Encapsulating metal nanoparticles in carbon shells (Metal@C) to enhance catalytic activity and stability has been certified feasible. However, most existing methods for preparing Metal@C are complex, time-consuming, and lack of scalability. In this study, a novel method that couples the high-temperature shock (HTS) with ultrasonic spray pyrolysis is reported, which can realize facile and scalable production of various Metal@C through the pyrolysis of glucose and metal chloride mixtures. The proposed HTS ultrasonic spray pyrolysis offers several advantages, including compact size, short reaction time (~ 120 ms), and uniform heating. Taking the Ni@C-40 nanocomposite as an example, the ultrasmall Ni nanoparticles (~ 10 nm) with thin carbon protective shells (~ 2 nm) are uniformly dispersed in the carbon matrix and applied for oxygen evolution reaction (OER) in alkaline media. The Ni@C-40 optimized by tuning the thickness of carbon shell exhibits significantly enhanced OER activity with low overpotential of 242 mV at 10 mA·cm−2 and stability, which is attributed to the optimized interactions between Ni nanoparticles and carbon shells. This method also shows promise for continuous pyrolysis synthesis of various extreme materials at ultra-high temperatures using alternative electric heating materials.
Liu, C.; Zhang, P.; Liu, B.; Meng, Q.; Yang, X. Z.; Li, Y. K.; Han, J. L.; Wang, Y. Long-range Pt–Ni dual sites boost hydrogen evolution through optimizing the adsorption configuration. Nano Res. 2024, 17, 3700–3706.
Zhao, J.; Zhang, Y. X.; Zhuang, Z. C.; Deng, Y. T.; Gao, G.; Li, J. Y.; Meng, A. L.; Li, G. C.; Wang, L.; Li, Z. J. et al. Tailoring d-p orbital hybridization to decipher the essential effects of heteroatom substitution on redox kinetics. Angew. Chem., Int. Ed. 2024, 63, e202404968.
Chen, Q.; Fang, C. Y.; Xia, F.; Wang, Q. Y.; Li, F. Y.; Ling, D. S. Metal nanoparticles for cancer therapy: Precision targeting of DNA damage. Acta Pharm. Sin. B 2024, 14, 1132–1149.
Wang, S. C.; Zhang, M. Y.; Mu, X. Q.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Atomically dispersed multi-site catalysts: Bifunctional oxygen electrocatalysts boost flexible zinc-air battery performance. Energy Environ. Sci. 2024, 17, 4847–4870.
Yang, J. R.; Zhu, C. X.; Wang, D. S. A simple organo-electrocatalysis system for the chlor-related industry. Angew. Chem., Int. Ed. 2024, 63, e202406883.
Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.
Chen, R. Z.; Wang, X. Y.; Dang, J. F.; Yun, S. J.; Wang, L. Q.; Kong, F. G.; Liu, Y. N. Shedding light on the reversible deactivation of carbon-supported single-atom catalysts in hydrogenation reaction. Nano Res. 2024, 17, 4807–4814.
van Deelen, T. W.; Mejía, C. H.; de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970.
Wang, F.; Cheng, S.; Bao, Z. H.; Wang, J. F. Anisotropic overgrowth of metal heterostructures induced by a site-selective silica coating. Angew. Chem., Int. Ed. 2013, 52, 10344–10348.
Wang, X.; Zhang, Y. B.; Song, S. Y.; Yang, X. G.; Wang, Z.; Jin, R. C.; Zhang, H. J. L-Arginine-triggered self-assembly of CeO2 nanosheaths on palladium nanoparticles in water. Angew. Chem., Int. Ed. 2016, 55, 4542–4546.
Zhao, S. L.; Tan, C. H.; He, C. T.; An, P. F.; Xie, F.; Jiang, S.; Zhu, Y. F.; Wu, K. H.; Zhang, B. W.; Li, H. J. et al. Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890.
Liang, D. F.; Wang, Y. S.; Chen, M. Q.; Xie, X. L.; Li, C.; Wang, J.; Yuan, L. Dry reforming of methane for syngas production over attapulgite-derived MFI zeolite encapsulated bimetallic Ni−Co catalysts. Appl. Catal. B: Environ. 2023, 322, 122088.
Liu, X.; Gregurec, D.; Irigoyen, J.; Martinez, A.; Moya, S.; Ciganda, R.; Hermange, P.; Ruiz, J.; Astruc, D. Precise localization of metal nanoparticles in dendrimer nanosnakes or inner periphery and consequences in catalysis. Nat. Commun. 2016, 7, 13152.
Yang, X. C.; Sun, J. K.; Kitta, M.; Pang, H.; Xu, Q. Encapsulating highly catalytically active metal nanoclusters inside porous organic cages. Nat. Catal. 2018, 1, 214–220.
Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru–Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.
Wang, B.; Chen, Y. F.; Liu, G.; Liu, D. W.; Liu, Y. F.; Ge, C. Q.; Wang, L.; Wang, Z. G.; Wu, R. B.; Wang, L. Y. Interfaces coupling of Co8FeS8-Fe5C2 with elevated d-band center for efficient water oxidation catalysis. Appl. Catal. B: Environ. 2024, 341, 123294.
