Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Calcium phosphate salts, which have a similar composition with the mineral phase in natural bone, have been extensively studied for their applications in bone regeneration. However, another calcium-based mineral, calcium carbonate, which is also frequently found in biological materials, is seldom considered for this purpose despite their high biocompatibility and bioactivity. Herein, we report the performance of five types of biomimetic mineral films that are fabricated via the mineralization of calcium carbonate and calcium phosphate on chitin. These films have different in vitro degradation dynamics because of their varied stability. They also show distinct surface roughness, modulus and hardness. Cytological analyses reveal that, although these films all display high biocompatibility, they exhibit diverse osteogenic differentiation behavior, which can be attributed to their respective physicochemical properties. Real-time polymerase chain reaction assays suggest that the aragonite group can lead to higher expression of the six representative osteogenic genes, which even surpasses the amorphous calcium phosphate group and the aragonite-crystalline calcium phosphate composite group. These results illustrate that calcium carbonate and its composites with calcium phosphate are potential bone repair materials. We anticipate these mineral-based materials with controlled physiochemical properties, along with their specific fabrication techniques, can facilitate the design and production of mineral-based bone repair materials with optimized performance.
197
Views
37
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
© The author(s) 2025
This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made.
See https://creativecommons.org/licenses/by/4.0/