PDF (30.2 MB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Research Article | Open Access

Enhanced electrochemical CO2 reduction coupled with urea oxidation using bifunctional atomically dispersed CuNi catalysts

Wenjie Wu1,3Haoyang Zhou1,3Ying Liu1,3Yifei Pan1,3Qingqing Chen2Yu Zhang2Junjie Mao2 ()Wenjie Ma1,3()Ping Yu1,3
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

View original image Download original image
An energy-efficient integrated electrochemical system that couples CO2 reduction reaction (CO2RR) with urea oxidation reaction (UOR) using a bifunctional electrocatalyst with atomically dispersed CuNi dual atom sites was developed.

Abstract

The electrochemical conversion of carbon dioxide (CO2) into chemical fuels represents a promising approach for addressing global carbon balance issues. However, this process is hindered by the kinetic limitations of anodic reactions, usually the oxygen evolution reaction, resulting in less efficient production of high value-added products. Here, we report an integrated electrocatalytic system that couples CO2 reduction reaction (CO2RR) with urea oxidation reaction (UOR) using a bifunctional electrocatalyst with atomically dispersed dual-metal CuNi sites anchored on bamboo-like nitrogen-doped carbon nanotubes (CuNi-CNT), which were synthesized through a one-step pyrolysis process. The bifunctional CuNi-CNT catalyst exhibits a near 100% CO Faraday efficiency for CO2RR over a wide potential range and outstanding UOR performance with a negatively shifted potential of 210 mV at 10 mA·cm−2. In addition, we assemble a two-electrode electrolyzer using bifunctional CuNi-CNT-modified carbon fiber paper electrodes as both cathode and anode, capable of operating at a remarkably low cell voltage of 1.81 V at 10 mA·cm−2, significantly lower than conventional setups. The study provides a novel avenue to achieving an efficient carbon cycle with reduced electric power consumption.

Electronic Supplementary Material

Download File(s)
7051_ESM.pdf (1.5 MB)

References

[1]

Zhang, X.; Wang, Y.; Gu, M.; Wang, M. Y.; Zhang, Z. S.; Pan, W. Y.; Jiang, Z.; Zheng, H. Z.; Lucero, M.; Wang, H. L. et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 2020, 5, 684–692.

[2]

Ren, S. X.; Joulié, D.; Salvatore, D.; Torbensen, K.; Wang, M.; Robert, M.; Berlinguette, C. P. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 2019, 365, 367–369.

[3]

Sun, Y. F.; Xie, J. Z.; Fu, Z. Z.; Zhang, H. Y.; Yao, Y. B.; Zhou, Y. X.; Wang, X. X.; Wang, S. Y.; Gao, X. Y.; Tang, Z. et al. Boosting CO2 electroreduction to C2H4 via unconventional hybridization: High-order Ce4+ 4f and O 2p interaction in Ce-Cu2O for stabilizing Cu+. ACS Nano 2023, 17, 13974–13984.

[4]

Schreier, M.; Héroguel, F.; Steier, L.; Ahmad, S.; Luterbacher, J. S.; Mayer, M. T.; Luo, J. S.; Grätzel, M. Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat. Energy 2017, 2, 17087.

[5]

Pei, J. J.; Wang, T.; Sui, R.; Zhang, X. J.; Zhou, D. N.; Qin, F. J.; Zhao, X.; Liu, Q. H.; Yan, W. S.; Dong, J. C. et al. N-bridged Co–N–Ni: New bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ. Sci. 2021, 14, 3019–3028.

[6]

Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

[7]

Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889–14892.

[8]

Zeng, Z. P.; Gan, L. Y.; Yang, H. B.; Su, X. Z.; Gao, J. J.; Liu, W.; Matsumoto, H.; Gong, J.; Zhang, J. M.; Cai, W. Z. et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 2021, 12, 4088.

[9]

Gioria, E.; Li, S.; Mazheika, A.; d’Alnoncourt, R. N.; Thomas, A.; Rosowski, F. CuNi nanoalloys with tunable composition and oxygen defects for the enhancement of the oxygen evolution reaction. Angew. Chem., Int. Ed. 2023, 62, e202217888.

[10]

Wang, T. H.; Tao, L.; Zhu, X. R.; Chen, C.; Chen, W.; Du, S. Q.; Zhou, Y. Y.; Zhou, B.; Wang, D. D.; Xie, C. et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 2021, 5, 66–73.

[11]

Mao, J. J.; He, C. T.; Pei, J. J.; Chen, W. X.; He, D. S.; He, Y. Q.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Wang, D. S. et al. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat. Commun. 2018, 9, 4958.

[12]

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

[13]

Jiang, Q.; Wang, S. H.; Zhang, C. R.; Sheng, Z. Y.; Zhang, H. Y.; Feng, R. H.; Ni, Y. M.; Tang, X. A.; Gu, Y. C.; Zhou, X. H. et al. Active oxygen species mediate the iron-promoting electrocatalysis of oxygen evolution reaction on metal oxyhydroxides. Nat. Commun. 2023, 14, 6826.

[14]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[15]

Yang, H. P.; Wu, Y.; Li, G. D.; Lin, Q.; Hu, Q.; Zhang, Q. L.; Liu, J. H.; He, C. X. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 2019, 141, 12717–12723.

