TFSI and the empty orbital of Pb in MAPbBr3 passivates the dangling bond defects of Pb, facilitating the formation of MAPbBr3 single-crystal thin films (SCTFs) with high-crystal-quality. Moreover, the strong interaction between TFSI and the substrate can enhance wettability and reduce the contact angle, thereby promoting faster solute diffusion and enabling the growth of larger-area MAPbBr3 SCTFs.

Abstract

In-situ growth of perovskite single-crystal thin films (PeSCTFs) on the transport layer is crucial for achieving high-performance perovskite optoelectronic devices, such as solar cells, light emitting diodes, photodetectors, etc. However, in-situ growing PeSCTF on the transport layer with large-area, high-crystal-quality, and low-trap-density simultaneously remains challenging. This work proposes a method for in-situ growing large-area and low-trap-density MAPbBr3 SCTFs on the poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) transport layer with the assistance of cesium(I) bis(trifluoromethanesulfonyl)imide (CsTFSI) ionic liquid. After introducing the CsTFSI ionic liquid, the Cs+ ions enter the MAPbBr3 lattice, reducing the formation energy, and the coordination between the lone pair electrons of O in TFSI and the empty orbital of Pb in MAPbBr3 passivates the dangling bond defects of Pb, facilitating the formation of MAPbBr3 SCTFs with high-crystal-quality. Moreover, the strong interaction between TFSI and the substrate can enhance wettability and reduce the contact angle, thereby promoting faster solute diffusion and enabling the growth of larger-area MAPbBr3 SCTFs. Therefore, compared to the sample without CsTFSI addition, the MAPbBr3 SCTFs with CsTFSI addition exhibit better thermal stability, larger area (increased from 1.79 to 19.68 mm2, approximately a 10-fold increase), lower trap density (decreased from 6.86 × 1012 to 5.39 × 1012 cm–3), and higher carrier mobility (increased from 0.72 to 0.84 cm2∙V–1∙s–1). Moreover, the performance of the photodetector with CsTFSI, including responsivity, external quantum efficiency (EQE), detectivity, and response speed, also increased significantly. This work provides an effective method for the in-situ growth of PeSCTFs with large-area, high-crystal-quality, and low-trap-density simultaneously on the transport layer.

Electronic Supplementary Material

Download File(s)
7046_ESM.pdf (3.7 MB)

References

[1]

Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

[2]

Lin, K. B.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245–248.

[3]

García de Arquer, F. P.; Armin, A.; Meredith, P.; Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2017, 2, 16100.

[4]

Zhu, H. M.; Fu, Y. P.; Meng, F.; Wu, X. X.; Gong, Z. Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636–642.

[5]

Zhang, L. X.; Mei, L. Y.; Wang, K. Y.; Lv, Y. H.; Zhang, S.; Lian, Y. X.; Liu, X. K.; Ma, Z. W.; Xiao, G. J.; Liu, Q. et al. Advances in the application of perovskite materials. Nano-Micro Lett. 2023, 15, 177.

[6]

Sutherland, B. R.; Sargent, E. H. Perovskite photonic sources. Nat. Photonics 2016, 10, 295–302.

[7]

Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750.

[8]

Li, C. L.; Ma, Y.; Xiao, Y. F.; Shen, L.; Ding, L. M. Advances in perovskite photodetectors. Infomat 2020, 2, 1247–1256.

[9]

Rong, Y. G.; Hu, Y.; Mei, A. Y.; Tan, H. R.; Saidaminov, M. I.; Seok, S. I.; McGehee, M. D.; Sargent, E. H.; Han, H. W. Challenges for commercializing perovskite solar cells. Science 2018, 361, eaat8235.

[10]

Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970.

[11]

Nie, W. Y.; Tsai, H.; Asadpour, R.; Blancon, J. C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522–525.

[12]

Dong, H. Y.; Zhang, L. X.; Zhang, W. H.; Wang, J. L.; Zhang, X. L.; Ding, L. M. Single crystals of perovskites. J. Semicond. 2022, 43, 120201.

[13]

Guo, Z.; Wan, Y.; Yang, M. J.; Snaider, J.; Zhu, K.; Huang, L. B. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 2017, 356, 59–62.

[14]

Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

[15]

Lian, Z. P.; Yan, Q. F.; Gao, T. T.; Ding, J.; Lv, Q. R.; Ning, C. G.; Li, Q.; Sun, J. L. Perovskite CH3NH3PbI3(Cl) single crystals: Rapid solution growth, unparalleled crystalline quality, and low trap density toward 108 cm–3. J. Am. Chem. Soc. 2016, 138, 9409–9412.

