AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (17.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Biomimetic calcium carbonate-calcium phosphate composite films with tunable cytological behaviors

Yu-Lu Yang1,§Xiu-Wu Guo1,2,§Yu-Feng Meng1Wen-Zhi Zhang2 ( )Li-Bo Mao1 ( )Shu-Hong Yu1,3 ( )
Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, New Cornerstone Science Laboratory, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
Institute of Innovative Materials, Department of Materials Science and Engineering, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

§ Yu-Lu Yang and Xiu-Wu Guo contributed equally to this work.

Show Author Information

Graphical Abstract

The biocompatibility and osteogenic differentiation behavior of mineral-based materials with controlled physiochemical properties was studied.

Abstract

Calcium phosphate salts, which have a similar composition with the mineral phase in natural bone, have been extensively studied for their applications in bone regeneration. However, another calcium-based mineral, calcium carbonate, which is also frequently found in biological materials, is seldom considered for this purpose despite their high biocompatibility and bioactivity. Herein, we report the performance of five types of biomimetic mineral films that are fabricated via the mineralization of calcium carbonate and calcium phosphate on chitin. These films have different in vitro degradation dynamics because of their varied stability. They also show distinct surface roughness, modulus and hardness. Cytological analyses reveal that, although these films all display high biocompatibility, they exhibit diverse osteogenic differentiation behavior, which can be attributed to their respective physicochemical properties. Real-time polymerase chain reaction assays suggest that the aragonite group can lead to higher expression of the six representative osteogenic genes, which even surpasses the amorphous calcium phosphate group and the aragonite-crystalline calcium phosphate composite group. These results illustrate that calcium carbonate and its composites with calcium phosphate are potential bone repair materials. We anticipate these mineral-based materials with controlled physiochemical properties, along with their specific fabrication techniques, can facilitate the design and production of mineral-based bone repair materials with optimized performance.

Electronic Supplementary Material

Download File(s)
7055_ESM.pdf (8.1 MB)

References

[1]

Koons, G. L.; Diba, M.; Mikos, A. G. Materials design for bone-tissue engineering. Nat. Rev. Mater. 2020, 5, 584–603.

[2]

Haugen, H. J.; Lyngstadaas, S. P.; Rossi, F.; Perale, G. Bone grafts: Which is the ideal biomaterial. J. Clin. Periodontol. 2019, 46, 92–102.

[3]

Schmidt, A. H. Autologous bone graft: Is it still the gold standard. Injury 2021, 52, S18–S22.

[4]

Prasad, K.; Bazaka, O.; Chua, M.; Rochford, M.; Fedrick, L.; Spoor, J.; Symes, R.; Tieppo, M.; Collins, C.; Cao, A. et al. Metallic biomaterials: Current challenges and opportunities. Materials 2017, 10, 884.

[5]

Kaur, G.; Kumar, V.; Baino, F.; Mauro, J. C.; Pickrell, G.; Evans, I.; Bretcanu, O. Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges. Mater. Sci. Eng. C 2019, 104, 109895.

[6]

Meng, Y. F.; Yu, C. X.; Zhou, L. C.; Shang, L. M.; Yang, B.; Wang, Q. Y.; Meng, X. S.; Mao, L. B.; Yu, S. H. Nanograded artificial nacre with efficient energy dissipation. Innovation 2023, 4, 100505.

[7]

Xiao, C. L.; Li, M.; Wang, B. J.; Liu, M. F.; Shao, C. Y.; Pan, H. H.; Lu, Y.; Xu, B. B.; Li, S. W.; Zhan, D. et al. Total morphosynthesis of biomimetic prismatic-type CaCO3 thin films. Nat. Commun. 2017, 8, 1398.

[8]

Meng, Y. F.; Zhu, Y. B.; Zhou, L. C.; Meng, X. S.; Yang, Y. L.; Zhao, R.; Xia, J.; Yang, B.; Lu, Y. J.; Wu, H. A. et al. Artificial nacre with high toughness amplification factor: Residual stress-engineering sparks enhanced extrinsic toughening mechanisms. Adv. Mater. 2022, 34, 2108267.

