PDF (16.3 MB)
Collect
Submit Manuscript
Research Article | Open Access

Low-thermal budget fabrication of two-dimensional Schottky diodes for broadband convolutional processing

Zichao Han1,§Shijia Tian1,§Han Wang1Weihui Sang1Yang Gan1Yi Cao2,3Feixia Tan2,3Honghong Li2,3Tinghao Wang2,3Yuan Yu1Wenyu Songlu2,3Yue Wang1Tao Liu1()Du Xiang2,4()
Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics and Department of Materials Science, Fudan University, Shanghai 200433, China
State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Fudan University, Shanghai 200438, China
School of Microelectronics, Fudan University, Shanghai 200433, China
Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China

§ Zichao Han and Shijia Tian contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
Low thermal budget fabrication of PtSe2/WSe2 heterostructure with remarkable switching ratio and polarity tunable photoresponse from ultraviolet to near-infrared light has been realized by using the thermal assisted conversion technique, giving rise to high-performance in-sensor broadband convolutional processing of the remote sensing images. These findings offer a viable route for the scalable hardware implementation of broadband image processing units.

Abstract

In-sensor broadband convolutional processing (BCP) holds great significance to the advancement of high-precision image recognition for remote sensing and environmental monitoring. Two-dimensional (2D) heterostructures offer abundant band alignment configurations with electrical tunability, which is promising to implement the in-sensor BCP at hardware level. Huge efforts have been devoted to developing 2D heterostructures based intelligent edge devices for BCP, which however either lack the potential for scalability and reproducibility, or require high processing temperature. Here, we demonstrate a PtSe2/WSe2 heterostructure based Schottky diode fabricated by using thermal-assisted conversion (TAC) technique, which converts the pre-deposited Pt films into PtSe2 via the controllable selenization process with complementary metal-oxide-semiconductor (CMOS) back-end-of-line (BEOL) compatible thermal budget. The TAC-PtSe2 in various thicknesses demonstrate high crystalline nature and low contact resistance (425 Ω·μm), facilitating an atomically sharp interface and gate-tunable band alignment. Such characteristics give rise to polarity-changeable built-in electric field, resulting in a remarkable rectification ratio approaching ~ 105. Moreover, the positive–negative switching of the photoresponse with linear intensity dependence is achieved across a wide spectrum from ultraviolet to near-infrared light, which is desirable in constructing various convolution kernels for BCP tasks. A hyperspectral remote sensing image is adopted to demonstrate the BCP operations including edge detection and sharpness, where the outputs are of comparable quality with the simulated results. Our work envisions a CMOS-compatible approach for fabricating 2D Schottky diodes with tunable band alignment, offering a viable route for the scalable hardware implementation of broadband image processing units.

Electronic Supplementary Material

Download File(s)
7049_ESM.pdf (2.8 MB)

References

[1]

Seo, S. Y.; Moon, G.; Okello, O. F. N.; Park, M. Y.; Han, C.; Cha, S.; Choi, H.; Yeom, H. W.; Choi, S. Y.; Park, J. et al. Reconfigurable photo-induced doping of two-dimensional van der Waals semiconductors using different photon energies. Nat. Electron. 2020, 4, 38–44.

[2]

Zhou, F. C.; Zhou, Z.; Chen, J. W.; Choy, T. H.; Wang, J. L.; Zhang, N.; Lin, Z. Y.; Yu, S. M.; Kang, J. F.; Wong, H. S. P. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782.

[3]

Feng, X. X.; He, L. X.; Cheng, Q. M.; Long, X. Y.; Yuan, Y. X. Hyperspectral and multispectral remote sensing image fusion based on endmember spatial information. Remote Sens. 2020, 12, 1009.

[4]

Zhang, Y. C.; Wang, L. M.; Lei, Y. Y.; Wang, B.; Lu, Y.; Yao, Y. Y.; Zhang, N. N.; Lin, D. D.; Jiang, Z. M.; Guo, H. et al. Self-powered bidirectional photoresponse in high-detectivity WSe2 phototransistor with asymmetrical van der Waals stacking for retinal neurons emulation. ACS Nano 2022, 16, 20937–20945.

[5]

Wang, C. Y.; Liang, S. J.; Wang, S.; Wang, P. F.; Li, Z.; Wang, Z. R.; Gao, A. Y.; Pan, C.; Liu, C.; Liu, J. et al. Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv. 2020, 6, eaba6173.

[6]

Ham, D.; Park, H.; Hwang, S.; Kim, K. Neuromorphic electronics based on copying and pasting the brain. Nat. Electron. 2021, 4, 635–644.

