Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The catalytic conversion of glucose to high value-added platform chemical 5-hydroxymethylfurfural (HMF) is a promising biorefinery process, and alumina-boria catalysts are considered to be green and mild solid acid catalysts for this catalytic reaction. Here, compared to the common synthesis methods with complicated steps, we reported a simple and efficient strategy to prepare B2O3-Al2O3 nanocomposites by calcining cost-effective glucose-urea deep eutectic solvent (DES) solution containing the precursors. The prepared B2O3-Al2O3 nanocomposites exhibited an open three-dimensional skeleton and two-dimensional porous lamellar substructure, endowing them with a high specific surface area (228.27 m2/g). The introduction of boron changed the ratios of different aluminum species (AlⅣ, AlⅤ, and AlⅥ) and borate species (BO3 and BO4), thus further affecting the acidity and the types of acid sites of the materials. The prepared B2O3-Al2O3 bifunctional acid catalysts possessing abundant Lewis acid sites and adjustable Brønsted acid sites showed complete glucose conversion and 55.38% of HMF yield under the optimum conditions. Our study proposed a concise method to synthesize alumina-boria solid acid catalysts assisted by glucose-urea DES. We hope to extend the application and prospect of this efficient and simple synthesis strategy.
Galkin, K. I.; Ananikov, V. P. When will 5-hydroxymethylfurfural, the “sleeping giant” of sustainable chemistry, awaken. ChemSusChem 2019, 12, 2976–2982.
Zhou, S. H.; Shi, L.; Li, Y. Z.; Yang, T.; Zhao, S. L. Metal-organic framework-based electrocatalysts for acidic water splitting. Adv. Funct. Mater. 2024, 34, 2400767.
Kumar Vaidyanathan, V.; Saikia, K.; Senthil Kumar, P.; Karanam Rathankumar, A.; Rangasamy, G.; Dattatraya Saratale, G. Advances in enzymatic conversion of biomass derived furfural and 5-hydroxymethylfurfural to value-added chemicals and solvents. Bioresour. Technol. 2023, 378, 128975.
Bozell, J. J.; Petersen, G. R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem. 2010, 12, 539–554.
Liao, Y. T.; Matsagar, B. M.; Wu, K. C. W. Metal-organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass. ACS Sustain. Chem. Eng. 2018, 6, 13628–13643.
Teong, S. P.; Yi, G. S.; Zhang, Y. G. Hydroxymethylfurfural production from bioresources: Past, present and future. Green Chem. 2014, 16, 2015–2026.
Agarwal, B.; Kailasam, K.; Sangwan, R. S.; Elumalai, S. Traversing the history of solid catalysts for heterogeneous synthesis of 5-hydroxymethylfurfural from carbohydrate sugars: A review. Renew. Sustain. Energy Rev. 2018, 82, 2408–2425.
van Putten, R. J.; van der Waal, J. C.; de Jong, E.; Rasrendra, C. B.; Heeres, H. J.; de Vries, J. G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 2013, 113, 1499–1597.
Xing, X. Y.; Shi, X.; Ruan, M. Y.; Wei, Q. C.; Guan, Y.; Gao, H.; Xu, S. Q. Sulfonic acid functionalized β zeolite as efficient bifunctional solid acid catalysts for the synthesis of 5-hydroxymethylfurfural from cellulose. Int. J. Biol. Macromol. 2023, 242, 125037.
Guo, W. Z.; Hensen, E. J. M.; Qi, W.; Heeres, H. J.; Yue, J. Titanium phosphate grafted on mesoporous SBA-15 silica as a solid acid catalyst for the synthesis of 5-hydroxymethylfurfural from glucose. ACS Sustain. Chem. Eng. 2022, 10, 10157–10168.
Zi, G. L.; Yan, Z. Y.; Wang, Y. X.; Chen, Y. J.; Guo, Y. L.; Yuan, F. G.; Gao, W. Y.; Wang, Y. M.; Wang, J. Q. Catalytic hydrothermal conversion of carboxymethyl cellulose to value-added chemicals over metal-organic framework MIL-53(Al). Carbohydr. Polym. 2015, 115, 146–151.
