The p-n junction diode and field-effect transistor are foundational elements in modern electronics and optoelectronics. While high-performance field-effect devices have been realized using monolayered materials and their heterostructures, there has been a notable absence of p-n heterojunction diodes derived from inkjet-printed two-dimensional (2D) materials, which may lead to the development of complex electronic and optoelectronic circuits. This study addresses this gap by detailing the development and characterization of heterojunction p-n diodes fabricated through the inkjet printing of carbon nanotubes (CNTs) and molybdenum disulfide (MoS2). The use of inkjet printing technology for both CNTs and MoS2 allows for precise, scalable, and cost-effective fabrication. The resulting heterojunction diodes exhibit excellent diode behavior, with a rectification ratio exceeding 103. Additionally, the diode shows significant photoconductive properties, with a rapid photoresponse time of approximately 2 µs. This swift photoresponse is essential for high-speed optoelectronic applications, making the diode a promising component in advanced electronic systems. The study underscores the potential of inkjet printing technology to revolutionize the production of sophisticated, low-cost electronic devices with superior performance metrics, particularly in terms of photoresponse efficiency and speed. The integration of CNTs and MoS2 via inkjet printing not only streamlines the manufacturing process but also enhances the functional properties of the heterojunction diodes, positioning it as a viable candidate for future optoelectronic applications.
Feng, X. J.; Zhao, X.; Yang, L.; Li, M. Y.; Qie, F. X.; Guo, J. H.; Zhang, Y. C.; Li, T. H.; Yuan, W. X.; Yan, Y. All carbon materials p-n diode. Nat. Commun. 2018, 9, 3750.
Jariwala, D.; Sangwan, V. K.; Wu, C. C.; Prabhumirashi, P. L.; Geier, M. L.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode. Proc. Natl. Acad. Sci. USA 2013, 110, 18076–18080.
Liu, X. H.; Mao, Y. L. p-type high-performance WSi2N4 MOSFETs with the ultrashort scale of sub-5 nm. ACS Appl. Electron. Mater. 2023, 5, 6716–6724.
Xia, H.; Luo, M.; Wang, W. J.; Wang, H. L.; Li, T. X.; Wang, Z.; Xu, H. Y.; Chen, Y.; Zhou, Y.; Wang, F. et al. Pristine PN junction toward atomic layer devices. Light Sci. Appl. 2022, 11, 170.
Jung, Y.; Li, X. K.; Rajan, N. K.; Taylor, A. D.; Reed, M. A. Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells. Nano Lett. 2013, 13, 95–99.
Ji, P. R.; Yang, S. M.; Wang, Y.; Li, K. L.; Wang, Y. M.; Suo, H.; Woldu, Y. T.; Wang, X. M.; Wang, F.; Zhang, L. L. et al. High-performance photodetector based on an interface engineering-assisted graphene/silicon Schottky junction. Microsyst. Nanoeng. 2022, 8, 9.
Zhang, M.; Zhang, F.; Wang, Y.; Zhu, L. J.; Hu, Y. F.; Lou, Z. D.; Hou, Y. B.; Teng, F. High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films. Sci. Rep. 2018, 8, 11157.
Wu, G.; Tang, L. B.; Deng, G. R.; Liu, L. N.; Hao, Q.; Yuan, S. Z.; Wang, J. Y.; Wei, H.; Zhao, Y. P.; Yue, B. et al. Transparent dual-band ultraviolet photodetector based on graphene/p-GaN/AlGaN heterojunction. Opt. Express 2022, 30, 21349–21361.
Shen, C. F.; Liu, Y. H.; Wu, J. B.; Xu, C.; Cui, D. Z.; Li, Z.; Liu, Q. Z.; Li, Y. R.; Wang, Y. X.; Cao, X. et al. Tellurene photodetector with high gain and wide bandwidth. ACS Nano 2020, 14, 303–310.
Mahmoodi, E.; Amiri, M. H.; Salimi, A.; Frisenda, R.; Flores, E.; Ares, J. R.; Ferrer, I. J.; Castellanos-Gomez, A.; Ghasemi, F. Paper-based broadband flexible photodetectors with van der Waals materials. Sci. Rep. 2022, 12, 12585.
Pejović, V.; Lee, J.; Georgitzikis, E.; Li, Y. L.; Kim, J. H.; Lieberman, I.; Malinowski, P. E.; Heremans, P.; Cheyns, D. Thin-film photodetector optimization for high-performance short-wavelength infrared imaging. IEEE Electron Device Lett. 2021, 42, 1196–1199.
Li, X.; Aftab, S.; Hussain, S.; Kabir, F.; Al-Sehemi, A. G.; Aslam, M.; Kim, J. H.; Goud, B. S. Progress in photodetector devices utilizing transition metal dichalcogenides. J. Mater. Chem. C 2024, 12, 1211–1232.