Li, Z.; Yang, Y.; Yin, Z. L.; Wei, X.; Peng, H. Q.; Lyu, K. J.; Wei, F. Y.; Xiao, L.; Wang, G. W.; Abruña, H. D. et al. Interface-enhanced catalytic selectivity on the C2 products of CO2 electroreduction. ACS Catal. 2021, 11, 2473–2482.
Tang, Y.; Liu, F.; Liu, W. Q.; Mo, S. L.; Li, X. H.; Yang, D. X.; Liu, Y. J.; Bao, S. J. Multifunctional carbon-armored Ni electrocatalyst for hydrogen evolution under high current density in alkaline electrolyte solution. Appl. Catal. B: Environ. 2023, 321, 122081.
Cui, X. J.; Ren, P. J.; Deng, D. H.; Deng, J.; Bao, X. H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123–129.
Karuppannan, M.; Kim, Y.; Gok, S.; Lee, E.; Hwang, J. Y.; Jang, J. H.; Cho, Y. H.; Lim, T.; Sung, Y. E.; Kwon, O. J. A highly durable carbon-nanofiber-supported Pt–C core–shell cathode catalyst for ultra-low Pt loading proton exchange membrane fuel cells: Facile carbon encapsulation. Energy Environ. Sci. 2019, 12, 2820–2829.
Yoo, J. M.; Shin, H.; Chung, D. Y.; Sung, Y. E. Carbon shell on active nanocatalyst for stable electrocatalysis. Acc. Chem. Res. 2022, 55, 1278–1289.
Lanfredi, S.; Matos, J.; da Silva, S. R.; Djurado, E.; Sadouki, A. S.; Chouaih, A.; Poon, P. S.; González, E. R. P.; Nobre, M. A. L. K- and Cu-doped CaTiO3-based nanostructured hollow spheres as alternative catalysts to produce fatty acid ethyl esters as potential biodiesel. Appl. Catal. B: Environ. 2020, 272, 118986.
Xu, H. X.; Guo, J. R.; Suslick, K. S. Porous carbon spheres from energetic carbon precursors using ultrasonic spray pyrolysis. Adv. Mater. 2012, 24, 6028–6033.
Hong, Y. J.; Kang, Y. C. One-pot synthesis of core–shell-structured tin oxide-carbon composite powders by spray pyrolysis for use as anode materials in Li-ion batteries. Carbon 2015, 88, 262–269.
Wismann, S. T.; Engbæk, J. S.; Vendelbo, S. B.; Bendixen, F. B.; Eriksen, W. L.; Aasberg-Petersen, K.; Frandsen, C.; Chorkendorff, I.; Mortensen, P. M. Electrified methane reforming: A compact approach to greener industrial hydrogen production. Science 2019, 364, 756–759.
Wang, X. Z.; Huang, Z. N.; Yao, Y. G.; Qiao, H. Y.; Zhong, G.; Pei, Y.; Zheng, C. L.; Kline, D.; Xia, Q. Q.; Lin, Z. W. et al. Continuous 2000 K droplet-to-particle synthesis. Mater. Today 2020, 35, 106–114.
Dou, S. M.; Xu, J.; Cui, X. Y.; Liu, W. D.; Zhang, Z. C.; Deng, Y. D.; Hu, W. B.; Chen, Y. N. High-temperature shock enabled nanomanufacturing for energy-related applications. Adv. Energy Mater. 2020, 10, 2001331.
Gao, Y. F.; Yang, Y.; Schimmenti, R.; Murray, E.; Peng, H. Q.; Wang, Y. M.; Ge, C. X.; Jiang, W. Y.; Wang, G. W.; DiSalvo, F. J. et al. A completely precious metal-free alkaline fuel cell with enhanced performance using a carbon-coated nickel anode. Proc. Natl. Acad. Sci. USA 2022, 119, e2119883119.
Chen, Y. N.; Fu, K.; Zhu, S. Z.; Luo, W.; Wang, Y. B.; Li, Y. J.; Hitz, E.; Yao, Y. G.; Dai, J. Q.; Wan, J. Y. et al. Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors. Nano Lett. 2016, 16, 3616–3623.
Li, H. P.; Pokhrel, S.; Schowalter, M.; Rosenauer, A.; Kiefer, J.; Mädler, L. The gas-phase formation of tin dioxide nanoparticles in single droplet combustion and flame spray pyrolysis. Combust. Flame 2020, 215, 389–400.
Balgis, R.; Ogi, T.; Wang, W. N.; Anilkumar, G. M.; Sago, S.; Okuyama, K. Aerosol synthesis of self-organized nanostructured hollow and porous carbon particles using a dual polymer system. Langmuir 2014, 30, 11257–11262.
Liu, C.; Zhou, W.; Zhang, J. F.; Chen, Z. L.; Liu, S. L.; Zhang, Y.; Yang, J. X.; Xu, L. Y.; Hu, W. B.; Chen, Y. N. et al. Air-assisted transient synthesis of metastable nickel oxide boosting alkaline fuel oxidation reaction. Adv. Energy Mater. 2020, 10, 2001397.