[7]

Jayachandran, D.; Oberoi, A.; Sebastian, A.; Choudhury, T. H.; Shankar, B.; Redwing, J. M.; Das, S. A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron. 2020, 3, 646–655.

[8]

Roy, K.; Jaiswal, A.; Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 2019, 575, 607–617.

[9]

Feldmann, J.; Youngblood, N.; Karpov, M.; Gehring, H.; Li, X.; Stappers, M.; Le Gallo, M.; Fu, X.; Lukashchuk, A.; Raja, A. S. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 2021, 589, 52–58.

[10]

Pi, L. J.; Wang, P. F.; Liang, S. J.; Luo, P.; Wang, H. Y.; Li, D. Y.; Li, Z. X.; Chen, P.; Zhou, X.; Miao, F. et al. Broadband convolutional processing using band-alignment-tunable heterostructures. Nat. Electron. 2022, 5, 248–254.

[11]

Brown, C. B.; Remelius, D. K.; Smilowitz, L. B. Evaluation of silicon and indium gallium arsenide photodiodes as direct timing detectors for pulsed X-ray systems. Rev. Sci. Instrum. 2024, 95, 033102.

[12]

Lee, S.; Peng, R. M.; Wu, C. M.; Li, M. Programmable black phosphorus image sensor for broadband optoelectronic edge computing. Nat. Commun. 2022, 13, 1485.

[13]

Gao, A. Y.; Lai, J. W.; Wang, Y. J.; Zhu, Z.; Zeng, J. W.; Yu, G. L.; Wang, N. Z.; Chen, W. C.; Cao, T. J.; Hu, W. D. et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 2019, 14, 217–222.

[14]

Burr, G. W. A role for analogue memory in AI hardware. Nat. Mach. Intell. 2019, 1, 10–11.

[15]

Jang, H.; Liu, C. Y.; Hinton, H.; Lee, M. H.; Kim, H.; Seol, M.; Shin, H. J.; Park, S.; Ham, D. An atomically thin optoelectronic machine vision processor. Adv. Mater. 2020, 32, 2002431.

[16]

Lee, J.; Duong, N. T.; Bang, S.; Park, C.; Nguyen, D. A.; Jeon, H.; Jang, J.; Oh, H. M.; Jeong, M. S. Modulation of junction modes in SnSe2/MoTe2 broken-gap van der Waals heterostructure for multifunctional devices. Nano Lett. 2020, 20, 2370–2377.

[17]

Zhang, X. K.; Liu, B. S.; Gao, L.; Yu, H. H.; Liu, X. Z.; Du, J. L.; Xiao, J. K.; Liu, Y. H.; Gu, L.; Liao, Q. L. et al. Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions. Nat. Commun. 2021, 12, 1522.

[18]

Huang, H. F.; Xu, W. S.; Chen, T. X.; Chang, R. J.; Sheng, Y. W.; Zhang, Q. Y.; Hou, L. L.; Warner, J. H. High-performance two-dimensional Schottky diodes utilizing chemical vapour deposition-grown graphene-MoS2 heterojunctions. ACS Appl. Mater. Interfaces 2018, 10, 37258–37266.

[19]

Singh, A.; Uddin, M. A.; Sudarshan, T.; Koley, G. Tunable reverse-biased graphene/silicon heterojunction Schottky diode sensor. Small 2014, 10, 1555–1565.

[20]

Di Bartolomeo, A. Graphene schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep. 2016, 606, 1–58.

[21]

Guo, P. W.; Jia, M. M.; Guo, D.; Wang, Z. L.; Zhai, J. Y. Retina-inspired in-sensor broadband image preprocessing for accurate recognition via the flexophototronic effect. Matter 2023, 6, 537–553.

[22]

Wang, S. J.; Qi, L. G.; Xia, Z. H.; Wang, W. H.; Yue, D. W.; Wang, S. P.; Su, S. C. Polarization-sensitive detector based on MoTe2/WTe2 heterojunction for broadband optoelectronic imaging. J. Phys. Chem. Lett. 2023, 14, 10509–10516.

[23]

Zhang, N.; Wang, F. K.; Li, P. Y.; Liang, Y.; Luo, H.; Ouyang, D. C.; Luo, L. B.; Wu, J. S.; Zhao, Y. H.; Li, Y. et al. Two-dimensional vertical-lateral hybrid heterostructure for ultrasensitive photodetection and image sensing. Mater. Today 2023, 69, 79–87.

