AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (31.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Mini Review | Open Access

Progress of crystalline carbon nitride in synthesis, atomic structure characterization and photocatalysis

Yueyang Tan1,2,3Zhongyan Zhang2Yayun Pu5Zongzhao Sun4 ( )Limin Huang2 ( )
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
School of Traffic and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Show Author Information

Graphical Abstract

This mini-review highlights the progress in crystalline carbon nitride (CCN)-based photocatalysts, focusing on molten-salt synthesis, atomic structure characterization and photocatalytic performance.

Abstract

Crystalline carbon nitride (CCN) has emerged as a highly promising semiconductor photocatalyst with unique properties, such as enhanced charge migration rate, reduced carrier recombination probability, narrow band gap and improved light-harvesting efficiency, which are suitable for a wide range of applications in solar-to-chemical conversion, energy storage, therapeutic and environmental pollution degradation. In the past few years, there has been an increasing number of reviews on CCN materials. However, most of these reviews mainly focus on synthesis methods, modification and applications, with less emphasis on the relationship between structures and properties, as well as on in-depth exploration of the crystalline structure. The electronic instability of CCN presents challenges for conventional characterization techniques to directly and thoroughly investigate the relationship between its intrinsic atom structure and photocatalytic performance. This mini-review not only highlights the progress in CCN-based photocatalysts, with a focus on molten-salt synthesis (including solid-salt-induced crystallization), but also emphasizes the atomic structure characterization by specifically introducing the differential phase contrast (DPC) scanning transmission electron microscopy (STEM) technique, which is essential for enhancing our understanding of the crystal structure and photocatalytic mechanisms of CCNs. Additionally, the review outlines the photocatalytic performance and puts forward potential challenges on CCN studies. This review will provide a clearer understanding of the relationship in developing precise customization strategies for CCN materials and ultimately explain the regularity and specificity of the enhanced performance in targeted photocatalytic systems.

References

[1]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

[2]

Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295–295.

[3]

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

[4]

Burrow, J. N.; Ciufo, R. A.; Smith, L. A.; Wang, Y.; Calabro, D. C.; Henkelman, G.; Mullins, C. B. Calcium poly(heptazine imide): A covalent heptazine framework for selective CO2 adsorption. ACS Nano 2022, 16, 5393–5403.

[5]

Zheng, Y.; Lin, L. H.; Wang, B.; Wang, X. C. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem., Int. Ed. 2015, 54, 12868–12884.

[6]

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability. Chem. Rev. 2016, 116, 7159–7329.

[7]

Sun, X. J.; Yang, D. D.; Dong, H.; Meng, X. B.; Sheng, J. L.; Zhang, X.; Wei, J. Z.; Zhang, F. M. ZIF-derived CoP as a cocatalyst for enhanced photocatalytic H2 production activity of g-C3N4. Sustain. Energy Fuels 2018, 2, 1356–1361.

[8]

Li, Y.; Li, B. H.; Zhang, D. N.; Cheng, L.; Xiang, Q. J. Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity. ACS Nano 2020, 14, 10552–10561.

[9]

Lin, Y.; Su, W. Y.; Wang, X. X.; Fu, X. Z.; Wang, X. C. LaOCl-coupled polymeric carbon nitride for overall water splitting through a one-photon excitation pathway. Angew. Chem., Int. Ed. 2020, 59, 20919–20923.

[10]

Li, Y.; Zhang, D. N.; Feng, X. H.; Xiang, Q. J. Enhanced photocatalytic hydrogen production activity of highly crystalline carbon nitride synthesized by hydrochloric acid treatment. Chin. J. Catal. 2020, 41, 21–30.

[11]

Zhang, M. M.; Lai, C.; Li, B. S.; Huang, D. L.; Zeng, G. M.; Xu, P.; Qin, L.; Liu, S. Y.; Liu, X. G.; Yi, H. et al. Rational design 2D/2D BiOBr/CDs/g-C3N4 Z-scheme heterojunction photocatalyst with carbon dots as solid-state electron mediators for enhanced visible and NIR photocatalytic activity: Kinetics, intermediates, and mechanism insight. J. Catal. 2019, 369, 469–481.