[16]

Han, Q. F.; Bae, S. H.; Sun, P. Y.; Hsieh, Y. T.; Yang, Y.; Rim, Y. S.; Zhao, H. X.; Chen, Q.; Shi, W. Z.; Li, G. et al. Single crystal formamidinium lead iodide (FAPbI3): Insight into the structural, optical, and electrical properties. Adv. Mater. 2016, 28, 2253–2258.

[17]

Liu, Y. C.; Zhang, Y. X.; Yang, Z.; Feng, J. S.; Xu, Z.; Li, Q. X.; Hu, M. X.; Ye, H. C.; Zhang, X.; Liu, M. et al. Low-temperature-gradient crystallization for multi-inch high-quality perovskite single crystals for record performance photodetectors. Mater. Today 2019, 22, 67–75.

[18]

Li, Y. L.; Ding, L. M. Single-crystal perovskite devices. Sci. Bull. 2021, 66, 214–218.

[19]

Chen, Y. X.; Ge, Q. Q.; Shi, Y.; Liu, J.; Xue, D. J.; Ma, J. Y.; Ding, J.; Yang, H. J.; Hu, J. S.; Wan, L. J. General space-confined on-substrate fabrication of thickness-adjustable hybrid perovskite single-crystalline thin films. J. Am. Chem. Soc. 2016, 138, 16196–16199.

[20]

Gu, Z. K.; Huang, Z. D.; Li, C.; Li, M. Z.; Song, Y. L. A general printing approach for scalable growth of perovskite single-crystal films. Sci. Adv. 2018, 4, eaat2390.

[21]

Yang, Z. Q.; Deng, Y. H.; Zhang, X. W.; Wang, S.; Chen, H. Z.; Yang, S.; Khurgin, J.; Fang, N. X.; Zhang, X.; Ma, R. M. High-performance single-crystalline perovskite thin-film photodetector. Adv. Mater. 2018, 30, 1704333.

[22]

Kelso, M. V.; Mahenderkar, N. K.; Chen, Q. Z.; Tubbesing, J. Z.; Switzer, J. A. Spin coating epitaxial films. Science 2019, 364, 166–169.

[23]

Xiao, X.; Dai, J.; Fang, Y. J.; Zhao, J. J.; Zheng, X. P.; Tang, S.; Rudd, P. N.; Zeng, X. C.; Huang, J. S. Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Lett. 2018, 3, 684–688.

[24]

Peng, W.; Wang, L. F.; Murali, B.; Ho, K. T.; Bera, A.; Cho, N.; Kang, C. F.; Burlakov, V. M.; Pan, J.; Sinatra, L. et al. Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells. Adv. Mater. 2016, 28, 3383–3390.

[25]

Zhumekenov, A. A.; Burlakov, V. M.; Saidaminov, M. I.; Alofi, A.; Haque, A.; Turedi, B.; Davaasuren, B.; Dursun, I.; Cho, N.; El-Zohry, A. M. et al. The role of surface tension in the crystallization of metal halide perovskites. ACS Energy Lett. 2017, 2, 1782–1788.

[26]

Wang, K.; Wu, C. C.; Yang, D.; Jiang, Y. Y.; Priya, S. Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano 2018, 12, 4919–4929.

[27]

Liu, Y.; Dong, Q. F.; Fang, Y. J.; Lin, Y. Z.; Deng, Y. H.; Huang, J. S. Fast growth of thin MAPbI3 crystal wafers on aqueous solution surface for efficient lateral-structure perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1807707.

[28]

Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Graetzel, M.; Nazeeruddin, M. K.; Bolink, H. J. Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 2014, 8, 128–132.

[29]

Po, R.; Carbonera, C.; Bernardi, A.; Camaioni, N. The role of buffer layers in polymer solar cells. Energy Environ. Sci. 2011, 4, 285–310.

[30]

Lei, Y. S.; Chen, Y. M.; Zhang, R. Q.; Li, Y. H.; Yan, Q. Z.; Lee, S.; Yu, Y. G.; Tsai, H.; Choi, W.; Wang, K. P. et al. A fabrication process for flexible single-crystal perovskite devices. Nature 2020, 583, 790–795.

[31]

Rao, H. S.; Li, W. G.; Chen, B. X.; Kuang, D. B.; Su, C. Y. In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband-photodetectors. Adv. Mater. 2017, 29, 1602639.

[32]

Tang, X. B.; Chen, W.; Wu, D.; Gao, A. J.; Li, G. M.; Sun, J. Y.; Yi, K. Y.; Wang, Z. J.; Pang, G. T.; Yang, H. C. et al. In situ growth of all-inorganic perovskite single crystal arrays on electron transport layer. Adv. Sci. 2020, 7, 1902767.

