PDF (24.3 MB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Research Article | Open Access

Lead-free germanium halide perovskite WLEDs with enhanced luminescence efficiency and ultra-stability through atomic-level regulation and resin encapsulating by 3D printing

Zhenghui TianKe LiJiaqi YuMinghao HeJing MaoYang QuGuofeng Wang ()
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
Show Author Information

Graphical Abstract

View original image Download original image
This work starts with the "functional motif" and regulates lead-free perovskites at the molecular level by combining density functional theory (DFT) calculations, high-throughput screening, and three-dimensional (3D)-printing technology. CsGeBr3:Ln3+ with enhanced luminescence were prepared and further encapsulated into resins to improve the luminescence stability. After six months of storage, the luminescence intensity and spectral shape of the ultra-stable white light-emitting diodes (WLEDs) remained unchanged, demonstrating the remarkable stability.

Abstract

This work starts with the "functional motif" and regulates lead-free perovskite materials at the molecular level by combining density functional theory (DFT) calculations and high-throughput techniques, aiming to simultaneously address the toxicity, luminescence efficiency, and stability issues of perovskite materials. As expected, the optimized geometric structures, band structures, and density of states of CsGeBr3:Ln3+ were successfully obtained by assembling the [Ge1−xLnxBr6] functional motifs using DFT techniques. With increasing Ln3+ concentrations, the functional [Ge1−xLnxBr6] motifs tend to localize and increases the local electron density of Br, which is beneficial for improving the luminescence properties. Subsequently, CsGeBr3:Ln3+ with enhanced luminescence were prepared and further encapsulated into photosensitive resins using 3D printing technology to improve the luminescence stability. Based the results of DFT calculation and high-throughput technology, ultra-stable white light-emitting diodes (WLEDs) with excellent performance have been successfully achieved. After being placed for six months, the luminescence intensity and spectral shape of the resin coated sample remain unchanged. The corresponding international commission on illumination (CIE) coordinates the best sample are (0.3207, 0.3285), with a low color rendering index (Ra) of 96 and a correlated color temperature (CCT) of 6083 K. This work provides new insights and ideas for improving the luminescence intensity and stability of lead-free perovskite WLEDs by combining machine learning and 3D printing technology.

Electronic Supplementary Material

Download File(s)
7058_ESM.pdf (4 MB)

References

[1]

Li, C.; Sun, H. X.; Wang, M.; Gan, S.; Dou, D.; Li, L. High-performance pulse light stable perovskite indoor photovoltaics. Sci. Bull. 2024, 69, 334–344.

[2]

Wang, W. X.; Cui, Y.; Zhang, T.; Bi, P. Q.; Wang, J. Q.; Yang, S. W.; Wang, J. W.; Zhang, S. Q.; Hou, J. H. High-performance organic photovoltaic cells under indoor lighting enabled by suppressing energetic disorders. Joule 2023, 7, 1067–1079.

[3]

Chen, C. H.; Su, Z. H.; Lou, Y. H.; Yu, Y. J.; Wang, K. L.; Liu, G. L.; Shi, Y. R.; Chen, J.; Cao, J. J.; Zhang, L. et al. Full-dimensional grain boundary stress release for flexible perovskite indoor photovoltaics. Adv. Mater. 2022, 34, 2200320.

[4]

Sun, L. H.; Dong, B.; Sun, J.; Wang, Y. M.; Wang, Y. Q.; Hu, S. T.; Zhou, B. S.; Bai, X.; Xu, L.; Zhou, D. L. et al. Efficient and stable multicolor emissions of the coumarin-modified Cs3LnCl6 lead-free perovskite nanocrystals and LED application. Adv. Mater. 2024, 36, 2310065.

[5]

Kim, J. S.; Heo, J. M.; Park, G. S.; Woo, S. J.; Cho, C.; Yun, H. J.; Kim, D. H.; Park, J.; Lee, S. C.; Park, S. H. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 2022, 611, 688–694.

[6]

Zhang, D. Q.; Zhang, Q. P.; Ren, B. T.; Zhu, Y. D.; Abdellah, M.; Fu, Y.; Cao, B.; Wang, C.; Gu, L. L.; Ding, Y. C. et al. Large-scale planar and spherical light-emitting diodes based on arrays of perovskite quantum wires. Nat. Photonics 2022, 16, 284–290.

[7]

Guan, X.; Lu, J. X.; Wei, Q.; Li, Y. Q.; Meng, Y. Y.; Lin, K. B.; Zhao, Y. P.; Feng, W. J.; Liu, K. K.; Xing, G. C. et al. Suppressing disproportionation decomposition in Sn-based perovskite light-emitting diodes. ACS Energy Lett. 2023, 8, 1597–1605.

[8]

Fu, W. F.; Ricciardulli, A. G.; Akkerman, Q. A.; John, R. A.; Tavakoli, M. M.; Essig, S.; Kovalenko, M. V.; Saliba, M. Stability of perovskite materials and devices. Mater. Today 2022, 58, 275–296.