[12]

Chen, J. L.; Hong, Z. H.; Chen, Y. L.; Lin, B. Z.; Gao, B. F. One-step synthesis of sulfur-doped and nitrogen-deficient g-C3N4 photocatalyst for enhanced hydrogen evolution under visible light. Mater. Lett. 2015, 145, 129–132.

[13]

Sun, Z. Z.; Wang, W.; Chen, Q. W.; Pu, Y. Y.; He, H.; Zhuang, W. M.; He, J. Q.; Huang, L. M. Hierarchical carbon nitride tube with oxygen doping and carbon defects promotes solar-to-hydrogen conversion. J. Mater. Chem. A 2020, 8, 3160–3167.

[14]

Lin, L. H.; Lin, Z. Y.; Zhang, J.; Cai, X.; Lin, W.; Yu, Z. Y.; Wang, X. C. Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat. Catal. 2020, 3, 649–655.

[15]

Chen, X. X.; Cai, X.; Li, Y.; Zhang, Y. F.; Lin, W. Effects of potassium ions and platinum cocatalysts on the photocatalytic performance of poly(heptazine imides). Appl. Surf. Sci. 2023, 639, 158275.

[16]

Bojdys, M. J.; Müller, J. O.; Antonietti, M.; Thomas, A. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem.—Eur. J. 2008, 14, 8177–8182.

[17]

Ham, Y.; Maeda, K.; Cha, D.; Takanabe, K.; Domen, K. Synthesis and photocatalytic activity of poly(triazine imide). Chem.—Asian J. 2013, 8, 218–224.

[18]

Lin, L. H.; Ou, H. H.; Zhang, Y. F.; Wang, X. C. Tri- s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal. 2016, 6, 3921–3931.

[19]

Algara-Siller, G.; Severin, N.; Chong, S. Y.; Björkman, T.; Palgrave, R. G.; Laybourn, A.; Antonietti, M.; Khimyak, Y. Z.; Krasheninnikov, A. V.; Rabe, J. P. et al. Triazine-based graphitic carbon nitride: A two-dimensional semiconductor. Angew. Chem., Int. Ed. 2014, 53, 7450–7455.

[20]

Li, Y.; Gong, F.; Zhou, Q.; Feng, X. H.; Fan, J. J.; Xiang, Q. J. Crystalline isotype heptazine-/triazine-based carbon nitride heterojunctions for an improved hydrogen evolution. Appl. Catal. B: Environ. 2020, 268, 118381.

[21]

Song, H. J.; Luo, L. Y.; Wang, S. Y.; Zhang, G.; Jiang, B. J. Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chin. Chem. Lett. 2024, 35, 109347.

[22]

Zhao, B. B.; Zhong, W.; Chen, F.; Wang, P.; Bie, C. B.; Yu, H. G. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application. Chin. J. Catal. 2023, 52, 127–143.

[23]

Fang, Y. X.; Hou, Y. D.; Fu, X. Z.; Wang, X. C. Semiconducting polymers for oxygen evolution reaction under light illumination. Chem. Rev. 2022, 122, 4204–4256.

[24]

Lin, L. H.; Yu, Z. Y.; Wang, X. C. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew. Chem., Int. Ed. 2019, 58, 6164–6175.

[25]

Liu, J. J.; Fu, W.; Liao, Y. L.; Fan, J. J.; Xiang, Q. J. Recent advances in crystalline carbon nitride for photocatalysis. J. Mater. Sci. Technol. 2021, 91, 224–240.

[26]

Zhao, Z. L.; Shu, Z.; Zhou, J.; Ye, L. N.; Li, T. T.; Wang, W. B.; Xu, L. N. NH-rich red poly(heptazine imide) nanoparticles with simultaneously promoted exciton dissociation and activated n → π* electronic transition for boosted photocatalytic H2 generation. J. Mater. Chem. A 2022, 10, 17668–17679.