[33]

Zhao, L. Y.; Gao, Y.; Su, M.; Shang, Q. Y.; Liu, Z.; Li, Q.; Wei, Q.; Li, M. L.; Fu, L.; Zhong, Y. G. et al. Vapor-phase incommensurate heteroepitaxy of oriented single-crystal CsPbBr3 on GaN: Toward integrated optoelectronic applications. Acs Nano 2019, 13, 10085–10094.

[34]

Liu, Y. C.; Ren, X. D.; Zhang, J.; Yang, Z.; Yang, D.; Yu, F. Y.; Sun, J. K.; Zhao, C. M.; Yao, Z.; Wang, B. et al. 120 mm single-crystalline perovskite and wafers: Towards viable applications. Sci. China Chem. 2017, 60, 1367–1376.

[35]

Wang, K.; Wu, C. C.; Hou, Y. C.; Yang, D.; Priya, S. Monocrystalline perovskite wafers/thin films for photovoltaic and transistor applications. J. Mater. Chem. A 2019, 7, 24661–24690.

[36]

Chen, Y. M.; Lei, Y. S.; Li, Y. H.; Yu, Y. G.; Cai, J. Z.; Chiu, M. H.; Rao, R.; Gu, Y.; Wang, C. F.; Choi, W. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 2020, 577, 209–215.

[37]

Liu, Y. C.; Zhang, Y. X.; Yang, Z.; Ye, H. C.; Feng, J. S.; Xu, Z.; Zhang, X.; Munir, R.; Liu, J.; Zuo, P. et al. Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors. Nat. Commun. 2018, 9, 5302.

[38]

Cheng, X.; Yang, S.; Cao, B. Q.; Tao, X. T.; Chen, Z. L. Single crystal perovskite solar cells: Development and perspectives. Adv. Funct. Mater. 2020, 30, 1905021.

[39]

Li, L. Y.; Liu, J. X.; Zeng, M. Q.; Fu, L. Space-confined growth of metal halide perovskite crystal films. Nano Res. 2021, 14, 1609–1624.

[40]

Dunlap-Shohl, W. A.; Zhou, Y. Y.; Padture, N. P.; Mitzi, D. B. Synthetic approaches for halide perovskite thin films. Chem. Rev. 2019, 119, 3193–3295.

[41]

Tang, X. B.; Wang, Z. J.; Wu, D.; Wu, Z. H.; Ren, Z. W.; Li, R. X.; Liu, P.; Mei, G. D.; Sun, J. Y.; Yu, J. H. et al. In situ growth mechanism for high-quality hybrid perovskite single-crystal thin films with high area to thickness ratio: Looking for the sweet spot. Adv. Sci. 2022, 9, 2104788.

[42]

Yao, F.; Peng, J. L.; Li, R. M.; Li, W. J.; Gui, P. B.; Li, B. R.; Liu, C.; Tao, C.; Lin, Q. Q.; Fang, G. J. Room-temperature liquid diffused separation induced crystallization for high-quality perovskite single crystals. Nat. Commun. 2020, 11, 1194.

[43]

Ma, L.; Yan, Z. G.; Zhou, X. Y.; Pi, Y. Q.; Du, Y. P.; Huang, J.; Wang, K. W.; Wu, K.; Zhuang, C. Q.; Han, X. D. A polymer controlled nucleation route towards the generalized growth of organic-inorganic perovskite single crystals. Nat. Commun. 2021, 12, 2023.

[44]

Wang, Z. J.; Shan, C. W.; Liu, C. X.; Tang, X. B.; Luo, D. F.; Tang, H. D.; Song, Z. L.; Wang, J. W.; Ren, Z. W.; Ma, J. R. et al. In situ growth of perovskite single-crystal thin films with low trap density. Cell Rep. Phys. Sci. 2023, 4, 101363.

[45]
Tiller, W. A. The Science of Crystallization: Microscopic Interfacial Phenomena; Cambridge University Press: Cambridge, 1991.
[46]

Hutter, E. M.; Muscarella, L. A.; Wittmann, F.; Versluis, J.; McGovern, L.; Bakker, H. J.; Woo, Y. W.; Jung, Y. K.; Walsh, A.; Ehrler, B. Thermodynamic stabilization of mixed-halide perovskites against phase segregation. Cell Rep. Phys. Sci. 2020, 1, 100120.

[47]

Chen, Y. N.; He, M. H.; Peng, J. J.; Sun, Y.; Liang, Z. Q. Structure and growth control of organic-inorganic halide perovskites for optoelectronics: From polycrystalline films to single crystals. Adv. Sci. 2016, 3, 1500392.