Zhang, S. C.; Tan, C. H.; Yan, R. P.; Zou, X. F.; Hu, F. L.; Mi, Y.; Yan, C.; Zhao, S. L. Constructing built-in electric field in heterogeneous nanowire arrays for efficient overall water electrolysis. Angew. Chem., Int. Ed. 2023, 62, e202302795.
Guo, W. Z.; Kortenbach, T.; Qi, W.; Hensen, E.; Jan Heeres, H.; Yue, J. Selective tandem catalysis for the synthesis of 5-hydroxymethylfurfural from glucose over in- situ phosphated titania catalysts: Insights into structure, bi-functionality and performance in flow microreactors. Appl. Catal. B Environ. 2022, 301, 120800.
Qi, X. H.; Watanabe, M.; Aida, T. M.; Smith, R. L. Synergistic conversion of glucose into 5-hydroxymethylfurfural in ionic liquid-water mixtures. Bioresour. Technol. 2012, 109, 224–228.
Yang, F. L.; Liu, Q. S.; Bai, X. F.; Du, Y. G. Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst. Bioresour. Technol. 2011, 102, 3424–3429.
Yang, W. J.; Kim, K. D.; O'Dell, L. A.; Wang, L. Z.; Xu, H. M.; Ruan, M. T.; Wang, W.; Ryoo, R.; Jiang, Y. J.; Huang, J. Brønsted acid sites formation through penta-coordinated aluminum species on alumina-boria for phenylglyoxal conversion. J. Catal. 2022, 416, 375–386.
Hansen, T. S.; Mielby, J.; Riisager, A. Synergy of boric acid and added salts in the catalytic dehydration of hexoses to 5-hydroxymethylfurfural in water. Green Chem. 2011, 13, 109–114.
Khokhlova, E. A.; Kachala, V. V.; Ananikov, V. P. The first molecular level monitoring of carbohydrate conversion to 5-hydroxymethylfurfural in ionic liquids. B2O3-an efficient dual-function metal-free promoter for environmentally benign applications. ChemSusChem 2012, 5, 783–789.
Xiu, T. P.; Wang, J. C.; Liu, Q. Ordered bimodal mesoporous boria-alumina composite: One-step synthesis, structural characterization, active catalysis for methanol dehydration. Microporous Mesoporous Mater. 2011, 143, 362–367.
Liu, J.; Li, H.; Liu, Y. C.; Lu, Y. M.; He, J.; Liu, X. F.; Wu, Z. B.; Yang, S. Catalytic conversion of glucose to 5-hydroxymethylfurfural over nano-sized mesoporous Al2O3 -B2O3 solid acids. Catal. Commun. 2015, 62, 19–23.
Torres-Mancera, P.; Ramírez, J.; Cuevas, R.; Gutiérrez-Alejandre, A.; Murrieta, F.; Luna, R. Hydrodesulfurization of 4,6-DMDBT on NiMo and CoMo catalysts supported on B2O3 -Al2O3. Catal. Today 2005, 107–108, 551–558.
Vatutina, Y. V.; Klimov, O. V.; Nadeina, K. A.; Danilova, I. G.; Gerasimov, E. Y.; Prosvirin, I. P.; Noskov, A. S. Influence of boron addition to alumina support by kneading on morphology and activity of HDS catalysts. Appl. Catal. B: Environ. 2016, 199, 23–32.
Chu, S.; Li, X.; Prins, R.; Wang, C. H.; Liu, Y. Y.; Wang, A. J.; Sheng, Q. Preparation of ultrasmall Ni2P nanoparticles with low P/Ni ratios supported on SiO2 and an Al2O3 -B2O3 mixed oxide for dibenzothiophene hydrodesulfurization. J. Catal. 2023, 420, 110–122.
