PDF (20.7 MB)
Collect
Submit Manuscript
Research Article | Open Access

Continuous high-temperature rapid nanomanufacturing of electrocatalysts

Xiaoyang Wang1Ziyi Luo1Baihua Cui1Ziqi Fu1Yanchang Liu1Weidi Liu2Jia Ding1Jianrong Zeng3,4()Yanan Chen1 ()Wenbin Hu1()
School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane 4072, Australia
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Show Author Information

Graphical Abstract

View original image Download original image
This work demonstrates a novel high-temperature shock (HTS) ultrasonic spray pyrolysis method that offers advantages in terms of continuity, efficiency, and low-cost for producing Metal@C core@shell nanosheets. The compact size favors the formation of small, uniform metal nanoparticles and allows for the precise control of carbon layers, resulting in enhanced catalytic performance.

Abstract

Encapsulating metal nanoparticles in carbon shells (Metal@C) to enhance catalytic activity and stability has been certified feasible. However, most existing methods for preparing Metal@C are complex, time-consuming, and lack of scalability. In this study, a novel method that couples the high-temperature shock (HTS) with ultrasonic spray pyrolysis is reported, which can realize facile and scalable production of various Metal@C through the pyrolysis of glucose and metal chloride mixtures. The proposed HTS ultrasonic spray pyrolysis offers several advantages, including compact size, short reaction time (~ 120 ms), and uniform heating. Taking the Ni@C-40 nanocomposite as an example, the ultrasmall Ni nanoparticles (~ 10 nm) with thin carbon protective shells (~ 2 nm) are uniformly dispersed in the carbon matrix and applied for oxygen evolution reaction (OER) in alkaline media. The Ni@C-40 optimized by tuning the thickness of carbon shell exhibits significantly enhanced OER activity with low overpotential of 242 mV at 10 mA·cm−2 and stability, which is attributed to the optimized interactions between Ni nanoparticles and carbon shells. This method also shows promise for continuous pyrolysis synthesis of various extreme materials at ultra-high temperatures using alternative electric heating materials.

Electronic Supplementary Material

Download File(s)
7056_ESM.pdf (5 MB)

References

[1]

Liu, C.; Zhang, P.; Liu, B.; Meng, Q.; Yang, X. Z.; Li, Y. K.; Han, J. L.; Wang, Y. Long-range Pt–Ni dual sites boost hydrogen evolution through optimizing the adsorption configuration. Nano Res. 2024, 17, 3700–3706.

[2]

Zhao, J.; Zhang, Y. X.; Zhuang, Z. C.; Deng, Y. T.; Gao, G.; Li, J. Y.; Meng, A. L.; Li, G. C.; Wang, L.; Li, Z. J. et al. Tailoring d-p orbital hybridization to decipher the essential effects of heteroatom substitution on redox kinetics. Angew. Chem., Int. Ed. 2024, 63, e202404968.

[3]

Chen, Q.; Fang, C. Y.; Xia, F.; Wang, Q. Y.; Li, F. Y.; Ling, D. S. Metal nanoparticles for cancer therapy: Precision targeting of DNA damage. Acta Pharm. Sin. B 2024, 14, 1132–1149.

[4]

Wang, S. C.; Zhang, M. Y.; Mu, X. Q.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Atomically dispersed multi-site catalysts: Bifunctional oxygen electrocatalysts boost flexible zinc-air battery performance. Energy Environ. Sci. 2024, 17, 4847–4870.

[5]

Yang, J. R.; Zhu, C. X.; Wang, D. S. A simple organo-electrocatalysis system for the chlor-related industry. Angew. Chem., Int. Ed. 2024, 63, e202406883.

[6]

Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.

[7]

Chen, R. Z.; Wang, X. Y.; Dang, J. F.; Yun, S. J.; Wang, L. Q.; Kong, F. G.; Liu, Y. N. Shedding light on the reversible deactivation of carbon-supported single-atom catalysts in hydrogenation reaction. Nano Res. 2024, 17, 4807–4814.

[8]

van Deelen, T. W.; Mejía, C. H.; de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970.

[9]

Wang, F.; Cheng, S.; Bao, Z. H.; Wang, J. F. Anisotropic overgrowth of metal heterostructures induced by a site-selective silica coating. Angew. Chem., Int. Ed. 2013, 52, 10344–10348.