[9]

Zou, Z. Y.; Habraken, W. J. E. M.; Matveeva, G.; Jensen, A. C. S.; Bertinetti, L.; Hood, M. A.; Sun, C. Y.; Gilbert, P. U. P. A.; Polishchuk, I.; Pokroy, B. et al. A hydrated crystalline calcium carbonate phase: Calcium carbonate hemihydrate. Science 2019, 363, 396–400.

[10]

Sun, S. T.; Mao, L. B.; Lei, Z. Y.; Yu, S. H.; Cölfen, H. Hydrogels from amorphous calcium carbonate and polyacrylic acid: Bio-inspired materials for “mineral plastics”. Angew. Chem., Int. Ed. 2016, 55, 11765–11769.

[11]

Chen, S.; Liu, D. C.; Fu, L.; Ni, B.; Chen, Z. K.; Knaus, J.; Sturm, E. V.; Wang, B. H.; Haugen, H. J.; Yan, H. J. et al. Formation of amorphous iron-calcium phosphate with high stability. Adv. Mater. 2023, 35, 2301422.

[12]

Chen, S.; Krumova, M.; Cölfen, H.; Sturm, E. V. Synthesis of fiber-like monetite without organic additives and its transformation to hydroxyapatite. Chem. Mater. 2019, 31, 1543–1551.

[13]

Meyers, M. A.; McKittrick, J.; Chen, P. Y. Structural biological materials: Critical mechanics-materials connections. Science 2013, 339, 773–779.

[14]

Meyers, M. A.; Chen, P. Y.; Lin, A. Y. M.; Seki, Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 2008, 53, 1–206.

[15]

Liu, Z. M.; Shao, C. Y.; Jin, B.; Zhang, Z. S.; Zhao, Y. Q.; Xu, X. R.; Tang, R. K. Crosslinking ionic oligomers as conformable precursors to calcium carbonate. Nature 2019, 574, 394–398.

[16]

Meng, X. S.; Zhou, L. C.; Liu, L.; Zhu, Y. B.; Meng, Y. F.; Zheng, D. C.; Yang, B.; Rao, Q. Z.; Mao, L. B.; Wu, H. A. et al. Deformable hard tissue with high fatigue resistance in the hinge of bivalve Cristaria plicata. Science 2023, 380, 1252–1257.

[17]

Ajili, W.; Tovani, C. B.; Fouassier, J.; de Frutos, M.; Laurent, G. P.; Bertani, P.; Djediat, C.; Marin, F.; Auzoux-Bordenave, S.; Azaïs, T. et al. Inorganic phosphate in growing calcium carbonate abalone shell suggests a shared mineral ancestral precursor. Nat. Commun. 2022, 13, 1496.

[18]

Bentov, S.; Aflalo, E. D.; Tynyakov, J.; Glazer, L.; Sagi, A. Calcium phosphate mineralization is widely applied in crustacean mandibles. Sci. Rep. 2016, 6, 22118.

[19]

Reznikov, N.; Bilton, M.; Lari, L.; Stevens, M. M.; Kröger, R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science 2018, 360, eaao2189.

[20]
Boskey, A. L.; Robey, P. G. The composition of bone. In Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism; 9th ed. Bilezikian, J. P.; Bouillon, R.; Clemens, T.; Compston, J.; Bauer, D. C.; Ebeling, P. R.; Engelke, K.; Goltzman, D.; Guise, T.; Jan de Beur, S. M. et al., Eds.; Wiley-Blackwell: Hoboken, 2019; pp 84–92.
[21]

Von Euw, S.; Wang, Y.; Laurent, G.; Drouet, C.; Babonneau, F.; Nassif, N.; Azaïs, T. Bone mineral: New insights into its chemical composition. Sci. Rep. 2019, 9, 8456.

[22]

Santander-Borrego, M.; Taran, E.; Shadforth, A. M. A.; Whittaker, A. K.; Chirila, T. V.; Blakey, I. Hydrogels with Lotus Leaf Topography: Investigating surface properties and cell adhesion. Langmuir 2017, 33, 485–493.