Lv, Z. J.; He, G.; Qiu, C. F.; Fan, Y. Y.; Wang, H. Y.; Liu, Z. J. CMOS monolithic photodetector with a built-in 2-dimensional light direction sensor for laser diode based underwater wireless optical communications. Opt. Express 2021, 29, 16197–16204.
Mallik, S. K.; Padhan, R.; Roy, S.; Sahu, M. C.; Sahoo, S.; Sahoo, S. Direct transfer of monolayer MoS2 device arrays for potential applications in flexible electronics. ACS Appl. Nano Mater. 2024, 7, 4796–4804.
Zhu, W. J.; Low, T.; Lee, Y. H.; Wang, H.; Farmer, D. B.; Kong, J.; Xia, F. N.; Avouris, P. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 2014, 5, 3087.
Sebastian, A.; Pendurthi, R.; Choudhury, T. H.; Redwing, J. M.; Das, S. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 2021, 12, 693.
Tsai, H. J.; Yang, Y. K.; Li, Y. C.; Yeh, J.; Chen, P. C.; Kuo, Y. H.; Hsu, W. K. Production of carbon nanotube paper-based thermoelectric devices with the peltier effect. ACS Appl. Electron. Mater. 2023, 5, 4445–4450.
Li, Z.; Jinkins, K. R.; Cui, D. Z.; Chen, M. R.; Zhao, Z. Y.; Arnold, M. S.; Zhou, C. W. Air-stable n-type transistors based on assembled aligned carbon nanotube arrays and their application in complementary metal-oxide-semiconductor electronics. Nano Res. 2022, 15, 864–871.
Huo, N. J.; Yang, Y. J.; Wu, Y. N.; Zhang, X. G.; Pantelides, S. T.; Konstantatos, G. High carrier mobility in monolayer CVD-grown MoS2 through phonon suppression. Nanoscale 2018, 10, 15071–15077.
Kim, T.; Fan, S. D.; Lee, S.; Joo, M. K.; Lee, Y. H. High-mobility junction field-effect transistor via graphene/MoS2 heterointerface. Sci. Rep. 2020, 10, 13101.
Das, S.; Lee, B. H.; Linstadt, R. T. H.; Cunha, K.; Li, Y. L.; Kaufman, Y.; Levine, Z. A.; Lipshutz, B. H.; Lins, R. D.; Shea, J. E. et al. Molecularly smooth self-assembled monolayer for high-mobility organic field-effect transistors. Nano Lett. 2016, 16, 6709–6715.
Chen, M. R.; Zhang, A. Y.; Liu, Y. H.; Cui, D. Z.; Li, Z.; Chung, Y. H.; Mutyala, S. P.; Mecklenburg, M.; Nie, X.; Xu, C. et al. Gold-vapor-assisted chemical vapor deposition of aligned monolayer WSe2 with large domain size and fast growth rate. Nano Res. 2020, 13, 2625–2631.
Zub, K.; Hoeppener, S.; Schubert, U. S. Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications. Adv. Mater. 2022, 34, 2105015.
Singh, M.; Haverinen, H. M.; Dhagat, P.; Jabbour, G. E. Inkjet printing-process and its applications. Adv. Mater. 2010, 22, 673–685.
Wang, H. L.; Dong, Y.; Fu, X.; Zhao, X. Z.; Zhao, Q. X.; Xia, M. J. Heterojunction infrared photodiodes with high dynamic range based on lead sulfide quantum dot and zinc oxide nanomembrane. IEEE Trans. Nanotechnol. 2023, 22, 359–364.
Chen, M. R.; Cui, D. Z.; Wang, N.; Weng, S. Z.; Zhao, Z. Y.; Tian, F. G.; Gao, X. B.; He, K. M.; Chiang, C. T.; Albawardi, S. et al. Inkjet-printed MoS2 nanoplates on flexible substrates for high-performance field effect transistors and gas sensing applications. ACS Appl. Nano Mater. 2023, 6, 3236–3244.
Wen, D.; Wang, X.; Liu, L.; Hu, C.; Sun, C.; Wu, Y. R.; Zhao, Y. L.; Zhang, J. X.; Liu, X. D.; Ying, G. B. Inkjet printing transparent and conductive MXene (Ti3C2T x ) films: A strategy for flexible energy storage devices. ACS Appl. Mater. Interfaces 2021, 13, 17766–17780.
Hayman, M.; McMenamin, K. J.; Jensen, J. B. Response time characteristics of the fast-2D optical array probe detector board. J. Atmos. Ocean. Technol. 2016, 33, 2569–2583.
Wang, Y. F.; Zou, X. P.; Zhu, J. L.; Zhang, C. Q.; Cheng, J.; Wang, J. Q.; Wang, X. L.; Li, X. T.; Song, K. K.; Ren, B. K. et al. Investigation of the photoresponse and time-response characteristics of HDA-BiI5-based photodetectors. Materials 2022, 15, 321.
Wu, F.; Li, Q.; Wang, P.; Xia, H.; Wang, Z.; Wang, Y.; Luo, M.; Chen, L.; Chen, F. S.; Miao, J. S. et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat. Commun. 2019, 10, 4663.