[24]

Pan, X.; Shi, J. W.; Wang, P. F.; Wang, S.; Pan, C.; Yu, W. T.; Cheng, B.; Liang, S. J.; Miao, F. Parallel perception of visual motion using light-tunable memory matrix. Sci. Adv. 2023, 9, eadi4083.

[25]

Yoon, H. H.; Fernandez, H. A.; Nigmatulin, F.; Cai, W. W.; Yang, Z. Y.; Cui, H. X.; Ahmed, F.; Cui, X. Q.; Uddin, M. G.; Minot, E. D. et al. Miniaturized spectrometers with a tunable van der Waals junction. Science 2022, 378, 296–299.

[26]

Liu, P.; Xiang, B. 2D hetero-structures based on transition metal dichalcogenides: Fabrication, properties and applications. Sci. Bull. 2017, 62, 1148–1161.

[27]

Wang, F. K.; Hu, F. C.; Dai, M. J.; Zhu, S.; Sun, F. Y.; Duan, R. H.; Wang, C. W.; Han, J. Y.; Deng, W. J.; Chen, W. D. et al. A two-dimensional mid-infrared optoelectronic retina enabling simultaneous perception and encoding. Nat. Commun. 2023, 14, 1938.

[28]

Zeng, Y. H.; Meng, F. X.; Fan, S. D.; Wang, P. F.; Kou, C. Y.; Sun, M. Y.; Hu, H. G.; Cao, R.; Wageh, S.; Al-Hartomy, O. A. et al. Fully depleted vdW heterojunction based high performance photovoltaic photodetector. J. Materiomics 2023, 9, 1039–1047.

[29]

Wu, G. J.; Zhang, X. M.; Feng, G. D.; Wang, J. L.; Zhou, K. J.; Zeng, J. H.; Dong, D. N.; Zhu, F. D.; Yang, C. K.; Zhao, X. M. et al. Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing. Nat. Mater. 2023, 22, 1499–1506.

[30]

Shawkat, M. S.; Chung, H. S.; Dev, D.; Das, S.; Roy, T.; Jung, Y. Two-dimensional/three-dimensional Schottky junction photovoltaic devices realized by the direct CVD growth of vdW 2D PtSe2 layers on silicon. ACS Appl. Mater. Interfaces 2019, 11, 27251–27258.

[31]

Mc Manus, J. B.; Cunningham, G.; McEvoy, N.; Cullen, C. P.; Gity, F.; Schmidt, M.; McAteer, D.; Mullarkey, D.; Shvets, I. V.; Hurley, P. K. et al. Growth of 1T' MoTe2 by thermally assisted conversion of electrodeposited tellurium films. ACS Appl. Energy Mater. 2019, 2, 521–530.

[32]

Gatensby, R.; Hallam, T.; Lee, K.; McEvoy, N.; Duesberg, G. S. Investigations of vapour-phase deposited transition metal dichalcogenide films for future electronic applications. Solid-State Electron. 2016, 125, 39–51.

[33]

Gatensby, R.; McEvoy, N.; Lee, K.; Hallam, T.; Berner, N. C.; Rezvani, E.; Winters, S.; O’Brien, M.; Duesberg, G. S. Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Appl. Surf. Sci. 2014, 297, 139–146.

[34]

Yuan, J.; Sun, T.; Hu, Z. X.; Yu, W. Z.; Ma, W. L.; Zhang, K.; Sun, B. Q.; Lau, S. P.; Bao, Q. L.; Lin, S. H. et al. Wafer-scale fabrication of two-dimensional PtS2/PtSe2 heterojunctions for efficient and broad band photodetection. ACS Appl. Mater. Interfaces 2018, 10, 40614–40622.

[35]

Wang, G. Z.; Wang, K. P.; McEvoy, N.; Bai, Z. Y.; Cullen, C. P.; Murphy, C. N.; McManus, J. B.; Magan, J. J.; Smith, C. M.; Duesberg, G. S. et al. Ultrafast carrier dynamics and bandgap renormalization in layered PtSe2. Small 2019, 15, 1902728.

[36]

Yim, C.; McEvoy, N.; Riazimehr, S.; Schneider, D. S.; Gity, F.; Monaghan, S.; Hurley, P. K.; Lemme, M. C.; Duesberg, G. S. Wide spectral photoresponse of layered platinum diselenide-based photodiodes. Nano Lett. 2018, 18, 1794–1800.

[37]

Yu, X. C.; Yu, P.; Wu, D.; Singh, B.; Zeng, Q. S.; Lin, H.; Zhou, W.; Lin, J. H.; Suenaga, K.; Liu, Z. et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545.

[38]

Huang, H. Q.; Zhou, S. Y.; Duan, W. H. Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides. Phys. Rev. B 2016, 94, 121117.