[9]

Fu, J. H.; Ramesh, S.; Lim, J. W. M.; Sum, T. C. Carriers, quasi-particles, and collective excitations in halide perovskites. Chem. Rev. 2023, 123, 8154–8231.

[10]

Jiang, M. W.; Hu, Z. H.; Ono, L. K.; Qi, Y. B. CsPbBr x I3- x thin films with multiple ammonium ligands for low turn-on pure-red perovskite light-emitting diodes. Nano Res. 2021, 14, 191–197.

[11]

Kong, L. M.; Zhang, X. Y.; Zhang, C. X.; Wang, L.; Wang, S.; Cao, F.; Zhao, D. W.; Rogach, A. L.; Yang, X. Y. Stability of perovskite light-emitting diodes: Existing issues and mitigation strategies related to both material and device aspects. Adv. Mater. 2022, 34, 2205217.

[12]

Li, T. F.; Qiao, M. D.; He, X. Y.; Zhu, R.; Ran, X.; Wang, X. J.; Jia, Y.; Guo, L. J. Ultrabright blue-light-emitting cesium bromide quantum dots for white LEDs. Chem. Commun. 2023, 59, 5721–5724.

[13]

Quan, L. N.; De Arquer, F. P. G.; Sabatini, R. P.; Sargent, E. H. Perovskites for light emission. Adv. Mater. 2018, 30, 1801996.

[14]

McKittrick, J.; Shea-Rohwer, L. E. Review: Down conversion materials for solid-state lighting. J. Am. Ceram. Soc. 2014, 97, 1327–1352.

[15]

Bai, S.; Da, P. M.; Li, C.; Wang, Z. P.; Yuan, Z. C.; Fu, F.; Kawecki, M.; Liu, X. J.; Sakai, N.; Wang, J. T. W. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 2019, 571, 245–250.

[16]

Marin, J. F. G.; Unuchek, D.; Sun, Z.; Cheon, C. Y.; Tagarelli, F.; Watanabe, K.; Taniguchi, T.; Kis, A. Room-temperature electrical control of polarization and emission angle in a cavity-integrated 2D pulsed LED. Nat. Commun. 2022, 13, 4884.

[17]

Lan, S. G.; Pan, B. J.; Liu, Y.; Zhang, Z. X.; Zhang, L. J.; Yu, B.; Fang, Y. J.; Wang, P. J. Preparation and promising optoelectronic applications of lead halide perovskite patterned structures: A review. Carbon Energy 2023, 5, e318.

[18]

Park, J.; Kim, J.; Yun, H. S.; Paik, M. J.; Noh, E.; Mun, H. J.; Kim, M. G.; Shin, T. J.; Seok, S. I. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023, 616, 724–730.

[19]

Li, M. Z.; Sun, Y.; Lu, H. L.; Zhu, P. F.; Wang, R. H.; Wang, G. F. Simultaneous improving luminescence intensity and stability of CsPbBr3:SCN-@Eu/Zr-Uio-66-NH2 with tunable emissions from blue to green and applications in indoor photovoltaics. Nano Res. 2024, 17, 6879–6887.

[20]

Long, G. K.; Adamo, G.; Tian, J. Y.; Klein, M.; Krishnamoorthy, H. N. S.; Feltri, E.; Wang, H. B.; Soci, C. Perovskite metasurfaces with large superstructural chirality. Nat. Commun. 2022, 13, 1551.

[21]

Zhao, M.; Cao, K.; Liu, M. J.; Zhang, J.; Chen, R.; Zhang, Q. Y.; Xia, Z. G. Dual-shelled RbLi(Li3SiO4)2: Eu2+@Al2O3@ODTMS phosphor as a stable green emitter for high-power LED backlights. Angew. Chem., Int. Ed. 2020, 59, 12938–13943.

[22]

Cao, L. Y.; Liu, B. M.; Huang, L.; Zhou, Z.; Ma, C. G.; Zhang, J.; Wang, J. Bright and tunable emissive monodisperse CsPbI3@Cs4PbI6 nanocomposites via a precise and controllable dissolution-recrystallization method. Nano Res. 2023, 16, 1586–1594.

[23]

Mei, L. Q.; Xie, R. X.; Zhu, S.; Deng, S. L.; Xu, H. W.; Fan, X. T.; Yin, W. Y.; Gu, Z. J. Neurotoxicity study of lead-based perovskite nanoparticles. Nano Today 2023, 50, 101830.

[24]

Chen, C. H.; Cheng, S. N.; Cheng, L.; Wang, Z. K.; Liao, L. S. Toxicity, leakage, and recycling of lead in perovskite photovoltaics. Adv. Energy Mater. 2023, 13, 2204144.

[25]

Bae, Y.; Ryu, J.; Yoon, S.; Kang, D. W. Recent progress in quasi-two-dimensional and quantum dot perovskite light-emitting diodes harnessing the diverse effects of ligands: A review. Nano Res. 2022, 15, 6449–6465.