Pan, T.; Liu, S. H.; Zhang, L. T.; Xie, W. F. Flexible organic optoelectronic devices on paper. iScience 2022, 25, 103782.
Zhang, C.; Tan, J. Y.; Pan, Y. K.; Cai, X. K.; Zou, X. L.; Cheng, H. M.; Liu, B. L. Mass production of 2D materials by intermediate-assisted grinding exfoliation. Natl. Sci. Rev. 2020, 7, 324–332.
Zhang, C.; Luo, Y. T.; Tan, J. Y.; Yu, Q. M.; Yang, F. N.; Zhang, Z. Y.; Yang, L. S.; Cheng, H. M.; Liu, B. L. High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution. Nat. Commun. 2020, 11, 3724.
Sangwan, V. K.; Beck, M. E.; Henning, A.; Luo, J. J.; Bergeron, H.; Kang, J. M.; Balla, I.; Inbar, H.; Lauhon, L. J.; Hersam, M. C. Self-aligned van der Waals heterojunction diodes and transistors. Nano Lett. 2018, 18, 1421–1427.
Kim, B. H.; Kang, J. W. Electroluminescent MgZnO/ZnO heterojunction diode. Appl. Sci. Converg. Technol. 2023, 32, 151–154.
Yan, R. S.; Fathipour, S.; Han, Y. M.; Song, B.; Xiao, S. D.; Li, M. D.; Ma, N.; Protasenko, V.; Muller, D. A.; Jena, D. et al. Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett. 2015, 15, 5791–5798.
Chen, Y.; Wang, X. D.; Huang, L.; Wang, X. T.; Jiang, W.; Wang, Z.; Wang, P.; Wu, B. M.; Lin, T.; Shen, H. et al. Ferroelectric-tuned van der Waals heterojunction with band alignment evolution. Nat. Commun. 2021, 12, 4030.
Maheswaran, R.; Shanmugavel, B. P. A critical review of the role of carbon nanotubes in the progress of next-generation electronic applications. J. Electron. Mater. 2022, 51, 2786–2800.
Lee, D. K.; Yoo, J.; Kim, H.; Kang, B. H.; Park, S. H. Electrical and thermal properties of carbon nanotube polymer composites with various aspect ratios. Materials 2022, 15, 1356.
Cheng, Z. F.; He, S. D.; Han, X. N.; Zhang, X. D.; Chen, L. N.; Duan, S. J.; Zhang, S. M.; Xia, M. G. Improving electron mobility in MoS2 field-effect transistors by optimizing the interface contact and enhancing the channel conductance through local structural phase transition. J. Mater. Chem. C 2024, 12, 2794–2802.
Ji, L. P.; Shi, J.; Zhang, Z. Y.; Wang, J.; Zhang, J. C.; Tao, C. L.; Cao, H. N. Theoretical prediction of high electron mobility in multilayer MoS2 heterostructured with MoSe2. J. Chem. Phys. 2018, 148, 014704.
Jorio, A.; Saito, R. Raman spectroscopy for carbon nanotube applications. J. Appl. Phys. 2021, 129, 021102.
Yang, M. M.; Liu, Y.; Cong, R. D.; Zhang, Y.; Zhang, Y. F.; Tan, L.; Hu, X. W.; Wu, C. L.; Liu, Y. L.; Dang, W. et al. Angle-resolved polarized Raman spectra of linear MoS2 nanostructures for optical anisotropy detection. ACS Appl. Nano Mater. 2023, 6, 11299–11308.
Kang, D. H.; Park, N.; Ko, J. H.; Bae, E.; Park, W. Oxygen-induced p-type doping of a long individual single-walled carbon nanotube. Nanotechnology 2005, 16, 1048–1052.
Park, Y.; Li, N. N.; Jung, D.; Singh, L. T.; Baik, J.; Lee, E.; Oh, D.; Kim, Y. D.; Lee, J. Y.; Woo, J. et al. Unveiling the origin of n-type doping of natural MoS2: Carbon. npj 2D Mater. Appl. 2023, 7, 60.
Meng, Y.; Wang, W. J.; Wang, W.; Li, B. W.; Zhang, Y. X.; Ho, J. Anti-ambipolar heterojunctions: Materials, devices, and circuits. Adv. Mater. 2024, 36, 2306290.
Lv, Y. H.; Wu, C. Y.; Zhao, Y.; Wu, G.; Abid, M.; Cho, J.; Choi, M.; Coileáin, Ó. C.; Hung, K. M.; Chang, C. R. et al. Robust anti-ambipolar behavior and gate-tunable rectifying effect in van der Waals p-n junctions. ACS Appl. Electron. Mater. 2022, 4, 5487–5497.
Li, X.; Carey, J. E.; Sickler, J. W.; Pralle, M. U.; Palsule, C.; Vineis, C. J. Silicon photodiodes with high photoconductive gain at room temperature. Opt. Express 2012, 20, 5518–5523.