[23]

Ermis, M.; Antmen, E.; Hasirci, V. Micro and Nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective. Bioact. Mater. 2018, 3, 355–369.

[24]

Maeno, S.; Niki, Y.; Matsumoto, H.; Morioka, H.; Yatabe, T.; Funayama, A.; Toyama, Y.; Taguchi, T.; Tanaka, J. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 2005, 26, 4847–4855.

[25]

Salam, N.; Gibson, I. R. Lithium ion doped carbonated hydroxyapatite compositions: Synthesis, physicochemical characterisation and effect on osteogenic response in vitro. Biomater. Adv. 2022, 140, 213068.

[26]

Kim, H. D.; Jang, H. L.; Ahn, H. Y.; Lee, H. K.; Park, J.; Lee, E. S.; Lee, E. A.; Jeong, Y. H.; Kim, D. G.; Nam, K. T. et al. Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials 2017, 112, 31–43.

[27]

Yamamoto, Y.; Nishimura, T.; Saito, T.; Kato, T. CaCO3/chitin-whisker hybrids: formation of CaCO3 crystals in chitin-based liquid-crystalline suspension. Polym. J. 2010, 42, 583–586.

[28]

Matsumura, S.; Kajiyama, S.; Nishimura, T.; Kato, T. Formation of helically structured chitin/CaCO3 hybrids through an approach inspired by the biomineralization processes of crustacean cuticles. Small 2015, 11, 5127–5133.

[29]

Zhu, F. J.; Nishimura, T.; Eimura, H.; Kato, T. Supramolecular effects on formation of CaCO3 thin films on a polymer matrix. CrystEngComm 2014, 16, 1496–1501.

[30]

Zhu, F. J.; Nishimura, T.; Sakamoto, T.; Tomono, H.; Nada, H.; Okumura, Y.; Kikuchi, H.; Kato, T. Tuning the stability of CaCO3 crystals with magnesium ions for the formation of aragonite thin films on organic polymer templates. Chem. Asian J. 2013, 8, 3002–3009.

[31]

Kajiyama, S.; Sakamoto, T.; Inoue, M.; Nishimura, T.; Yokoi, T.; Ohtsuki, C.; Kato, T. Rapid and topotactic transformation from octacalcium phosphate to hydroxyapatite (HAP): A new approach to self-organization of free-standing thin-film HAP-based nanohybrids. CrystEngComm 2016, 18, 8388–8395.

[32]

Nakayama, M.; Kajiyama, S.; Kumamoto, A.; Nishimura, T.; Ikuhara, Y.; Yamato, M.; Kato, T. Stimuli-responsive hydroxyapatite liquid crystal with macroscopically controllable ordering and magneto-optical functions. Nat. Commun. 2018, 9, 568.

[33]

Cheung, R. C. F.; Ng, T. B.; Wong, J. H.; Chan, W. Y. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs 2015, 13, 5156–5186.

[34]

Sadtler, K.; Singh, A.; Wolf, M. T.; Wang, X. K.; Pardoll, D. M.; Elisseeff, J. H. Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nat. Rev. Mater. 2016, 1, 16040.

[35]

Xyla, A. G.; Koutsoukos, P. G. Quantitative analysis of calcium carbonate polymorphs by infrared spectroscopy. J. Chem. Soc. Faraday Trans. 1 1989, 85, 3165–3172.

[36]

Chakrabarty, D.; Mahapatra, S. Aragonite crystals with unconventional morphologies. J. Mater. Chem. 1999, 9, 2953–2957.

[37]

Loftus, E.; Rogers, K.; Lee-Thorp, J. A simple method to establish calcite: Aragonite ratios in archaeological mollusc shells. J. Quat. Sci. 2015, 30, 731–735.

[38]

Wada, N.; Horiuchi, N.; Nakamura, M.; Nozaki, K.; Nagai, A.; Yamashita, K. Controlled crystallization of calcium carbonate via cooperation of polyaspartic acid and polylysine under double-diffusion conditions in agar hydrogels. ACS Omega 2018, 3, 16681–16692.