Bautista, F. M.; Campelo, J. M.; Garcia, A.; Luna, D.; Marinas, J. M.; Moreno, M. C.; Romero, A. A.; Navio, J. A.; Macias, M. Structural and textural characterization of AIPO4 -B2O3 and Al2O3 -B2O3 (5–30 wt.% B2O3) systems obtained by boric acid impregnation. J. Catal. 1998, 173, 333–344.
Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082.
Rong, K.; Wei, J. L.; Huang, L.; Fang, Y. X.; Dong, S. J. Synthesis of low dimensional hierarchical transition metal oxides via a direct deep eutectic solvent calcining method for enhanced oxygen evolution catalysis. Nanoscale 2020, 12, 20719–20725.
Wei, J. L.; Rong, K.; Li, X. L.; Wang, Y. C.; Qiao, Z. A.; Fang, Y. X.; Dong, S. J. Deep eutectic solvent assisted facile synthesis of low-dimensional hierarchical porous high-entropy oxides. Nano Res. 2022, 15, 2756–2763.
Wang, Y. C.; Rong, K.; Wei, J. L.; Chang, S. L.; Yu, D. B.; Fang, Y. X.; Dong, S. J. One-step synthesis of three-dimensional mesoporous Co3O4@Al2O3 nanocomposites with deep eutectic solvent: An efficient and stable peroxymonosulfate activator for organic pollutant degradations. Nano Res. 2023, 16, 11430–11443.
Dong, J. C.; Liu, Y. Y.; Pei, J. J.; Li, H. J.; Ji, S. F.; Shi, L.; Zhang, Y. N.; Li, C.; Tang, C.; Liao, J. W. et al. Continuous electroproduction of formate via CO2 reduction on local symmetry-broken single-atom catalysts. Nat. Commun. 2023, 14, 6849.
Miles, C. E.; Carlson, T. R.; Morgan, B. J.; Topalian, P. J.; Schare, J. R.; Bussell, M. E. Hydrodesulfurization properties of nickel phosphide on boron-treated alumina supports. ChemCatChem 2020, 12, 4939–4950.
Flego, C.; Arrigoni, V.; Ferrari, M.; Riva, R.; Zanibelli, L. Mixed oxides as a support for new CoMo catalysts. Catal. Today 2001, 65, 265–270.
Moon, O. M.; Kang, B. C.; Lee, S. B.; Boo, J. H. Temperature effect on structural properties of boron oxide thin films deposited by MOCVD method. Thin Solid Films 2004, 464–465, 164–169.
Przekop, R.; Kirszensztejn, P. Porous xerogel systems B2O3-Al2O3 obtained by the sol–gel method. J. Non-Cryst. Solids 2014, 402, 128–134.
Tarte, P. Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochim. Acta Part A Mol. Spectrosc. 1967, 23, 2127–2143.
Delmastro, A.; Gozzelino, G.; Mazza, D.; Vallino, M.; Busca, G.; Lorenzelli, V. Characterization of microporous amorphous alumina-boria. J. Chem. Soc. Faraday Trans. 1992, 88, 2065–2070.
Dumeignil, F.; Rigole, M.; Guelton, M.; Grimblot, J. Characterization of boria-alumina mixed oxides prepared by a sol–gel method. 2. Characterization of the calcined xerogels. Chem. Mater. 2005, 17, 2369–2377.
Wang, Z. C.; Jiang, Y. J.; Baiker, A.; Huang, J. Pentacoordinated aluminum species: New frontier for tailoring acidity-enhanced silica-alumina catalysts. Acc. Chem. Res. 2020, 53, 2648–2658.
Barr, T. L.; Seal, S.; Wozniak, K.; Klinowski, J. ESCA studies of the coordination state of aluminium in oxide environments. J. Chem. Soc. Faraday Trans. 1997, 93, 181–186.
Valente, J. S.; Lima, E.; Toledo-Antonio, J. A.; Cortes-Jacome, M. A.; Lartundo-Rojas, L.; Montiel, R.; Prince, J. Comprehending the thermal decomposition and reconstruction process of sol-gel MgAl layered double hydroxides. J. Phys. Chem. C 2010, 114, 2089–2099.