[10]

Wang, X.; Zhang, Y. B.; Song, S. Y.; Yang, X. G.; Wang, Z.; Jin, R. C.; Zhang, H. J. L-Arginine-triggered self-assembly of CeO2 nanosheaths on palladium nanoparticles in water. Angew. Chem., Int. Ed. 2016, 55, 4542–4546.

[11]

Zhao, S. L.; Tan, C. H.; He, C. T.; An, P. F.; Xie, F.; Jiang, S.; Zhu, Y. F.; Wu, K. H.; Zhang, B. W.; Li, H. J. et al. Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890.

[12]

Liang, D. F.; Wang, Y. S.; Chen, M. Q.; Xie, X. L.; Li, C.; Wang, J.; Yuan, L. Dry reforming of methane for syngas production over attapulgite-derived MFI zeolite encapsulated bimetallic Ni−Co catalysts. Appl. Catal. B: Environ. 2023, 322, 122088.

[13]

Liu, X.; Gregurec, D.; Irigoyen, J.; Martinez, A.; Moya, S.; Ciganda, R.; Hermange, P.; Ruiz, J.; Astruc, D. Precise localization of metal nanoparticles in dendrimer nanosnakes or inner periphery and consequences in catalysis. Nat. Commun. 2016, 7, 13152.

[14]

Yang, X. C.; Sun, J. K.; Kitta, M.; Pang, H.; Xu, Q. Encapsulating highly catalytically active metal nanoclusters inside porous organic cages. Nat. Catal. 2018, 1, 214–220.

[15]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru–Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[16]

Wang, B.; Chen, Y. F.; Liu, G.; Liu, D. W.; Liu, Y. F.; Ge, C. Q.; Wang, L.; Wang, Z. G.; Wu, R. B.; Wang, L. Y. Interfaces coupling of Co8FeS8-Fe5C2 with elevated d-band center for efficient water oxidation catalysis. Appl. Catal. B: Environ. 2024, 341, 123294.

[17]

Li, Z.; Yang, Y.; Yin, Z. L.; Wei, X.; Peng, H. Q.; Lyu, K. J.; Wei, F. Y.; Xiao, L.; Wang, G. W.; Abruña, H. D. et al. Interface-enhanced catalytic selectivity on the C2 products of CO2 electroreduction. ACS Catal. 2021, 11, 2473–2482.

[18]

Tang, Y.; Liu, F.; Liu, W. Q.; Mo, S. L.; Li, X. H.; Yang, D. X.; Liu, Y. J.; Bao, S. J. Multifunctional carbon-armored Ni electrocatalyst for hydrogen evolution under high current density in alkaline electrolyte solution. Appl. Catal. B: Environ. 2023, 321, 122081.

[19]

Cui, X. J.; Ren, P. J.; Deng, D. H.; Deng, J.; Bao, X. H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123–129.

[20]

Karuppannan, M.; Kim, Y.; Gok, S.; Lee, E.; Hwang, J. Y.; Jang, J. H.; Cho, Y. H.; Lim, T.; Sung, Y. E.; Kwon, O. J. A highly durable carbon-nanofiber-supported Pt–C core–shell cathode catalyst for ultra-low Pt loading proton exchange membrane fuel cells: Facile carbon encapsulation. Energy Environ. Sci. 2019, 12, 2820–2829.

[21]

Yoo, J. M.; Shin, H.; Chung, D. Y.; Sung, Y. E. Carbon shell on active nanocatalyst for stable electrocatalysis. Acc. Chem. Res. 2022, 55, 1278–1289.

[22]

Lanfredi, S.; Matos, J.; da Silva, S. R.; Djurado, E.; Sadouki, A. S.; Chouaih, A.; Poon, P. S.; González, E. R. P.; Nobre, M. A. L. K- and Cu-doped CaTiO3-based nanostructured hollow spheres as alternative catalysts to produce fatty acid ethyl esters as potential biodiesel. Appl. Catal. B: Environ. 2020, 272, 118986.

[23]

Xu, H. X.; Guo, J. R.; Suslick, K. S. Porous carbon spheres from energetic carbon precursors using ultrasonic spray pyrolysis. Adv. Mater. 2012, 24, 6028–6033.