[27]

Yan, X.; Li, J. T.; Zhou, H. F. Molten salts synthesis and visible light photocatalytic activity of crystalline poly(triazine imide) with different morphologies. J. Mater. Sci. Mater. Electron. 2019, 30, 11706–11713.

[28]

Wang, W. B.; Shu, Z.; Liao, Z. H.; Zhou, J.; Meng, D. W.; Li, T. T.; Zhao, Z. L.; Xu, L. N. Sustainable one-step synthesis of nanostructured potassium poly(heptazine imide) for highly boosted photocatalytic hydrogen evolution. Chem. Eng. J. 2021, 424, 130332.

[29]

Zhang, G. G.; Lin, L. H.; Li, G. S.; Zhang, Y. F.; Savateev, A.; Zafeiratos, S.; Wang, X. C.; Antonietti, M. Ionothermal synthesis of triazine–heptazine-based copolymers with apparent quantum yields of 60% at 420 nm for solar hydrogen production from “sea water. ” Angew. Chem., Int. Ed. 2018, 57, 9372–9376.

[30]

Lau, V. W. H.; Moudrakovski, I.; Botari, T.; Weinberger, S.; Mesch, M. B.; Duppel, V.; Senker, J.; Blum, V.; Lotsch, B. V. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat. Commun. 2016, 7, 12165.

[31]

Guo, F. S.; Hu, B.; Yang, C.; Zhang, J. S.; Hou, Y. D.; Wang, X. C. On-surface polymerization of in-plane highly ordered carbon nitride nanosheets toward photocatalytic mineralization of mercaptan gas. Adv. Mater. 2021, 33, 2101466.

[32]

Qiu, C. T.; Xu, Y. S.; Fan, X.; Xu, D.; Tandiana, R.; Ling, X.; Jiang, Y. N.; Liu, C. B.; Yu, L.; Chen, W. et al. Highly crystalline K-intercalated polymeric carbon nitride for visible-light photocatalytic alkenes and alkynes deuterations. Adv. Sci. 2019, 6, 1801403.

[33]

Xu, Y. S.; He, X.; Zhong, H.; Singh, D. J.; Zhang, L. J.; Wang, R. H. Solid salt confinement effect: An effective strategy to fabricate high crystalline polymer carbon nitride for enhanced photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2019, 246, 349–355.

[34]

Bhunia, M. K.; Yamauchi, K.; Takanabe, K. Harvesting solar light with crystalline carbon nitrides for efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 11001–11005.

[35]

Chong, S. Y.; Jones, J. T. A.; Khimyak, Y. Z.; Cooper, A. I.; Thomas, A.; Antonietti, M.; Bojdys, M. J. Tuning of gallery heights in a crystalline 2D carbon nitride network. J. Mater. Chem. A 2013, 1, 1102–1107.

[36]

Li, J. Y.; Barrio, J.; Fang, Y. X.; Pan, Y. X.; Volokh, M.; Mondal, S.; Tzadikov, J.; Abisdris, L.; Tashakory, A.; Wang, X. C. et al. Elucidating the effect of crystallinity on the photoactivity in poly(heptazine imides). Energy Fuels 2023, 37, 18145–18153.

[37]

Zhang, G. G.; Li, G. S.; Heil, T.; Zafeiratos, S.; Lai, F. L.; Savateev, A.; Antonietti, M.; Wang, X. C. Tailoring the grain boundary chemistry of polymeric carbon nitride for enhanced solar hydrogen production and CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 3433–3437.

[38]

Zhang, G. Q.; Huang, W.; Xu, Y. S.; Li, Y. L.; He, C. X.; Ren, X. Z.; Zhang, P. X.; Mi, H. W. Suppressing defects-induced non-radiative recombination for activating the near-infrared photoactivity of red polymeric carbon nitride. Adv. Funct. Mater. 2023, 33, 2305935.