[48]

Nakada, K.; Matsumoto, Y.; Shimoi, Y.; Yamada, K.; Furukawa, Y. Temperature-dependent evolution of Raman spectra of methylammonium lead halide perovskites, CH3NH3PbX3 (X = I, Br). Molecules 2019, 24, 626.

[49]

Liu, Y. C.; Zhang, Y. X.; Zhu, X. J.; Feng, J. S.; Spanopoulos, I.; Ke, W. J.; He, Y. H.; Ren, X. D.; Yang, Z.; Xiao, F. W. et al. Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging. Adv. Mater. 2021, 33, 2006010.

[50]

Guo, Y. L.; Sato, W.; Shoyama, K.; Halim, H.; Itabashi, Y.; Shang, R.; Nakamura, E. Citric acid modulated growth of oriented lead perovskite crystals for efficient solar cells. J. Am. Chem. Soc. 2017, 139, 9598–9604.

[51]

Zhao, Y. X.; Zhu, K. Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 2016, 45, 655–689.

[52]

Stoumpos, C. C.; Kanatzidis, M. G. The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc. Chem. Res. 2015, 48, 2791–2802.

[53]

Zhang, C. Y.; Wang, Y. B.; Lin, X. S.; Wu, T. H.; Han, Q. F.; Zhang, Y. Q.; Han, L. Y. Effects of a site doping on the crystallization of perovskite films. J. Mater. Chem. A 2021, 9, 1372–1394.

[54]

Sun, Y. Q.; Mao, L.; Yang, T.; Zhang, H.; Shi, J. H.; Tan, Q. C.; Li, F. M.; Zeng, P.; Gong, J.; Liu, Z. X. et al. Ionic liquid modified polymer intermediate layer for improved charge extraction toward efficient and stable perovskite/silicon tandem solar cells. Small 2024, 20, 2308553.

[55]

Tian, C. M.; Wu, T. H.; Zhao, Y.; Zhou, X. L.; Li, B.; Han, X. F.; Li, K. R.; Hou, C. Y.; Li, Y. G.; Wang, H. Z. et al. Anion-stabilized precursor inks toward efficient and reproducible air-processed perovskite solar cells. Adv. Energy Mater. 2024, 14, 2303666.

[56]

Liu, Y. C.; Sun, J. K.; Yang, Z.; Yang, D.; Ren, X. D.; Xu, H.; Yang, Z. P.; Liu, S. Z. 20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors. Adv. Opt. Mater. 2016, 4, 1829–1837.

[57]

You, P.; Li, G. J.; Tang, G. Q.; Cao, J. P.; Yan, F. Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy Environ. Sci. 2020, 13, 1187–1196.

[58]

Guerrero, A.; Bisquert, J.; Garcia-Belmonte, G. Impedance spectroscopy of metal halide perovskite solar cells from the perspective of equivalent circuits. Chem. Rev. 2021, 121, 14430–14484.

[59]

Wang, K.; Yang, D.; Wu, C. C.; Shapter, J.; Priya, S. Mono-crystalline perovskite photovoltaics toward ultrahigh efficiency. Joule 2019, 3, 311–316.

[60]

Lei, Y. S.; Chen, Y. M.; Xu, S. Single-crystal halide perovskites: Opportunities and challenges. Matter 2021, 4, 2266–2308.

[61]

Li, J. Y.; Han, Z. Y.; Gu, Y.; Yu, D. J.; Liu, J. X.; Hu, D. W.; Xu, X. B.; Zeng, H. B. Perovskite single crystals: Synthesis, optoelectronic properties, and application. Adv. Funct. Mater. 2021, 31, 2008684.

[62]

Fang, Y. J.; Dong, Q. F.; Shao, Y. C.; Yuan, Y. B.; Huang, J. S. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 2015, 9, 679–686.

[63]

Lou, Y. J.; Zhang, S. S.; Gu, Z. K.; Wang, N.; Wang, S. H.; Zhang, Y. Q.; Song, Y. L. Perovskite single crystals: Dimensional control, optoelectronic properties, and applications. Mater. Today 2023, 62, 225–250.

[64]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.

[65]

Kresse, G.; Furthmüller, J. Efficiency of ab- initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[66]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[67]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[68]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

Nano Research
Article number: 94907046
Cite this article:
Liao M, Wang Z, Shan C, et al. An ionic liquid assisted in-situ growth of large-area and high-crystal-quality perovskite single-crystal thin films. Nano Research, 2025, 18(1): 94907046. https://doi.org/10.26599/NR.2025.94907046
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return