[39]

Indurkar, A.; Choudhary, R.; Rubenis, K.; Nimbalkar, M.; Sarakovskis, A.; Boccaccini, A. R.; Locs, J. Amorphous calcium phosphate and amorphous calcium phosphate carboxylate: Synthesis and characterization. ACS Omega 2023, 8, 26782–26792.

[40]

Wei, W.; Lei, Y.; Zhong, W.; Cui, J.; Wei, Z. Mechanism of enhanced humic acid removal from aqueous solution using poorly crystalline hydroxyapatite nanoparticles. Dig. J. Nanomater. Biostruct. 2015, 10, 663–680.

[41]

Rapacz-Kmita, A.; Ślósarczyk, A.; Paszkiewicz, Z.; Paluszkiewicz, C. Phase stability of hydroxyapatite-zirconia (HAp–ZrO2) composites for bone replacement. J. Mol. Struct. 2004, 704, 333–340.

[42]

Antonakos, A.; Liarokapis, E.; Leventouri, T. Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 2007, 28, 3043–3054.

[43]

Xu, J. W.; Butler, I. S.; Gilson, D. F. R. FT-Raman and high-pressure infrared spectroscopic studies of dicalcium phosphate dihydrate (CaHPO4·2H2O) and anhydrous dicalcium phosphate (CaHPO4). Spectrochim. Acta Part A 1999, 55, 2801–2809.

[44]

Boanini, E.; Silingardi, F.; Gazzano, M.; Bigi, A. Synthesis and hydrolysis of brushite (DCPD): The role of ionic substitution. Cryst. Growth Des. 2021, 21, 1689–1697.

[45]

Karampas, I. A.; Kontoyannis, C. G. Characterization of calcium phosphates mixtures. Vib. Spectrosc. 2013, 64, 126–133.

[46]

Kontoyannis, C. G.; Vagenas, N. V. Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst 2000, 125, 251–255.

[47]

Behrens, G.; Kuhn, L. T.; Ubic, R.; Heuer, A. H. Raman spectra of vateritic calcium carbonate. Spectrosc. Lett. 1995, 28, 983–995.

[48]

Sauer, G. R.; Zunic, W. B.; Durig, J. R.; Wuthier, R. E. Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates. Calcif. Tissue Int. 1994, 54, 414–420.

[49]

Cuscó, R.; Guitián, F.; de Aza, S.; Artús, L. Differentiation between hydroxyapatite and β-tricalcium phosphate by means of μ-Raman spectroscopy. J. Eur. Ceram. Soc. 1998, 18, 1301–1305.

[50]

de Aza, P. N.; Santos, C.; Pazo, A.; de Aza, S.; Cuscó, R.; Artús, L. Vibrational properties of calcium phosphate compounds. 1. Raman spectrum of β-tricalcium phosphate. Chem. Mater. 1997, 9, 912–915.

[51]

Li, J. M.; Jansen, J. A.; Walboomers, X. F.; van den Beucken, J. J. J. P. Mechanical aspects of dental implants and osseointegration: A narrative review. J. Mech. Behav. Biomed. Mater. 2020, 103, 103574.

[52]

Wang, L. N.; Meng, Y. F.; Feng, Y. H. Z.; Wang, H. C.; Mao, L. B.; Yu, S. H.; Wang, Z. L. Amorphous precursor-mediated calcium phosphate coatings with tunable microstructures for customized bone implants. Adv. Healthcare Mater. 2022, 11, 2201248.

Nano Research
Article number: 94907055
Cite this article:
Yang Y-L, Guo X-W, Meng Y-F, et al. Biomimetic calcium carbonate-calcium phosphate composite films with tunable cytological behaviors. Nano Research, 2025, 18(1): 94907055. https://doi.org/10.26599/NR.2025.94907055
Topics:

478

Views

108

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 25 August 2024
Revised: 25 September 2024
Accepted: 26 September 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return