[39]

Fettkenhauer, C.; Clavel, G.; Kailasam, K.; Antonietti, M.; Dontsova, D. Facile synthesis of new, highly efficient SnO2/carbon nitride composite photocatalysts for the hydrogen evolution reaction. Green Chem. 2015, 17, 3350–3361.

[40]

Wang, Q.; Zhang, G. G.; Xing, W. D.; Pan, Z. M.; Zheng, D. D.; Wang, S. B.; Hou, Y. D.; Wang, X. C. Bottom-up synthesis of single-crystalline poly (triazine imide) nanosheets for photocatalytic overall water splitting. Angew. Chem. 2023, 135, e202307930.

[41]

Shao, Y. F.; Hao, X. Q.; Lu, S. D.; Jin, Z. L. Molten salt-assisted synthesis of nitrogen-vacancy crystalline graphitic carbon nitride with tunable band structures for efficient photocatalytic overall water splitting. Chem. Eng. J. 2023, 454, 140123.

[42]

Tian, L.; Li, J. Y.; Liang, F.; Wang, J. K.; Li, S. S.; Zhang, H. J.; Zhang, S. W. Molten salt synthesis of tetragonal carbon nitride hollow tubes and their application for removal of pollutants from wastewater. Appl. Catal. B: Environ. 2018, 225, 307–313.

[43]

Ou, H. H.; Yang, P. J.; Lin, L. H.; Anpo, M.; Wang, X. C. Carbon nitride aerogels for the photoredox conversion of water. Angew. Chem., Int. Ed. 2017, 56, 10905–10910.

[44]

Yuan, J. L.; Tang, Y. H.; Yi, X. Y.; Liu, C. B.; Li, C.; Zeng, Y. X.; Luo, S. L. Crystallization, cyanamide defect and ion induction of carbon nitride: Exciton polarization dissociation, charge transfer and surface electron density for enhanced hydrogen evolution. Appl. Catal. B: Environ. 2019, 251, 206–212.

[45]

Li, X. C.; Chen, X. X.; Fang, Y. X.; Lin, W.; Hou, Y. D.; Anpo, M.; Fu, X. Z.; Wang, X. C. High-performance potassium poly(heptazine imide) films for photoelectrochemical water splitting. Chem. Sci. 2022, 13, 7541–7551.

[46]

Xia, P. F.; Cheng, B.; Jiang, J. Z.; Tang, H. Localized π-conjugated structure and EPR investigation of g-C3N4 photocatalyst. Appl. Surf. Sci. 2019, 487, 335–342.

[47]

McDermott, E. J.; Wirnhier, E.; Schnick, W.; Virdi, K. S.; Scheu, C.; Kauffmann, Y.; Kaplan, W. D.; Kurmaev, E. Z.; Moewes, A. Band gap tuning in poly(triazine imide), a nonmetallic photocatalyst. J. Phys. Chem. C 2013, 117, 8806–8812.

[48]

Li, X. H.; Zhang, J. S.; Chen, X. F.; Fischer, A.; Thomas, A.; Antonietti, M.; Wang, X. C. Condensed graphitic carbon nitride nanorods by nanoconfinement: Promotion of crystallinity on photocatalytic conversion. Chem. Mater. 2011, 23, 4344–4348.

[49]

Xiong, T.; Cen, W. L.; Zhang, Y. X.; Dong, F. Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal. 2016, 6, 2462–2472.

[50]

Wang, W.; Cui, J.; Sun, Z. Z.; Xie, L.; Mu, X. K.; Huang, L. M.; He, J. Q. Direct atomic-scale structure and electric field imaging of triazine-based crystalline carbon nitride. Adv. Mater. 2021, 33, 2106359.

[51]

Shen, B. Y.; Chen, X.; Shen, K.; Xiong, H.; Wei, F. Imaging the node-linker coordination in the bulk and local structures of metal-organic frameworks. Nat. Commun. 2020, 11, 2692.

