PDF (22.2 MB)
Collect
Submit Manuscript
Show Outline
Figures (6)

Research Article | Open Access

Dynamically self-adjustable liquid–liquid and self-adaptive soft-contact solid–solid triboelectric nanogenerator for wave energy harvesting

Yong Long1,2,§Bingqi Zhao2,3,§Jianan Niu2,3Yuxiu Liu2,3Wei Sha2,3Jiangwen Wang2,3Zhong Lin Wang1,2,3 ()Weiguo Hu1,2,3 ()
Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou 510555, China
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

§ Yong Long and Bingqi Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
The paper presents a novel ellipsoidal, pendulum-like triboelectric nanogenerator (LS-TENG) that integrates both liquid–liquid (L–L) and solid–solid (S–S) triboelectric effects, designed for efficient wave energy harvesting and continuous, self-powered marine environment monitoring. The innovative structure, with dynamically self-adjustable L–L interfaces and self-adaptive soft S–S contacts, significantly enhances energy harvesting efficiency and protects the device from mechanical wear, offering a promising solution for sustainable energy generation in marine environments.

Abstract

Water wave energy exhibits great potential to alleviate the global energy crisis. However, harvesting and utilizing wave energy are challenging due to its irregularity, randomness, and low frequency. Triboelectric nanogenerators (TENGs) have gained significant attention for harvesting wave energy with high efficiency. This study presents a novel ellipsoidal, pendulum-like TENG integrating both liquid–liquid (L–L) and solid–solid (S–S) triboelectricity (LS-TENG). This innovative design enables continuous wave energy harvesting and self-powered marine environment monitoring under various conditions, including temperature, humidity, and light intensity. The binary immiscible liquids within the LS-TENG’s inner soft balloon create dynamic, and self-adjustable L–L contact interfaces, significantly increasing the L–L contact area and enhancing L–L contact electrification (CE). The unique self-adaptive, soft S–S contact increases the S–S contact area compared to traditional hard point contact, better adapting to the irregular movements of waves and promoting efficient S–S CE. The LS-TENG achieves highly efficient wave energy harvesting by coupling L–L and S–S CE. Furthermore, the unique soft contact design protects the S–S interfaces from mechanical wear and damage during long-term work. The LS-TENG’s novel structure provides an innovative and effective way for water wave energy harvesting.

Electronic Supplementary Material

Download File(s)
7052_ESM.pdf (813.2 KB)

References

[1]

Chen, B. D.; Tang, W.; He, C.; Deng, C. R.; Yang, L. J.; Zhu, L. P.; Chen, J.; Shao, J. J.; Liu, L.; Wang, Z. L. Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater. Today 2018, 21, 88–97.

[2]

Yi, M. Y.; Kong, W. H.; Zhang, Z. T.; Azam, A.; Ahmed, A.; Li, H.; He, L. J.; Li, N.; Xu, Y. S. A wave energy harvesting system for applications in deep-sea exploration. Sustainable Energy Fuels 2023, 7, 1051–1066.

[3]

Su, J. J.; Liu, Y.; Song, Y.; Huang, L. B.; Guo, W. H.; Cao, X. H.; Dou, Y. B.; Cheng, L.; Li, G.; Hu, Q. S. et al. Recent development of nanomaterials for carbon dioxide electroreduction. SmartMat 2022, 3, 35–53.

[4]

Aster, R. C.; Ringler, A. T.; Anthony, R. E.; Lee, T. A. Increasing ocean wave energy observed in earth’s seismic wavefield since the late 20th century. Nat. Commun. 2023, 14, 6984.

[5]

Kassayeva, A.; Balekova, A.; Yerzhanov, K. Converting the energy of sea waves into electrical energy. Environ. Prog. Sustainable Energy 2024, 43, e14342.

[6]

Miao, X.; Yang, H. X.; Li, Z. K.; Cheng, M. F.; Zhao, Y. L.; Wan, L. Y.; Yu, A. F.; Zhai, J. Y. A columnar multi-layer sliding triboelectric nanogenerator for water wave energy harvesting independent of wave height and direction. Nano Res. 2024, 17, 3029–3034.