[16]

Xin, Z. F.; Wang, Y. R.; Chen, Y. F.; Li, W. L.; Dong, L. Z.; Lan, Y. Q. Metallocene implanted metalloporphyrin organic framework for highly selective CO2 electroreduction. Nano Energy 2020, 67, 104233.

[17]

Wu, W. J.; Liu, Y.; Liu, D.; Chen, W. X.; Song, Z. Y.; Wang, X. M.; Zheng, Y. M.; Lu, N.; Wang, C. X.; Mao, J. J. et al. Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. Nano Res. 2021, 14, 998–1003.

[18]

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

[19]

Han, L. L.; Song, S. J.; Liu, M. J.; Yao, S. Y.; Liang, Z. X.; Cheng, H.; Ren, Z. H.; Liu, W.; Lin, R. Q.; Qi, G. C. et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563–12567.

[20]

Xu, S.; Ruan, X. W.; Ganesan, M.; Wu, J. D.; Ravi, S. K.; Cui, X. Q. Transition metal-based catalysts for urea oxidation reaction (UOR): Catalyst design strategies, applications, and future perspectives. Adv. Funct. Mater. 2024, 34, 2313309.

[21]

Ji, Z. J.; Song, Y. J.; Zhao, S. H.; Li, Y.; Liu, J.; Hu, W. P. Pathway manipulation via Ni, Co, and V ternary synergism to realize high efficiency for urea electrocatalytic oxidation. ACS Catal. 2022, 12, 569–579.

[22]

Zhong, M. X.; Xu, M. J.; Ren, S. Y.; Li, W. M.; Wang, C.; Gao, M. B.; Lu, X. F. Modulating the electronic structure of Ni(OH)2 by coupling with low-content Pt for boosting the urea oxidation reaction enables significantly promoted energy-saving hydrogen production. Energy Environ. Sci. 2024, 17, 1984–1996.

[23]

Wei, X. F.; Li, Y.; Chen, L. S.; Shi, J. L. Formic acid electro-synthesis by concurrent cathodic CO2 reduction and anodic CH3OH oxidation. Angew. Chem., Int. Ed. 2021, 60, 3148–3155.

[24]

Teng, X.; Shi, K.; Chen, L. S.; Shi, J. L. Coupling electrochemical sulfion oxidation with CO2 reduction over highly dispersed p-Bi nanosheets and CO2-assisted sulfur extraction. Angew. Chem., Int. Ed. 2024, 63, e202318585.

[25]

Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 reduction: Classifying Cu facets. ACS Catal. 2019, 9, 7894–7899.

[26]

Jiang, Z. N.; Ren, S.; Cao, X.; Fan, Q. K.; Yu, R.; Yang, J.; Mao, J. J. pH-universal electrocatalytic CO2 reduction with ampere-level current density on doping-engineered bismuth sulfide. Angew. Chem., Int. Ed. 2024, 63, e202408412.

[27]

Jiang, N.; Zhu, Z. W.; Xue, W. J.; Xia, B. Y.; You, B. Emerging electrocatalysts for water oxidation under near-neutral CO2 reduction conditions. Adv. Mater. 2022, 34, 2105852.

[28]

Yeo, J. B.; Jang, J. H.; Jo, Y. I.; Koo, J. W.; Nam, K. T. Paired electrosynthesis of formaldehyde derivatives from CO2 reduction and methanol oxidation. Angew. Chem., Int. Ed. 2024, 63, e202316020.

[29]

Mao, X.; Gong, W. B.; Fu, Y.; Li, J. Y.; Wang, X. Y.; O’Mullane, A. P.; Xiong, Y. J.; Du, A. J. Computational design and experimental validation of enzyme mimicking Cu-based metal-organic frameworks for the reduction of CO2 into C2 products: C–C coupling promoted by ligand modulation and the optimal Cu–Cu distance. J. Am. Chem. Soc. 2023, 145, 21442–21453.

[30]

Li, J. N.; Li, J. L.; Liu, T.; Chen, L.; Li, Y. F.; Wang, H. L.; Chen, X. R.; Gong, M.; Liu, Z. P.; Yang, X. J. Deciphering and suppressing over-oxidized nitrogen in nickel-catalyzed urea electrolysis. Angew. Chem., Int. Ed. 2021, 60, 26656–26662.

[31]

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

[32]

Jia, Y. S.; Chen, Z.; Gao, B. X.; Liu, Z. Y.; Yan, T. L.; Gui, Z. X.; Liao, X. P.; Zhang, W. B.; Gao, Q. S.; Zhang, Y. H. et al. Directional electrosynthesis of adipic acid and cyclohexanone by controlling the active sites on NiOOH. J. Am. Chem. Soc. 2024, 146, 1282–1293.

[33]

Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

Nano Research
Article number: 94907051
Cite this article:
Wu W, Zhou H, Liu Y, et al. Enhanced electrochemical CO2 reduction coupled with urea oxidation using bifunctional atomically dispersed CuNi catalysts. Nano Research, 2025, 18(1): 94907051. https://doi.org/10.26599/NR.2025.94907051
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return