[52]

Shen, B. Y.; Chen, X.; Cai, D. L.; Xiong, H.; Liu, X.; Meng, C. G.; Han, Y.; Wei, F. Atomic spatial and temporal imaging of local structures and light elements inside zeolite frameworks. Adv. Mater. 2020, 32, 1906103.

[53]

Schlomberg, H.; Kröger, J.; Savasci, G.; Terban, M. W.; Bette, S.; Moudrakovski, I.; Duppel, V.; Podjaski, F.; Siegel, R.; Senker, J. et al. Structural insights into poly(heptazine imides): A light-storing carbon nitride material for dark photocatalysis. Chem. Mater. 2019, 31, 7478–7486.

[54]

da Silva, M. A. R.; Silva, I. F.; Xue, Q.; Lo, B. T. W.; Tarakina, N. V.; Nunes, B. N.; Adler, P.; Sahoo, S. K.; Bahnemann, D. W.; López-Salas, N. et al. Sustainable oxidation catalysis supported by light: Fe-poly (heptazine imide) as a heterogeneous single-atom photocatalyst. Appl. Catal. B: Environ. 2022, 304, 120965.

[55]

Shen, S. H.; Chen, J.; Wang, Y. Q.; Dong, C. L.; Meng, F. Q.; Zhang, Q. H.; Huangfu, Y. L.; Lin, Z.; Huang, Y. C.; Li, Y. R. et al. Boosting photocatalytic hydrogen production by creating isotype heterojunctions and single-atom active sites in highly-crystallized carbon nitride. Sci. Bull. 2022, 67, 520–528.

[56]

Cheng, L.; Zhang, P.; Wen, Q. Y.; Fan, J. J.; Xiang, Q. J. Copper and platinum dual-single-atoms supported on crystalline graphitic carbon nitride for enhanced photocatalytic CO2 reduction. Chin. J. Catal. 2022, 43, 451–460.

[57]

Chi, H. Y.; Chen, C. L.; Zhao, K. N.; Villalobos, L. F.; Schouwink, P. A.; Piveteau, L.; Marshall, K. P.; Liu, Q.; Han, Y.; Agrawal, K. V. Unblocking ion-occluded pore channels in poly(triazine imide) framework for proton conduction. Angew. Chem., Int. Ed. 2022, 61, e202207457.

[58]

Liu, M. H.; Wei, C. G.; Zhuzhang, H.; Zhou, J. M.; Pan, Z. M.; Lin, W.; Yu, Z. Y.; Zhang, G. G.; Wang, X. C. Fully condensed poly (triazine imide) crystals: Extended π-conjugation and structural defects for overall water splitting. Angew. Chem., Int. Ed. 2022, 61, e202113389.

[59]

Schwinghammer, K.; Mesch, M. B.; Duppel, V.; Ziegler, C.; Senker, J.; Lotsch, B. V. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 1730–1733.

[60]

Lin, L. H.; Wang, C.; Ren, W.; Ou, H. H.; Zhang, Y. F.; Wang, X. C. Photocatalytic overall water splitting by conjugated semiconductors with crystalline poly(triazine imide) frameworks. Chem. Sci. 2017, 8, 5506–5511.

[61]

McGuigan, S.; Tereniak, S. J.; Donley, C. L.; Smith, A.; Jeon, S.; Zhao, F. Y.; Sampaio, R. N.; Pauly, M.; Keller, L.; Collins, L. et al. Discovery of a hybrid system for photocatalytic CO2 reduction via attachment of a molecular cobalt-quaterpyridine complex to a crystalline carbon nitride. ACS Appl. Energy Mater. 2023, 6, 10542–10553.

[62]

Nimbalkar, D. B.; Nguyen, V. C.; Shih, C. Y.; Teng, H. Melem-derived poly(heptazine imide) for effective charge transport and photocatalytic reforming of cellulose into H2 and biochemicals under visible light. Appl. Catal. B: Environ. 2022, 316, 121601.