[24]

Hong, Y. J.; Kang, Y. C. One-pot synthesis of core–shell-structured tin oxide-carbon composite powders by spray pyrolysis for use as anode materials in Li-ion batteries. Carbon 2015, 88, 262–269.

[25]

Wismann, S. T.; Engbæk, J. S.; Vendelbo, S. B.; Bendixen, F. B.; Eriksen, W. L.; Aasberg-Petersen, K.; Frandsen, C.; Chorkendorff, I.; Mortensen, P. M. Electrified methane reforming: A compact approach to greener industrial hydrogen production. Science 2019, 364, 756–759.

[26]

Wang, X. Z.; Huang, Z. N.; Yao, Y. G.; Qiao, H. Y.; Zhong, G.; Pei, Y.; Zheng, C. L.; Kline, D.; Xia, Q. Q.; Lin, Z. W. et al. Continuous 2000 K droplet-to-particle synthesis. Mater. Today 2020, 35, 106–114.

[27]

Dou, S. M.; Xu, J.; Cui, X. Y.; Liu, W. D.; Zhang, Z. C.; Deng, Y. D.; Hu, W. B.; Chen, Y. N. High-temperature shock enabled nanomanufacturing for energy-related applications. Adv. Energy Mater. 2020, 10, 2001331.

[28]

Gao, Y. F.; Yang, Y.; Schimmenti, R.; Murray, E.; Peng, H. Q.; Wang, Y. M.; Ge, C. X.; Jiang, W. Y.; Wang, G. W.; DiSalvo, F. J. et al. A completely precious metal-free alkaline fuel cell with enhanced performance using a carbon-coated nickel anode. Proc. Natl. Acad. Sci. USA 2022, 119, e2119883119.

[29]

Chen, Y. N.; Fu, K.; Zhu, S. Z.; Luo, W.; Wang, Y. B.; Li, Y. J.; Hitz, E.; Yao, Y. G.; Dai, J. Q.; Wan, J. Y. et al. Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors. Nano Lett. 2016, 16, 3616–3623.

[30]

Li, H. P.; Pokhrel, S.; Schowalter, M.; Rosenauer, A.; Kiefer, J.; Mädler, L. The gas-phase formation of tin dioxide nanoparticles in single droplet combustion and flame spray pyrolysis. Combust. Flame 2020, 215, 389–400.

[31]

Balgis, R.; Ogi, T.; Wang, W. N.; Anilkumar, G. M.; Sago, S.; Okuyama, K. Aerosol synthesis of self-organized nanostructured hollow and porous carbon particles using a dual polymer system. Langmuir 2014, 30, 11257–11262.

[32]

Liu, C.; Zhou, W.; Zhang, J. F.; Chen, Z. L.; Liu, S. L.; Zhang, Y.; Yang, J. X.; Xu, L. Y.; Hu, W. B.; Chen, Y. N. et al. Air-assisted transient synthesis of metastable nickel oxide boosting alkaline fuel oxidation reaction. Adv. Energy Mater. 2020, 10, 2001397.

[33]

Yi, P. S.; Yao, Z. J.; Zhou, J. T.; Wei, B.; Lei, L.; Tan, R. Y.; Fan, H. Y. Facile synthesis of 3D Ni@C nanocomposites derived from two kinds of petal-like Ni-based MOFs towards lightweight and efficient microwave absorbers. Nanoscale 2021, 13, 3119–3135.

[34]

Wang, J. C.; Liu, M.; Chaemchuen, S.; Klomkliang, N.; Kao, C. M.; Verpoort, F. Carbon-supported cobalt nanoparticles via thermal sugar decomposition as efficient electrocatalysts for the oxygen evolution reaction. ACS Appl. Nano Mater. 2022, 5, 7993–8004.

[35]

Xu, Y. H.; Liu, Q.; Zhu, Y. J.; Liu, Y. H.; Langrock, A.; Zachariah, M. R.; Wang, C. S. Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett. 2013, 13, 470–474.