[39]

Han, S. S.; Kim, J. H.; Noh, C.; Kim, J. H.; Ji, E.; Kwon, J.; Yu, S. M.; Ko, T. J.; Okogbue, E.; Oh, K. H. et al. Horizontal-to-vertical transition of 2D layer orientation in low-temperature chemical vapor deposition-grown PtSe2 and its influences on electrical properties and device applications. ACS Appl. Mater. Interfaces 2019, 11, 13598–13607.

[40]

Agnihotri, P.; Dhakras, P.; Lee, J. U. Bipolar junction transistors in two-dimensional WSe2 with large current and photocurrent gains. Nano Lett. 2016, 16, 4355–4360.

[41]

Michael, A.; Chuang, I. Y. H.; Kwok, C. Y.; Omaki, K. Low-thermal-budget electrically active thick polysilicon for CMOS-first MEMS-last integration. Microsyst. Nanoeng. 2024, 10, 75.

[42]

Yim, C.; Passi, V.; Lemme, M. C.; Duesberg, G. S.; Ó Coileáin, C.; Pallecchi, E.; Fadil, D.; McEvoy, N. Electrical devices from top-down structured platinum diselenide films. npj 2D Mater. Appl. 2018, 2, 5.

[43]

Jiang, K.; Cui, A. Y.; Shao, S.; Feng, J. J.; Dong, H. L.; Chen, B.; Wang, Y. C.; Hu, Z. G.; Chu, J. H. New pressure stabilization structure in two-dimensional PtSe2. J. Phys. Chem. Lett. 2020, 11, 7342–7349.

[44]

Yim, C.; Lee, K.; McEvoy, N.; O’Brien, M.; Riazimehr, S.; Berner, N. C.; Cullen, C. P.; Kotakoski, J.; Meyer, J. C.; Lemme, M. C. et al. High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano 2016, 10, 9550–9558.

[45]

Setiyawati, I.; Chiang, K. R.; Ho, H. M.; Tang, Y. H. Distinct electronic and transport properties between 1T-HfSe2 and 1T-PtSe2. Chin. J. Phys. 2019, 62, 151–160.

[46]

Gao, Y.; Hong, Y. L.; Yin, L. C.; Wu, Z. T.; Yang, Z. Q.; Chen, M. L.; Liu, Z. B.; Ma, T.; Sun, D. M.; Ni, Z. H. et al. Ultrafast growth of high-quality monolayer WSe2 on Au. Adv. Mater. 2017, 29, 1700990.

[47]

Prakash, A.; Appenzeller, J. Bandgap extraction and device analysis of ionic liquid gated WSe2 Schottky barrier transistors. ACS Nano 2017, 11, 1626–1632.

[48]

Wang, X. X.; Wang, S. F.; Wu, Y. W.; Wang, W. H.; Cao, Z. Y.; Wei, B. B.; Han, T.; Li, F.; Wang, S. L.; Shan, L. et al. A self-powered photodetector based on graphene enhanced WSe2/PtSe2 heterodiode with fast speed and broadband response. Adv. Opt. Mater. 2024, 12, 2400052.

[49]

Ouyang, B. S.; Wang, J. L.; Zeng, G.; Yan, J. M.; Zhou, Y.; Jiang, X. X.; Shao, B. J.; Chai, Y. Bioinspired in-sensor spectral adaptation for perceiving spectrally distinctive features. Nat. Electron., 2024, 7, 705–713.

[50]

Wu, D.; Wang, Y. G.; Zeng, L. H.; Jia, C.; Wu, E. P.; Xu, T. T.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics 2018, 5, 3820–3827.

[51]

Choi, C.; Leem, J.; Kim, M.; Taqieddin, A.; Cho, C.; Cho, K. W.; Lee, G. J.; Seung, H.; Bae, H. J.; Song, Y. M. et al. Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 2020, 11, 5934.

[52]

Zhou, Y.; Fu, J. W.; Chen, Z. R.; Zhuge, F. W.; Wang, Y. S.; Yan, J. M.; Ma, S. J.; Xu, L.; Yuan, H. M.; Chan, M. et al. Computational event-driven vision sensors for in-sensor spiking neural networks. Nat. Electron. 2023, 6, 870–878.

Nano Research
Article number: 94907049
Cite this article:
Han Z, Tian S, Wang H, et al. Low-thermal budget fabrication of two-dimensional Schottky diodes for broadband convolutional processing. Nano Research, 2025, 18(1): 94907049. https://doi.org/10.26599/NR.2025.94907049
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return