[63]

Zeng, Z. X.; Quan, X.; Yu, H. T.; Chen, S.; Zhang, Y. B.; Zhao, H. M.; Zhang, S. S. Carbon nitride with electron storage property: Enhanced exciton dissociation for high-efficient photocatalysis. Appl. Catal. B: Environ. 2018, 236, 99–106.

[64]

Kröger, J.; Jiménez-Solano, A.; Savasci, G.; Rovó, P.; Moudrakovski, I.; Küster, K.; Schlomberg, H.; Vignolo-González, H. A.; Duppel, V.; Grunenberg, L. et al. Interfacial engineering for improved photocatalysis in a charge storing 2D carbon nitride: Melamine functionalized poly(heptazine imide). Adv. Energy Mater. 2021, 11, 2003016.

[65]

Liu, S. P.; Diez-Cabanes, V.; Fan, D.; Peng, L.; Fang, Y. X.; Antonietti, M.; Maurin, G. Tailoring metal-ion-doped carbon nitrides for photocatalytic oxygen evolution reaction. ACS Catal. 2024, 14, 2562–2571.

[66]

Xu, Y. S.; Fan, M. J.; Yang, W. J.; Xiao, Y. H.; Zeng, L. T.; Wu, X.; Xu, Q. H.; Su, C. L.; He, Q. J. Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon nitride capable of near-infrared photocatalytic H2 production. Adv. Mater. 2021, 33, 2101455.

[67]

Savateev, A.; Pronkin, S.; Epping, J. D.; Willinger, M. G.; Wolff, C.; Neher, D.; Antonietti, M.; Dontsova, D. Potassium poly(heptazine imides) from aminotetrazoles: Shifting band gaps of carbon nitride-like materials for more efficient solar hydrogen and oxygen evolution. ChemCatChem 2017, 9, 167–174.

[68]

Lu, Z.; Xu, X. T.; Wang, Z. L. Highly crystalline carbon nitride by covalent remedy for CO2 photoreduction. Sep. Purif. Technol. 2024, 330, 125457.

[69]

Xia, P. F.; Antonietti, M.; Zhu, B. C.; Heil, T.; Yu, J. G.; Cao, S. W. Designing defective crystalline carbon nitride to enable selective CO2 photoreduction in the gas phase. Adv. Funct. Mater. 2019, 29, 1900093.

[70]

Li, Y. R.; Xue, Y. Y.; Gao, X.; Wang, L. D.; Liu, X.; Wang, Z. H.; Shen, S. H. Cayanamide group functionalized crystalline carbon nitride aerogel for efficient CO2 photoreduction. Adv. Funct. Mater. 2024, 34, 2312634.

[71]

Szalad, H.; Galushchinskiy, A.; Jianu, T.; Roddatis, V.; Tarakina, N. V.; Savateev, O.; Antonietti, M.; Albero, J.; García, H. Polymeric triazine/heptazine imide heterostructures enable photocatalytic O2 reduction to H2O2. Appl. Catal. B: Environ. Energy 2024, 357, 124323.

[72]

Chang, J.; Zhang, T.; Qiu, S. C.; Huang, N.; Pang, D. W.; Li, H. R.; Masese, T.; Zhang, H. J.; Li, Z. Q.; Huang, Z. D. Oxygenated triazine–heptazine heterostructure creates an enormous ascension to the visible light photocatalytic hydrogen evolution performance of porous C3N4 nanosheets. Small 2023, 19, 2301579.

[73]

Sun, Z. Z.; Dong, H. Z.; Yuan, Q.; Tan, Y. Y.; Wang, W.; Jiang, Y. B.; Wan, J. Y.; Wen, J. W.; Yang, J. J.; He, J. Q. et al. Self-supported hierarchical crystalline carbon nitride arrays with triazine–heptazine heterojunctions for highly efficient photoredox catalysis. Chem. Eng. J. 2022, 435, 134865.