[7]

Du, Y.; Tang, Q.; Fu, S. K.; Shan, C. C.; Zeng, Q. X.; Guo, H. Y.; Hu, C. G. Chain-flip plate triboelectric nanogenerator arranged longitudinally under water for harvesting water wave energy. Nano Res. 2023, 16, 11900–11906.

[8]
Howlader, T.; Farrok, O.; Kabir, M. A.; Abdullah-Al-Mamun, M.; Ali, M. S. Oceanic wave energy devices. In Oceanic Wave Energy Conversion: Advancement of Electrical Generators. Farrok, O.; Islam, M. R., Eds.; Springer: Singapore, 2024 ; pp 17–43.
[9]

Xiong, C. Y.; Wang, T. X.; Zhao, Z. Y.; Ni, Y. H. Recent progress in the development of smart supercapacitors. SmartMat 2023, 4, e1158.

[10]

Khan, U.; Kim, S. W. Triboelectric nanogenerators for blue energy harvesting. ACS Nano 2016, 10, 6429–6432.

[11]

Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

[12]

Demircioglu, O.; Cicek, M. O.; Doganay, D.; Gazaloglu, G.; Baykal, C.; Cinar, S.; Unalan, H. E. Triboelectric nanogenerators for blue energy harvesting in simulated wave conditions. Nano Energy 2023, 107, 108157.

[13]

Chen, H. M.; Xing, C.; Li, Y. L.; Wang, J.; Xu, Y. Triboelectric nanogenerators for a macro-scale blue energy harvesting and self-powered marine environmental monitoring system. Sustainable Energy Fuels 2020, 4, 1063–1077.

[14]

Wang, Y. T.; Wang, Y. H. Recent progress in MXene layers materials for supercapacitors: High-performance electrodes. SmartMat 2023, 4, e1130.

[15]

Liang, X.; Jiang, T.; Feng, Y. W.; Lu, P. J.; An, J.; Wang, Z. L. Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Adv. Energy Mater. 2020, 10, 2002123.

[16]

Liang, X.; Liu, S. J.; Ren, Z. W.; Jiang, T.; Wang, Z. L. Self-powered intelligent buoy based on triboelectric nanogenerator for water level alarming. Adv. Funct. Mater. 2022, 32, 2205313.

[17]

Liang, X.; Liu, S. J.; Lin, S. Q.; Yang, H. B.; Jiang, T.; Wang, Z. L. Liquid–solid triboelectric nanogenerator arrays based on dynamic electric-double-layer for harvesting water wave energy. Adv. Energy Mater. 2023, 13, 2300571.

[18]

Huang, B.; Wang, P. Z.; Wang, L.; Yang, S.; Wu, D. Z. Recent advances in ocean wave energy harvesting by triboelectric nanogenerator: An overview. Nanotechnol. Rev. 2020, 9, 716–735.

[19]

Cao, C.; Li, Z. J.; Shen, F.; Zhang, Q.; Gong, Y.; Guo, H. Y.; Peng, Y.; Wang, Z. L. Progress in techniques for improving the output performance of triboelectric nanogenerators. Energy Environ. Sci. 2024, 17, 885–924.

[20]

Panda, S.; Hajra, S.; Oh, Y.; Oh, W.; Lee, J.; Shin, H.; Vivekananthan, V.; Yang, Y.; Mishra, Y. K.; Kim, H. J. Hybrid nanogenerators for ocean energy harvesting: Mechanisms, designs, and applications. Small 2023, 19, 2300847.

[21]

Liu, L. Q.; Yang, X. Y.; Zhao, L. L.; Hong, H. X.; Cui, H.; Duan, J. L.; Yang, Q. M.; Tang, Q. W. Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting. ACS Nano 2021, 15, 9412–9421.

[22]

Zhao, X. J.; Wang, H. L.; Wang, Z. L.; Wang, J. Nanocomposite electret layer improved long-term stable solid–liquid contact triboelectric nanogenerator for water wave energy harvesting. Small 2024, 20, 2310023.