Huang, Q. X.; Liu, J. L.; He, X.; Liu, T. Y.; Lu, A. X. Analysis of structure evolution and performance in alkali-free glass substrates via XPS and infrared: Boron-aluminum anomaly. J. Non-Cryst. Solids 2021, 555, 120531.
Chen, Q. L.; Fan, J. H.; Ma, Q. H. Structure, EPR, and Mössbauer spectra of La0.8Sr0.2FeO3 nanocrystals modified magnetic glass-ceramics. J. Aust. Ceram. Soc. 2023, 60, 103–113.
Zhou, F. M.; Xu, D. H.; Shi, M. X.; Bi, Y. H. Investigation on microstructure and its transformation mechanisms of B2O3 -SiO2 -Al2O3 -CaO brazing flux system. High Temp. Mater. Processes 2020, 39, 88–95.
Cui, X. Y.; Zheng, L. X.; Li, Q.; Guo, Y. A remarkable bifunctional carbon-based solid acid catalyst derived from waste bio-tar for efficient synthesis of 5-hydroxymethylfurfural from glucose. Chem. Eng. J. 2023, 474, 146006.
Sato, S.; Kuroki, M.; Sodesawa, T.; Nozaki, F.; Maciel, G. E. Surface structure and acidity of alumina-boria catalysts. J. Mol. Catal. A Chem. 1995, 104, 171–177.
Hansen, M. R.; Jakobsen, H. J.; Skibsted, J. Structural environments for boron and aluminum in alumina-boria catalysts and their precursors from 11B and 27Al single- and double-resonance MAS NMR experiments. J. Phys. Chem. C 2008, 112, 7210–7222.
Chen, W. B.; Maugé, F.; van Gestel, J.; Nie, H.; Li, D. D.; Long, X. Y. Effect of modification of the alumina acidity on the properties of supported Mo and CoMo sulfide catalysts. J. Catal. 2013, 304, 47–62.
Petre, A. L.; Perdigón-Melón, J. A.; Gervasini, A.; Auroux, A. Acid-base properties of alumina-supported M2O3 (M = B, Ga, In) catalysts. Top. Catal. 2002, 19, 271–281.
Han, B.; Zhao, P.; He, R.; Wu, T. H.; Wu, Y. Catalytic conversion of glucose to 5-hydroxymethyfurfural over B2O3 supported solid acids catalysts. Waste Biomass Valor. 2018, 9, 2181–2190.
Peil, K. P.; Galya, L. G.; Marcelin, G. Acid and catalytic properties of nonstoichiometric aluminum borates. J. Catal. 1989, 115, 441–451.
Wang, Z. C.; Li, T.; Jiang, Y. J.; Lafon, O.; Liu, Z. W.; Trébosc, J.; Baiker, A.; Amoureux, J. P.; Huang, J. Acidity enhancement through synergy of penta- and tetra-coordinated aluminum species in amorphous silica networks. Nat. Commun. 2020, 11, 225.
Yu, I. K. M.; Tsang, D. C. W. Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresour. Technol. 2017, 238, 716–732.
Amarasekara, A. S.; Razzaq, A. Mechanism of 1-(1-propylsulfonic)-3-methylimidazolium chloride catalyzed transformation of D-glucose to 5-hydroxymethylfurfural in DMSO: An NMR study. Carbohydr. Res. 2014, 386, 86–91.
Qiu, G.; Huang, C. P.; Sun, X. L.; Chen, B. H. Highly active niobium-loaded montmorillonite catalysts for the production of 5-hydroxymethylfurfural from glucose. Green Chem. 2019, 21, 3930–3939.
Antal, M. J. Jr.; Mok, W. S. L.; Richards, G. N. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose. Carbohydr. Res. 1990, 199, 91–109.
Fang, J.; Dong, H.; Xu, H. M. The effect of Lewis acidity of tin loading siliceous MCM-41 on glucose conversion into 5-hydroxymethylfurfural. Renew. Energy 2023, 218, 119305.
Zhu, L. F.; Fu, X.; Hu, Y. X.; Hu, C. W. Controlling the reaction networks for efficient conversion of glucose into 5-hydroxymethylfurfural. ChemSusChem 2020, 13, 4812–4832.