[74]

Zhang, J.; Liang, X. C.; Zhang, C.; Lin, L. H.; Xing, W. D.; Yu, Z. Y.; Zhang, G. G.; Wang, X. C. Improved charge separation in poly(heptazine–triazine) imides with semi-coherent interfaces for photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202210849.

[75]

Sundermeyer, W. Hexamethyldisilan. Z. Anorg. Allg. Chem. 1961, 310, 50–52.

[76]

Wirnhier, E.; Döblinger, M.; Gunzelmann, D.; Senker, J.; Lotsch, B. V.; Schnick, W. Poly(triazine imide) with intercalation of lithium and chloride ions [(C3N3)2(NH x Li1− x )3·LiCl]: A crystalline 2D carbon nitride network. Chem.—Eur. J. 2011, 17, 3213–3221.

[77]

Qin, J. J.; Liu, Z.; Xu, W. C.; Zhu, X. M.; Liang, F. W.; Yu, Y. T.; Zheng, Y. Z.; Yao, L.; Zhang, H. H.; Lin, K. C. et al. Heterogeneous photocatalysis coupled with Fenton-like reaction for fluoroquinolone antibiotics degradation by poly (triazine imide): From mechanism to application in a continuous flow catalytic system. Chem. Eng. J. 2023, 476, 146856.

[78]

Liang, X. C.; Xue, S. K.; Yang, C.; Ye, X. Y.; Wang, Y. L.; Chen, Q. D.; Lin, W.; Hou, Y. D.; Zhang, G. G.; Shalom, M. et al. The directional crystallization process of poly (triazine imide) single crystals in molten salts. Angew. Chem., Int. Ed. 2023, 62, e202216434.

[79]

Lyu, S.; Wang, J. L.; Zhou, Y. Q.; Wei, C. G.; Liang, X. C.; Yu, Z. Y.; Lin, W.; Hou, Y. D.; Yang, C. Structural lithium incorporated with the crystalline poly(triazine imide) frameworks for selective catalytic oxidative desulfurization. Adv. Funct. Mater. 2024, 34, 2310286.

[80]

Yang, S. B.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y.; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25, 2452–2456.

[81]

Xing, L. Z.; Yang, Q.; Zhu, C.; Bai, Y. L.; Tang, Y. R.; Rueping, M.; Cai, Y. F. Poly(heptazine imide) ligand exchange enables remarkable low catalyst loadings in heterogeneous metallaphotocatalysis. Nat. Commun. 2023, 14, 1501.

[82]

Wang, J. J.; Li, P.; Wang, Y.; Liu, Z. Y.; Wang, D. Q.; Liang, J. J.; Fan, Q. H. New strategy for the persistent photocatalytic reduction of U(VI): Utilization and storage of solar energy in K+ and cyano co-decorated poly(heptazine imide). Adv. Sci. 2023, 10, 2205542.

[83]

Chueh, L. C.; Lin, T. J.; Lee, H. C.; Wu, J. J. Defective potassium poly(heptazine imide) preventing spin delocalization and hole transfer deactivation for efficient solar energy conversion and storage. Small 2024, 20, 2304813.

[84]

Ye, M. Y.; Li, S.; Zhao, X. J.; Tarakina, N. V.; Teutloff, C.; Chow, W. Y.; Bittl, R.; Thomas, A. Cobalt-exchanged poly(heptazine imides) as transition metal-N x electrocatalysts for the oxygen evolution reaction. Adv. Mater. 2020, 32, 1903942.

[85]

Podjaski, F.; Lotsch, B. V. Optoelectronics meets optoionics: Light storing carbon nitrides and beyond. Adv. Energy Mater. 2021, 11, 2003049.

[86]

Lau, V. W. H.; Klose, D.; Kasap, H.; Podjaski, F.; Pignié, M. C.; Reisner, E.; Jeschke, G.; Lotsch, B. V. Dark photocatalysis: Storage of solar energy in carbon nitride for time-delayed hydrogen generation. Angew. Chem., Int. Ed. 2017, 56, 510–514.