[23]

Meng, L. X.; Yang, Y. F.; Liu, S. M.; Wang, S.; Zhang, T.; Guo, X. L. Energy storage triboelectric nanogenerator based on ratchet mechanism for random ocean energy harvesting. ACS Omega 2023, 8, 1362–1368.

[24]

Xu, L.; Jiang, T.; Lin, P.; Shao, J. J.; He, C.; Zhong, W.; Chen, X. Y.; Wang, Z. L. Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano 2018, 12, 1849–1858.

[25]

Zhang, C. G.; He, L. X.; Zhou, L. L.; Yang, O.; Yuan, W.; Wei, X. L.; Liu, Y. B.; Lu, L.; Wang, J.; Wang, Z. L. Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule 2021, 5, 1613–1623.

[26]

Gonçalves, I.; Rodrigues, C.; Ventura, J. Sea state adaptation enhances power output of triboelectric nanogenerators for tailored ocean wave energy harvesting. Adv. Energy Mater. 2024, 14, 2302627.

[27]

Yang, H. B.; Liang, X.; Kan, J. W.; Wang, Z. L.; Jiang, T.; Hong, Z. Y. Triboelectric nanogenerator integrated with a simple controlled switch for regularized water wave energy harvesting. Nano Res. 2024, 17, 7585–7592.

[28]

Yu, X. F.;Shang, Y. C.;Zheng, L.; Wang, K. Application of nanogenerators in the field of acoustics. ACS Appl. Electron. Mater. 2023, 5, 5240–5248.

[29]

Jiang, H. Y.; Lv, X.; Wang, K. Application of triboelectric nanogenerator in self-powered motion detection devices: A review. APL Mater. 2024, 12, 070601.

[30]

Pan, Y. Y.; Zhu, Y. F.; Li, Y. N.; Liu, H. S.; Cong, Y.; Li, Q.; Wu, M. B. Homonuclear transition-metal dimers embedded monolayer C2N as promising anchoring and electrocatalytic materials for lithium-sulfur battery: First-principles calculations. Appl. Surf. Sci. 2023, 610, 155507.

[31]

Sun, Z. H.; Yin, H.; Liu, K. L.; Cheng, S. W.; Li, G. K.; Kawi, S.; Zhao, H. T.; Jia, G. H.; Yin, Z. Y. Machine learning accelerated calculation and design of electrocatalysts for CO2 reduction. SmartMat 2022, 3, 68–83.

[32]

Li, J. J.; Sun, Y. J.; Zhang, Z. C. Perspective on machine learning in energy material discovery. SmartMat 2023, 4, e1171.

[33]

Yuan, Z. Q.; Wang, C. F.; Xi, J. G.; Han, X.; Li, J.; Han, S. T.; Gao, W. C.; Pan, C. F. Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy. ACS Energy Lett. 2021, 6, 2809–2816.

[34]

Liang, X.; Jiang, T.; Liu, G. X.; Feng, Y. W.; Zhang, C.; Wang, Z. L. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 2020, 13, 277–285.

[35]

Liang, X.; Liu, Z. R.; Feng, Y. W.; Han, J. J.; Li, L. L.; An, J.; Chen, P. F.; Jiang, T.; Wang, Z. L. Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy 2021, 83, 105836.

[36]

Qu, Z. G.; Huang, M. K.; Chen, C. X.; An, Y.; Liu, H. Z.; Zhang, Q. P.; Wang, X. P.; Liu, Y.; Yin, W. L.; Li, X. F. Spherical triboelectric nanogenerator based on eccentric structure for omnidirectional low frequency water wave energy harvesting. Adv. Funct. Mater. 2022, 32, 2202048.

[37]

Pang, Y. K.; Fang, Y. H.; Su, J. J.; Wang, H. G.; Tan, Y. Q.; Cao, C. Soft ball-based triboelectric-electromagnetic hybrid nanogenerators for wave energy harvesting. Adv. Mater. Technol. 2023, 8, 2201246.