[26]

Lanzetta, L.; Webb, T.; Marin-Beloqui, J. M.; Macdonald, T. J.; Haque, S. A. Halide chemistry in Tin perovskite optoelectronics: Bottlenecks and opportunities. Angew. Chem., Int. Ed. 2023, 62, e202213966.

[27]

Lu, H. L.; Sun, Y.; Li, M. Z.; Wang, Q. Y.; Wang, R. H.; Zhu, P. F.; Wang, G. F. CsPbBr3:Na with an adjustable bandgap, improved luminescence stability, and its application in WLEDs with excellent color quality and vision performance. Adv. Funct. Mater. 2023, 33, 2212767.

[28]

Li, Y. S.; Wang, D. D.; Yang, Y. G.; Ding, C.; Hu, Y. Y.; Liu, F.; Wei, Y. Y.; Liu, D.; Li, H.; Shi, G. Z. et al. Stable inorganic colloidal Tin and Tin-lead perovskite nanocrystals with ultralong carrier lifetime via Sn(IV) control. J. Am. Chem. Soc. 2024, 146, 3094–3101.

[29]

Zeng, Z. C.; Sun, M. Z.; Zhang, S.; Zhang, H. T.; Shi, X. M.; Ye, S.; Huang, B. L.; Du, Y. P.; Yan, C. H. Rare-earth-based perovskite Cs2AgScCl6: Bi for strong full visible spectrum emission. Adv. Funct. Mater. 2022, 32, 2204780.

[30]

Li, K.; Ye, Y.; Zhang, W. C.; Zhou, Y.; Zhang, Y. D.; Lin, S. S.; Lin, H.; Ruan, J.; Liu, C. Ultra-stable and color-tunable manganese ions doped lead-free cesium zinc halides nanocrystals in glasses for light-emitting applications. Nano Res. 2022, 15, 9368–9376.

[31]

Li, H. W.; Han, K.; Li, Z. Y.; Yue, H. X.; Fu, X. Y.; Wang, X. Y.; Xia, Z. G.; Song, S. Y.; Feng, J.; Zhang, H. J. Multiple energy transfer channels in rare earth doped multi-exciton emissive perovskites. Adv. Sci. 2024, 11, 2307354.

[32]

Mao, J.; Venugopal, D.; Zhang, Y. Y.; Zhu, P. F.; Wang, G. F. Synthesis and DFT calculation of germanium halide perovskites with high luminescent stability, and their applications in WLEDs and indoor photovoltaics. Chem. Eng. J. 2023, 470, 144160.

[33]

Jellicoe, T. C.; Richter, J. M.; Glass, H. F. J.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C. et al. Synthesis and optical properties of lead-free cesium Tin halide perovskite nanocrystals. J. Am. Chem. Soc. 2016, 138, 2941–2944.

[34]

Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065.

[35]

Yao, J. S.; Ge, J.; Han, B. N.; Wang, K. H.; Yao, H. B.; Yu, H. L.; Li, J. H.; Zhu, B. S.; Song, J. Z.; Chen, C. et al. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 3626–3634.

[36]

Cheng, Y.; Lei, L.; Zhu, W. J.; Wang, Y. B.; Guo, H.; Xu, S. Q. Enhancing light yield of Tb3+-doped fluoride nanoscintillator with restricted positive hysteresis for low-dose high-resolution X-ray imaging. Nano Res. 2023, 16, 3339–3347.

[37]

Wang, H. R.; Ye, F. H.; Sun, J. Y.; Wang, Z. J.; Zhang, C.; Qian, J. Y.; Zhang, X. Y.; Choy, W. C. H.; Sun, X. W.; Wang, K. et al. Efficient CsPbBr3 nanoplatelet-based blue light-emitting diodes enabled by engineered surface ligands. ACS Energy Lett. 2022, 7, 1137–1145.

[38]

Kim, J. I.; Zeng, Q. S.; Park, S.; Lee, H.; Park, J.; Kim, T.; Lee, T. W. Strategies to extend the lifetime of perovskite downconversion films for display applications. Adv. Mater. 2023, 35, 2209784.

[39]

Wang, H. C.; Lin, S. Y.; Tang, A. C.; Singh, B. P.; Tong, H. C.; Chen, C. Y.; Lee, Y. C.; Tsai, T. L.; Liu, R. S. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem., Int. Ed. 2016, 55, 7924–7929.

[40]

Pan, G. C.; Bai, X.; Yang, D. W.; Chen, X.; Jing, P. T.; Qu, S. N.; Zhang, L. J.; Zhou, D. L.; Zhu, J. Y.; Xu, W. et al. Doping lanthanide into perovskite nanocrystals: Highly improved and expanded optical properties. Nano Lett. 2017, 17, 8005–8011.

Nano Research
Article number: 94907058
Cite this article:
Tian Z, Li K, Yu J, et al. Lead-free germanium halide perovskite WLEDs with enhanced luminescence efficiency and ultra-stability through atomic-level regulation and resin encapsulating by 3D printing. Nano Research, 2025, 18(1): 94907058. https://doi.org/10.26599/NR.2025.94907058
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return