[87]

Wu, P. S.; Lin, T. J.; Hou, S. S.; Chen, C. C.; Tsai, D. L.; Huang, K. H.; Wu, J. J. Non-photochromic solar energy storage in carbon nitride surpassing blue radicals for hydrogen production. J. Mater. Chem. A 2022, 10, 7728–7738.

[88]

Gouder, A.; Jiménez-Solano, A.; Vargas-Barbosa, N. M.; Podjaski, F.; Lotsch, B. V. Photomemristive sensing via charge storage in 2D carbon nitrides. Mater. Horiz. 2022, 9, 1866–1877.

[89]

Ma, J.; Peng, X. X.; Zhou, Z. X.; Yang, H.; Wu, K. Q.; Fang, Z. Z.; Han, D.; Fang, Y. F.; Liu, S. Q.; Shen, Y. F. et al. Extended conjugation tuning carbon nitride for non-sacrificial H2O2 photosynthesis and hypoxic tumor therapy. Angew. Chem., Int. Ed. 2022, 61, e202210856.

[90]

Zhang, X.; Ong’achwa Machuki, J.; Pan, W. Z.; Cai, W. B.; Xi, Z. Q.; Shen, F. Z.; Zhang, L. J.; Yang, Y.; Gao, F. L.; Guan, M. Carbon nitride hollow theranostic nanoregulators executing laser-activatable water splitting for enhanced ultrasound/fluorescence imaging and cooperative phototherapy. ACS Nano 2020, 14, 4045–4060.

[91]

Ge, F. Y.; Xu, Y. G.; Zhou, Y. H.; Tian, D.; Huang, S. Q.; Xie, M.; Xu, H.; Li, H. M. Surface amorphous carbon doping of carbon nitride for efficient acceleration of electron transfer to boost photocatalytic activities. Appl. Surf. Sci. 2020, 507, 145145.

[92]

Yu, Y.; Yan, W.; Wang, X. F.; Li, P.; Gao, W. Y.; Zou, H. H.; Wu, S. M.; Ding, K. J. Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4. Adv. Mater. 2018, 30, 1705060.

[93]

Yang, Y. L.; Zhang, D. N.; Xiang, Q. J. Plasma-modified Ti3C2T x /CdS hybrids with oxygen-containing groups for high-efficiency photocatalytic hydrogen production. Nanoscale 2019, 11, 18797–18805.

[94]

Li, Y.; Zhang, D. N.; Fan, J. J.; Xiang, Q. J. Highly crystalline carbon nitride hollow spheres with enhanced photocatalytic performance. Chin. J. Catal. 2021, 42, 627–636.

[95]

Sun, Z. Z.; Tan, Y. Y.; Wan, J. Y.; Huang, L. M. In-depth understanding of the effects of intramolecular charge transfer on carbon nitride based photocatalysts. Chin. J. Chem. 2021, 39, 2044–2053.

[96]

Sun, Z. Z.; Jiang, Y. B.; Zeng, L.; Huang, L. M. Intramolecular charge transfer and extended conjugate effects in donor–π–acceptor-type mesoporous carbon nitride for photocatalytic hydrogen evolution. ChemSusChem 2019, 12, 1325–1333.

[97]

Niu, P.; Li, L. Photocatalytic overall water splitting of carbon nitride by band-structure modulation. Matter 2021, 4, 1765–1767.

Nano Research
Article number: 94907047
Cite this article:
Tan Y, Zhang Z, Pu Y, et al. Progress of crystalline carbon nitride in synthesis, atomic structure characterization and photocatalysis. Nano Research, 2025, 18(1): 94907047. https://doi.org/10.26599/NR.2025.94907047
Topics:

377

Views

116

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 16 July 2024
Revised: 03 September 2024
Accepted: 23 September 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return