[38]

Xu, Z. Q.; Chen, L. T.; Zhang, Z.; Han, J. J.; Chen, P. F.; Hong, Z. Y.; Jiang, T.; Wang, Z. L. Durable roller-based swing-structured triboelectric nanogenerator for water wave energy harvesting. Small 2024, 20, 2307288.

[39]

Rodrigues, C.; Nunes, D.; Clemente, D.; Mathias, N.; Correia, J. M.; Rosa-Santos, P.; Taveira-Pinto, F.; Morais, T.; Pereira, A.; Ventura, J. Emerging triboelectric nanogenerators for ocean wave energy harvesting: State of the art and future perspectives. Energy Environ. Sci. 2020, 13, 2657–2683.

[40]

Wang, Y.; Liu, X. Y.; Chen, T. Y.; Wang, H.; Zhu, C. Q.; Yu, H. Y.; Song, L. G.; Pan, X. X.; Mi, J. C.; Lee, C. et al. An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition. Nano Energy 2021, 90, 106503.

[41]

Gao, M. J.; Chen, Z. J.; Liang, J. M.; Lin, Z. X.; Zhou, Y. J.; Li, J. H.; Li, G. M.; Mo, L. H.; Shao, J. M.; Luo, Y. Z. Self-powered buoy triboelectric nanogenerator with nanofiber-enhanced surface for efficient wave energy harvesting. ACS Appl. Polym. Mater. 2023, 5, 5074–5081.

[42]

Pang, H.; Feng, Y. W.; An, J.; Chen, P. F.; Han, J. J.; Jiang, T.; Wang, Z. L. Segmented swing-structured fur-based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications. Adv. Funct. Mater. 2021, 31, 2106398.

[43]

Jiang, T.; Pang, H.; An, J.; Lu, P. J.; Feng, Y. W.; Liang, X.; Zhong, W.; Wang, Z. L. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 2020, 10, 2000064.

[44]

Xia, K. Q.; Fu, J. M.; Xu, Z. W. Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting. Adv. Energy Mater. 2020, 10, 2000426.

[45]

Feng, Y. W.; Jiang, T.; Liang, X.; An, J.; Wang, Z. L. Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Appl. Phys. Rev. 2020, 7, 021401.

[46]

Duan, Y. X.; Xu, H. X.; Liu, S. J.; Chen, P. F.; Wang, X. Y.; Xu, L.; Jiang, T.; Wang, Z. L. Scalable rolling-structured triboelectric nanogenerator with high power density for water wave energy harvesting toward marine environmental monitoring. Nano Res. 2023, 16, 11646–11652.

[47]

Shan, C. C.; He, W. C.; Wu, H. Y.; Fu, S. K.; Li, K. X.; Liu, A. P.; Du, Y.; Wang, J.; Mu, Q. J.; Liu, B. Y. et al. Dual mode TENG with self-voltage multiplying circuit for blue energy harvesting and water wave monitoring. Adv. Funct. Mater. 2023, 33, 2305768.

[48]

Lu, Y.; Jiang, L. L.; Yu, Y.; Wang, D. H.; Sun, W. T.; Liu, Y.; Yu, J.; Zhang, J.; Wang, K.; Hu, H. et al. Liquid–liquid triboelectric nanogenerator based on the immiscible interface of an aqueous two-phase system. Nat. Commun. 2022, 13, 5316.

[49]

Xu, Q. Y.; Shang, C. J.; Ma, H. X.; Hong, Q.; Li, C. Z.; Ding, S.; Xue, L.; Sun, X.; Pan, Y. C.; Sugahara, T. et al. A guided-liquid-based hybrid triboelectric nanogenerator for omnidirectional and high-performance ocean wave energy harvesting. Nano Energy 2023, 109, 108240.

Nano Research
Article number: 94907052
Cite this article:
Long Y, Zhao B, Niu J, et al. Dynamically self-adjustable liquid–liquid and self-adaptive soft-contact solid–solid triboelectric nanogenerator for wave energy harvesting. Nano Research, 2025, 18(1): 94907052. https://doi.org/10.26599/NR.2025.94907052
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return