Yi, P. S.; Yao, Z. J.; Zhou, J. T.; Wei, B.; Lei, L.; Tan, R. Y.; Fan, H. Y. Facile synthesis of 3D Ni@C nanocomposites derived from two kinds of petal-like Ni-based MOFs towards lightweight and efficient microwave absorbers. Nanoscale 2021, 13, 3119–3135.
Wang, J. C.; Liu, M.; Chaemchuen, S.; Klomkliang, N.; Kao, C. M.; Verpoort, F. Carbon-supported cobalt nanoparticles via thermal sugar decomposition as efficient electrocatalysts for the oxygen evolution reaction. ACS Appl. Nano Mater. 2022, 5, 7993–8004.
Xu, Y. H.; Liu, Q.; Zhu, Y. J.; Liu, Y. H.; Langrock, A.; Zachariah, M. R.; Wang, C. S. Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett. 2013, 13, 470–474.
Li, T. F.; Luo, G.; Liu, K. H.; Li, X.; Sun, D. M.; Xu, L.; Li, Y. F.; Tang, Y. W. Encapsulation of Ni3Fe nanoparticles in N-doped carbon nanotube-grafted carbon nanofibers as high-efficiency hydrogen evolution electrocatalysts. Adv. Funct. Mater. 2018, 28, 1805828.
Lam, D. V.; Nguyen, V. T.; Roh, E.; Ngo, Q. T.; Choi, W.; Kim, J. H.; Kim, H.; Choi, H. S.; Lee, S. M. Laser-induced graphitic carbon with ultrasmall nickel nanoparticles for efficient overall water splitting. Part. Part. Syst. Charact. 2021, 38, 2100119.
Ni, W. Y.; Wang, T.; Schouwink, P. A.; Chuang, Y. C.; Chen, H. M.; Hu, X. L. Efficient hydrogen oxidation catalyzed by strain-engineered nickel nanoparticles. Angew. Chem., Int. Ed. 2020, 59, 10797–10801.
Hu, W. C.; Lin, T. H. Ethanol flame synthesis of carbon nanotubes in deficient oxygen environments. Nanotechnology 2016, 27, 165602.
Chen, S.; Min, X.; Zhao, Y. J.; Wu, X. X.; Zhang, D.; Hou, X. F.; Wu, X. W.; Liu, Y.; Huang, Z. H.; Abdelkader, A. M. et al. Nickel quantum dots anchored in biomass-derived nitrogen-doped carbon as bifunctional electrocatalysts for overall water splitting. Adv. Mater. Interfaces 2022, 9, 2102014.
Ni, W. Y.; Krammer, A.; Hsu, C. S.; Chen, H. M.; Schüler, A.; Hu, X. L. Ni3N as an active hydrogen oxidation reaction catalyst in alkaline medium. Angew. Chem., Int. Ed. 2019, 58, 7445–7449.
Yin, J.; Fan, Q. H.; Li, Y. X.; Cheng, F. Y.; Zhou, P. P.; Xi, P. X.; Sun, S. H. Ni–C–N nanosheets as catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 14546–14549.
Galhardo, T. S.; Braga, A. H.; Arpini, B. H.; Szanyi, J.; Gonçalves, R. V.; Zornio, B. F.; Miranda, C. R.; Rossi, L. M. Optimizing active sites for high CO selectivity during CO2 hydrogenation over supported nickel catalysts. J. Am. Chem. Soc. 2021, 143, 4268–4280.
Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem. 2015, 127, 2128–2132.
Lee, S. Y.; Oh, H. J.; Kim, M.; Cho, H. S.; Lee, Y. K. Insights into enhanced activity and durability of hierarchical Fe-doped Ni(OH)2/Ni catalysts for alkaline oxygen evolution reaction: In situ XANES studies. Appl. Catal. B: Environ. 2023, 324, 122269.
Lee, M.; Oh, H. S.; Cho, M. K.; Ahn, J. P.; Hwang, Y. J.; Min, B. K. Activation of a Ni electrocatalyst through spontaneous transformation of nickel sulfide to nickel hydroxide in an oxygen evolution reaction. Appl. Catal. B: Environ. 2018, 233, 130–135.
Qiao, Y.; Chen, C. J.; Liu, Y.; Liu, Y. F.; Dong, Q.; Yao, Y. G.; Wang, X. Z.; Shao, Y. Y.; Wang, C.; Hu, L. B. Continuous fly-through high-temperature synthesis of nanocatalysts. Nano Lett. 2021, 21, 4517–4523.
Xie, H.; Liu, N.; Zhang, Q.; Zhong, H. T.; Guo, L. Q.; Zhao, X. P.; Li, D. Z.; Liu, S. F.; Huang, Z. N.; Lele, A. D. et al. A stable atmospheric-pressure plasma for extreme-temperature synthesis. Nature 2023, 623, 964–971.