[36]

Li, T. F.; Luo, G.; Liu, K. H.; Li, X.; Sun, D. M.; Xu, L.; Li, Y. F.; Tang, Y. W. Encapsulation of Ni3Fe nanoparticles in N-doped carbon nanotube-grafted carbon nanofibers as high-efficiency hydrogen evolution electrocatalysts. Adv. Funct. Mater. 2018, 28, 1805828.

[37]

Lam, D. V.; Nguyen, V. T.; Roh, E.; Ngo, Q. T.; Choi, W.; Kim, J. H.; Kim, H.; Choi, H. S.; Lee, S. M. Laser-induced graphitic carbon with ultrasmall nickel nanoparticles for efficient overall water splitting. Part. Part. Syst. Charact. 2021, 38, 2100119.

[38]

Ni, W. Y.; Wang, T.; Schouwink, P. A.; Chuang, Y. C.; Chen, H. M.; Hu, X. L. Efficient hydrogen oxidation catalyzed by strain-engineered nickel nanoparticles. Angew. Chem., Int. Ed. 2020, 59, 10797–10801.

[39]

Hu, W. C.; Lin, T. H. Ethanol flame synthesis of carbon nanotubes in deficient oxygen environments. Nanotechnology 2016, 27, 165602.

[40]

Chen, S.; Min, X.; Zhao, Y. J.; Wu, X. X.; Zhang, D.; Hou, X. F.; Wu, X. W.; Liu, Y.; Huang, Z. H.; Abdelkader, A. M. et al. Nickel quantum dots anchored in biomass-derived nitrogen-doped carbon as bifunctional electrocatalysts for overall water splitting. Adv. Mater. Interfaces 2022, 9, 2102014.

[41]

Ni, W. Y.; Krammer, A.; Hsu, C. S.; Chen, H. M.; Schüler, A.; Hu, X. L. Ni3N as an active hydrogen oxidation reaction catalyst in alkaline medium. Angew. Chem., Int. Ed. 2019, 58, 7445–7449.

[42]

Yin, J.; Fan, Q. H.; Li, Y. X.; Cheng, F. Y.; Zhou, P. P.; Xi, P. X.; Sun, S. H. Ni–C–N nanosheets as catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 14546–14549.

[43]

Galhardo, T. S.; Braga, A. H.; Arpini, B. H.; Szanyi, J.; Gonçalves, R. V.; Zornio, B. F.; Miranda, C. R.; Rossi, L. M. Optimizing active sites for high CO selectivity during CO2 hydrogenation over supported nickel catalysts. J. Am. Chem. Soc. 2021, 143, 4268–4280.

[44]

Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem. 2015, 127, 2128–2132.

[45]

Lee, S. Y.; Oh, H. J.; Kim, M.; Cho, H. S.; Lee, Y. K. Insights into enhanced activity and durability of hierarchical Fe-doped Ni(OH)2/Ni catalysts for alkaline oxygen evolution reaction: In situ XANES studies. Appl. Catal. B: Environ. 2023, 324, 122269.

[46]

Lee, M.; Oh, H. S.; Cho, M. K.; Ahn, J. P.; Hwang, Y. J.; Min, B. K. Activation of a Ni electrocatalyst through spontaneous transformation of nickel sulfide to nickel hydroxide in an oxygen evolution reaction. Appl. Catal. B: Environ. 2018, 233, 130–135.

[47]

Qiao, Y.; Chen, C. J.; Liu, Y.; Liu, Y. F.; Dong, Q.; Yao, Y. G.; Wang, X. Z.; Shao, Y. Y.; Wang, C.; Hu, L. B. Continuous fly-through high-temperature synthesis of nanocatalysts. Nano Lett. 2021, 21, 4517–4523.

[48]

Xie, H.; Liu, N.; Zhang, Q.; Zhong, H. T.; Guo, L. Q.; Zhao, X. P.; Li, D. Z.; Liu, S. F.; Huang, Z. N.; Lele, A. D. et al. A stable atmospheric-pressure plasma for extreme-temperature synthesis. Nature 2023, 623, 964–971.

Nano Research
Article number: 94907056
Cite this article:
Wang X, Luo Z, Cui B, et al. Continuous high-temperature rapid nanomanufacturing of electrocatalysts. Nano Research, 2025, 18(1): 94907056. https://doi.org/10.26599/NR.2025.94907056
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return