Choudhary, V.; Mushrif, S. H.; Ho, C.; Anderko, A.; Nikolakis, V.; Marinkovic, N. S.; Frenkel, A. I.; Sandler, S. I.; Vlachos, D. G. Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media. J. Am. Chem. Soc. 2013, 135, 3997–4006.
Tarabanko, N.; Baryshnikov, S. V.; Kazachenko, A. S.; Miroshnikova, A. V.; Skripnikov, A. M.; Lavrenov, A. V.; Taran, O. P.; Kuznetsov, B. N. Hydrothermal hydrolysis of microcrystalline cellulose from birch wood catalyzed by Al2O3 -B2O3 mixed oxides. Wood Sci. Technol. 2022, 56, 437–457.
Zhang, L. X.; Xi, G. Y.; Chen, Z.; Qi, Z. Y.; Wang, X. C. Enhanced formation of 5-HMF from glucose using a highly selective and stable SAPO-34 catalyst. Chem. Eng. J. 2017, 307, 877–883.
Ren, L. K.; Zhu, L. F.; Qi, T.; Tang, J. Q.; Yang, H. Q.; Hu, C. W. Performance of dimethyl sulfoxide and Brønsted acid catalysts in fructose conversion to 5-hydroxymethylfurfural. ACS Catal. 2017, 7, 2199–2212.
Abdul Rani, M. A. A. B.; Karim, N. A.; Shamsul, N. S.; Kamarudin, S. K. Titanium oxide/nickel foam (TiO2/NF) catalyzed the conversion of glucose to 5-hydroxymethylfurfural in subcritical solvothermal liquefaction. Fuel 2023, 345, 128271.
Lopes, M.; Dussan, K.; Leahy, J. J.; da Silva, V. T. Conversion of D-glucose to 5-hydroxymethylfurfural using Al2O3-promoted sulphated tin oxide as catalyst. Catal. Today 2017, 279, 233–243.
Yan, H. P.; Yang, Y.; Tong, D. M.; Xiang, X.; Hu, C. W. Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO42−/ZrO2 and SO42−/ZrO2-Al2O3 solid acid catalysts. Catal. Commun. 2009, 10, 1558–1563.
Hou, Q. D.; Zhen, M. N.; Li, W. Z.; Liu, L.; Liu, J. P.; Zhang, S. Q.; Nie, Y. F.; Bai, C. Y. L.; Bai, X. Y.; Ju, M. T. Efficient catalytic conversion of glucose into 5-hydroxymethylfurfural by aluminum oxide in ionic liquid. Appl. Catal. B Environ. 2019, 253, 1–10.
Zhao, C. C.; Zhu, N. N.; Qiu, G.; Zhang, M. Y.; Tian, H. Y. Effective synergistic hafnium-aluminum bimetallic oxides catalysts for the synthesis of 5-hydroxymethylfurfural from glucose and fructose. Mol. Catal. 2023, 547, 113407.
Torres-Olea, B.; Mérida-Morales, S.; García-Sancho, C.; Cecilia, J. A.; Maireles-Torres, P. Catalytic activity of mixed Al2O3 -ZrO2 Oxides for glucose conversion into 5-hydroxymethylfurfural. Catalysts 2020, 10, 878.
Srida, M.; Chen, S. Y.; Smith, S. M.; Ngamcharussrivichai, C.; Boonyuen, S.; Tateno, H.; Mochizuki, T.; Luengnaruemitchai, A. Bifunctional mesoporous silica solid acids for transformation of glucose to 5-hydroxymethylfurfural. Mater. Today Sustain. 2023, 24, 100470.
Tomer, R.; Biswas, P. Dehydration of glucose over sulfate impregnated ZnO (hexagonal-monoclinic) catalyst in dimethyl sulfoxide (DMSO) medium: Production, separation, and purification of 5-hydroxymethylfurfural (5-HMF) with high purity. Catal. Today 2022, 404, 219–228.
220
Views
45
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).